Micro-mesoscopic Modeling of Heterogeneous Chemically Reacting Flows (MMMHCRF) over Catalytic/Solid Surfaces

Presented by

Sreekanth Pannala

Computational Mathematics Computer Science and Mathematics Division

Goal

Develop a computationally scalable mathematics framework for accurate modeling of multiphysics, multiscale problems with heterogeneous chemically reactive flow over catalytic surfaces as the prototype problem

2 Managed by UT-Battelle for the U.S. Department of Energy

Multiphysics heterogeneous chemically reacting flows for energy systems

Goal: building a suite of models for multiscale (space, time) capability to simulate multiphase flow reactors

- A set of models is used to simulate heterogeneous chemically reacting flows
- Interfacing the models requires rigorous methods for upscaling and downscaling
- Hybrid methods to couple two physical models (e.g., MFIX DEM)
- Uncertainty quantification to probe only quantities of interest at smaller scales

Applications

Chemical looping combustion (CLC)	 Efficient, low emissions, and amenable to CO₂ sequestration 	
Staged combustion with oxygen transfer (SCOT)	CLC adapted for transportation	 Fibrous s The cagin
Polyethylene production	 Important process that uses ~10% of crude petroleum 	with a fixe
Reactive flows through fibrous media	 Lightweight, low-cost, and high- strength composites Fuel-cell components Scaffolds for biomedical applications 	radiation z bas phase
Coal gasification and combustion	 New technologies Gas f for cleaner and more efficient coal combustion 	ow in the char Pyrolysis front Not-yet-reacted o

- Fibrous substrate for discontinuous fiber substrate
- The caging volume found by probing the substrate with a fixed-size sphere is denoted by spheres

Flow over a catalyst surface

- Chemically reactive flow over a surface is a basic building block that is central to many energy-related applications
- Illustrative benchmark to demonstrate the capability to integrate scales of several orders of magnitude

Figure adapted from Succi et al., Computing in Science and Engineering 3(6), 26, 2001

Compound Wavelet Matrix Method

National Laborator

Recent results*

- 1-D reaction/diffusion simulation performed at two different length and time scales:
 - Fine (KMC and diffusion equation using finite difference at fine scale)
 - Coarse (analytical species solution and diffusion equation using finite difference at coarse scale)
- Pseudo-2-D reaction diffusion multiscale simulations with error analysis
- A dynamic CWM implementation for non-stationary processes
 - Wavelet-based spatial upscaling and downscaling
- A time parallel implementation of CWM for Lotka-Volterra predator-prey equations

*Frantziskonis et al., International Journal for Multiscale Computational Engineering **5-6**, 755, 2006 Muralidharan et al., *Phy. Rev. E* **77**, 2, 026714, 2008 Mishra et al., International Journal for Chemical Reactor Engineering **6**, A28, 2008 Mishra et al., *Proceedings of the 2008 ICCS Conference, Lecture Notes in Computer Science*, Springer Frantziskonis et al., 3rd IC-SCCE Conference, Athens, 2008

Example 1: 1-D reaction diffusion system*

*Frantziskonis et al., International Journal for Multiscale Computational Engineering 5-6, 755, 2006

National Laboratory

8 Managed by UT-Battelle for the U.S. Department of Energy

tpCWM (time parallel CWM)

Schematic of the TP and CWM methods: (a) the TP method – the fine method instantiates at several temporal "nodes" typically for a period δt that covers time until the next node; (b) the temporal CWM – the fine method is employed for a fraction of the coarse method; (c) the CWM reconstruction updates the mean field; and (d) the CWM reconstruction updates the temporal statistics

tpCWM applied to Lotka-Volterra predator-prey equations

Factor of computational savings, *X* as a function of the ratio *r* (number of processors/number of iterations) and the fraction *f* (fraction of KMC time used in each assigned time interval)

Three orders of magnitude savings can be achieved by r in the range of 20 and f in the order of 1/64.

10 Managed by UT-Battelle for the U.S. Department of Energy Frantziskonis et al., J. Comp. Phy., 2009

The team

Oak Ridge National Laboratory	Oak RidgeNationalAmes LaboratoryLaboratoryIowa State University		National Energy Technology Laboratory
Sreekanth Pannala	Rodney Fox	George Frantziskonis	Thomas O'Brien
Srdjan Simunovic	Zhaoseng Gao	Sudib Mishra	Madhava Syamlal
Stuart Daw		Pierre Deymier	
Phani Nukala		Krishna Muralidharan	
	AMES LABORATORY		
OAK RIDGE National Laboratory	IOWA STATE UNIVERSITY	THE UNIVERSITY OF ARIZONA	

Contact

Sreekanth Pannala

Computational Mathematics Computer Science and Mathematics Division (865) 574-3129 pannalas@ornl.gov

Srdjan Simunovic

Computational Materials Computer Science and Mathematics Division (865) 241-3863 simunovics@ornl.gov

