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The GPU: Ideal candidate for 

scientific computing 

• A massively parallel coprocessor 

• Superior memory bandwidth 

• Immense raw computing power 

• SPMD processing with tens of 
thousands of threads 
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CUDA 

• NVIDIA’s programming 
model makes GPUs 
more accessible than 
ever 

• Decompose parallel 
sections of applications 
into kernels 

• Execute those kernels 
on the GPU 

Image from NVIDIA CUDA Programming Guide 
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The S3D simulation code 

• S3D is a direct parallel solver for the Navier-Stokes 
equation, complete with detailed chemistry 

• It is used to simulate  
combustion 

• A faster version of S3D  
would allow scientists  
to simulate larger  
chemical domains at  
higher resolution, for  
longer periods of time  

Image from: “Direct numerical simulation 
of a lifted ethylene-air flame.”  
C. S. Yoo, J. H. Chen, et al.  
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Mapping S3D to CUDA 

• S3D operates on a 
regular 3-D mesh, 
which we decomposed 
spatially into blocks 

• Each block is further 
divided into threads, 
which solve for an 
individual point in 
space 
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Accelerating S3D’s chemistry 

We implemented an accelerated version of S3D’s Getrates kernel.  
The graph below shows the normalized runtime on Keeneland 
using one Tesla M2070 GPU or Westmere CPU per node. 
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Detailed Kernel Performance 

• This chart compares the 
performance of an optimized 
CPU version to the GPU 
version on the NSF 
Keeneland system. 

• Performance measured 
using CUDA 4.0 and double 
precision. 
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Accuracy vs performance in S3D 

• Single precision is faster, but results in 
higher integration error 

• Time step size shrinks to compensate 

• It takes more iterations to simulate the 
same physical process 

• Thus, the trade-off between precision 
and runtime is complex 
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The DCA++ simulation code 

DCA++ is a Quantum Monte Carlo simulation code 

• Studies of high-temperature superconductivity and other materials science 

• Implements Dynamic Cluster Approximation 
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Mapping DCA++ to CUDA 

• GPU BLAS offload alone 
resulted in significant 
speedups 

• Further improvement by 
minimizing data transfers was 
only moderate because some 
functions remained on the CPU 

• Porting remaining functions to 
GPU helped or hurt 
performance depending on 
problem size 
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DCA++ results 

• QMC Update step showed almost 
20 speedup after acceleration 

• Accuracy remained within 
acceptable levels even when 
using single precision algorithms 

• Full parallel GPU accelerated 
code showed 5 improvement 
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NOAA GFDL Climate Model Results 
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Cristopher Kerr, NOAA 

• Evaluating performance-productivity 
tradeoff of hand-written CUDA and 
directive-based acceleration 

• Measured kernel performance on 
Keeneland system and next-gen Sandy 
Bridge 

• Initially legacy FORTRAN 

• Currently running on multiple GPUs 
using OpenMP 
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Moving forward 

• Productivity and accuracy remain critical goals 

– OpenCL improves code portability 
• Open standard for parallel heterogeneous computing 
• Abstractions are similar to CUDA 
• www.khronos.org/opencl 

– GPU improvements in precision 
• Full double-precision support in latest GPUs 
• Speed is improving relative to single precision performance 
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