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Information Fusion at ORNL 

• ORNL Instrumental in formulating and fostering this multi-disciplinary area  

– First DOE-sponsored workshop in 1996 

– Foundational analytical  and applied work -  originally funded by  DOE BES 
Engineering Research Program 

– Statistical foundations for measurement data – also funded by ASCR Statistics 
Program 

– Cyber-physical networks – ASCR Applied Math Program 2009 - present 

• Foundational work at ORNL: 

– Showed tractability of generic information fusion problem using measurements 

– Developed isolation and projective fusion methods 

• Applications: 

– Fusion of embrittlement predictors of light-water reactors 

– Fusion of ultrasonic and infra-red sensors for robotics applications 

– Localization of low-level radiation sources by fusing network measurement 

• Area of Increasing Importance 

– Applications to cyber-security, cyber-physical systems and sensor networks 
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First Workshop on Information Fusion - 1996 

Department of Energy lead sponsor 
Brought together scientists from: 

Engineering, Computer Science, Mathematics, 

Econometrics, Bioinformatics, and Statistics 

This workshop launched the field of Information Fusion 

 

Now, Integral part of disciplines including: 

• Distributed Sensor Networks 

• Cyber Data Mining 

• Cyber-Physical Networks 

Journals:  

• Information Fusion (2000) 

• Advances in Information Fusion (2006) 

Lead Sponsor 

 
Dedicated International Conferences: 

• International Conf. on Information Fusion 

• International Conf. on Multisensor Fusion and Integration 

• International Colloquium on Information Fusion 
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1786, Condorcet Jury Theorem: (224 years ago) 

Democracy of N members each with probability p of making right decision: decision probability of majority under 

statistical independence: 

 

 

   

 

In general, “good” fuser is better than a member but bad fuser could be worse than member – if  p is known to be <1/2, 

take opposite of majority. 

 

1818, Laplace composite method: Certain differential equations are “better” solved by combining a number of “sub-

optimal” solutions methods. 

 

1956,  Reliability: Von Neumann showed how to build a reliable system using unreliable components under independent 

failures. 

 

1962, Pattern Recognition: Chow showed optimal Bayesian threshold fuser for multiple independent classifiers. 

 

1969, Forecasting: Bates and Granger, “better” forecasts can be made by combining different forecast methods rather than 

picking one of them – variance can be reduced by weighted majority fuser 

 

Importance of “fusing” rather than picking the “best” has been demonstrated in a number of disparate disciplines – 

political economy, applied mathematics, reliability, pattern recognition, forecasting 

 

 

 

Information Fusion is a very old area! 
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What is new about “recent” 

Information Fusion area – last decade 

or two? 

• Rich Information Sources 

– Sophisticated sensors – visual, hyperspectral, radiation, 
chemical, biological, and others 

– Information sensors – web crawlers, information servers, 
sophisticated databases 

• Expanding Application Areas: 

– Cyber Security 

– Cyber-Physical Networks 

– Sensor Networks 

– Data Mining 

– Sensor Fusion 

– Detection and Classification 
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Generic Sensor Fusion Problem 

Objective: To design a fuser 
that provides performance 
guarantees based on 
measurements. 
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Overview of ORNL Solutions: Finite 

Sample Guarantees 

• General Solution 

– Showed that the problem is solvable in principle by empirical risk 
minimization 

– Under finiteness of scale-sensitive dimension of fuser class finite sample 
guarantees can be provided 

• Specific Fuser Methods 

– Empirical risk minimization 

• Vector space methods 

– Linear fusers 

– Kurkova’s neural networks 

• Sigmoid neural networks 

– Non-linear statistical estimators 

• Nadaraya-Watson estimator 

• regressograms 

– We developed finite sample guarantees for the fuser 
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Empirical Risk Minimization Method 

 Compute the fuser     from        to minimize the empirical risk 

 

  

 

Consider expected best fuser  

 
             empirical best fuser              

   

If       satisfies certain properties, we can ensure 

irrespective of sensor distributions 

 

Weakest deterministic characterization available under which this condition 
can be guaranteed is based on scale-sensitive dimension of 
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Nearest Neighbor Projective Fuser 

• Basic Idea 

– Decompose into Voronoi regions of 
measurements 

– Given a test point 

• Identify Voronoi region that contains it 

• Use the estimator with least error as a predictor 

• Performance 

• Computational: polynomial-time computable 

• Finite-sample result: given finite sample, 
fuser performs almost as good as optimal 
with a high probability  

– first finite sample result for projective fusers 

Fused estimate 

Estimator 1 
Estimator 2 

target 
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Application: Sigmoid Neural Network 

Estimators 

• Training neural networks: for function 
estimation 

– Training problem is NP-hard 

– Most training algorithms yield sub optimal 
results 

– Backpropagation algorithm is sensitive to 
starting weights and learning rate 

 
training data test data 

Sigmoid neural networks: 

different starting weights 

and learning rates 
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Fused Neural Network Estimators  

Nearest neighbor projective fuser   

Uses locally best estimators 

Note the worst overall estimator is good 
at certain parts 

 

 

Linear fuser 

Picks a single weight for entire domain 
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Embrittlement Predictions 

 • Overall Goal: Predict residual defects in materials due to neutron-
induced damage in light-water reactors 

• Transition temperature shift – vital indicator of embrittlement level 

– Several predictors available – generic sensor in our case 

• Fluence-based models  

• Eason’s models 

• Reg. Guide 1.99 model 

• Feedforward neural network models 

• Nearest-neighbor model 

• Fusion Approach: Combine all the predictors 

• General Electric boiling water reactor data 
• Isolation Fuser (linear least squares) 

– 56.5% and 32.8% reduction in  uncertainty for plate and weld data, respectively, over best 
model 

• Nearest Neighbor Projective Fuser 

– 67.3% and  52.4% reduction in uncertainty for plate and weld data, respectively, over best 
model 
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Motivating Scenario:  

Detection of Low-level Radiation Sources 

Sources of low-level radiation 

– Unexploded dirty bombs during storage and transportation 

– Slow leakage or controlled injection 

– Combined with conventional explosions 

It is becoming easier to procure radioactive material 

 

Task:  

Detect the sources based on sensor measurements 

 Several underlying math problems related to 

detection networks are open.  

Our work  

• addresses network-based detection  

• provides answers using statistical estimation 

 and packing numbers 
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Difficulty of Detecting Low-level 

Radiation Sources 

• The radiation levels are only slightly above the background levels and may 
appear to be “normal” background variations  

• Varied Background: Depends on local natural and man-made sources and may 
vary from area to area 

• Probabilistic Measurements: Radiation measurements are inherently random 
due to underlying physical process – gamma radiation measurements follow 
Poisson Process 

• Several solutions are based on thresholding sensor measurements 

Well-Studied Problem: Has been studied for decades using single or co-located 

sensors: analytical, experimental and  

 - sensor networks offer “newer” solutions but also questions 

 

Recent Results (2010):  

ORNL developed mathematical quantification for a network of sensors to achieve 

better performance than single-sensor detectors 
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Detection of Sources Amidst 

Background 

A Traditional Detection Fusion Method: 

1. Sequential Probability Ratio Test (SPRT) to infer detection 
(yes/no) from measurements at sensors; 

2. Fuse the Boolean decisions at fusion center. 

 

 

 

 

 

 

 

 

 

ORNL Results (2010):   

Developed methods that out-perform this established method of fusing decisions.  

Sensor  1 

Boolean 
Fuser 

Sensor  N 

SPRT 1 

SPRT N 

decision 1 

decision N 

fused 
decision  
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Localization-Based Fusers  

 Proposed Method for Detection: 

1. Estimate the source parameters using measurements –  

2. Utilize likelihood ratio test        at the fusion center 

 

  where 
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DOD Radar Fusion Framework: Localization is performed after detection, but our results do 

the opposite as in computer vision applications 
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Summary: Improved Detection 

through Localization 

Improved detection using measurements at fusion center compared to existing decision fusion methods, using 
robust localization, under: 

Network Communications Losses: 2011 

 Conditions: Communication losses 

  + under bounded losses, improved detection is still achieved 

  - under severe losses, network under-performs detectors 

General non-smooth conditions: 2010 

 Conditions: Separability of probability ratios 

  - complex analysis and less intuitive conditions 

  + valid under complex shielding of radiation sources 

Smoothness conditions: 2009 

 Conditions: Lipschitz separable probability ratios; and Lipschitz source intensity 

  + intuitive conditions: “bigger” parameter space is better 

  - valid typically under open-space environments 

First mathematical proofs for this class of problems to show: 

 a network of sensors performs better than single or co-located sensors 

 measurement “fusion” performs better than detection fusion 
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To Network or Not to Network ? 
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Conclusions  

Information fusion is a multi-disciplinary area 

 In existence for centuries – political economy, forecasting, statistics, reliability, pattern 
recognition 

 New applications and developments – sensor networks, cyber security, data mining, cyber-
physical networks 

ORNL developed solutions to generic sensor fusion problems:  

Solutions based on empirical estimation and statistical estimators 

Three general classes of fusers 

Isolation  fusers– illustrated with classifiers 

Projective fusers – illustrated with function estimators 

Localization-Based fusers – illustrated with radiation source detection 

Motivated by practical problems: robotics, radiation source detection, embrittlement 
predictions 

Challenges in Information Fusion 

Measurements from physically distributed processes exploit physical models and laws 

Cyber-physical networks combine information from different modalities 
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