
Presented by

Memphis: Finding and Fixing

NUMA-Related Performance Problems

on Multi-core Platforms

Collin McCurdy

Jeffrey S. Vetter

Future Technologies Group
Computer Science and Mathematics Division

2 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Overview

• Current projections call for each chip in an Exascale
system to contain 100s to 1000s of processing cores

– Already (~10 cores/chip) memory limitations and performance
considerations are forcing scientific application teams to
consider alternatives to “MPI-everywhere”

– At the same time, trends in micro-processor design are
pushing memory performance problems associated with Non-
Uniform Memory Access (NUMA) to ever-smaller scales

• Memphis* uses sampling-based hardware performance
monitoring extensions to pinpoint the sources of memory
system performance problems due to, or exacerbated by,
NUMA

*C. McCurdy and J. S. Vetter, “Memphis: Finding and Fixing NUMA-Related Performance Problems on Multi-core Platforms,” In

Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software, March 2010.

3 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

NUMA Performance Problems

• Typical performance problems associated w/ NUMA:

– Hot-spotting

• Due to poor initialization, memory not distributed across nodes

– Computation/Data-partition mismatch

• Memory distributed, but not appropriately

• NUMA can also amplify small performance bugs,
turning them into significant problems

– Example: contention for locks and other shared variables

• NUMA can significantly increase latency (and thus waiting time),
increasing possibility of further contention.

4 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

So, more for programmers to worry

about, but there is good news…

1. Mature infrastructure for handling NUMA from software
level already exists

– NUMA-aware operating systems, compilers and runtime

– Based on years of experience with distributed shared memory
platforms like SGI Origin/Altix

2. New access to performance counters that help identify
problems and their sources

– NUMA performance problems caused by references to remote data

– Counters naturally located in Network Interface

• On chip easy access, accurate correlation

5 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Instruction-based Sampling

• AMD‟s hardware-based performance monitoring extensions

• Similar to ProfileMe hardware introduced in DEC Alpha 21264

• Like event-based sampling, interrupt driven; but not due to cntr overflow

– HW periodically interrupts, follows the next instruction through pipeline

– Keeps track of what happens to and because of the instruction

– Calls handler upon instruction retirement

• Intel‟s PEBS-LoadLatency extensions are similar, but limited to memory (lds)

• Both provide the following data useful for finding NUMA problems:

– Precise program counter of instruction

– Virtual address of data referenced by instruction

– Where the data came from: i.e., DRAM, another core‟s cache

– Whether the agent was local or remote

• Post-pass looks for patterns in resulting data

• Instruction and data address enables precise attribution to code and variables

6 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Memphis Introduction

• Toolset using IBS to pinpoint NUMA problems at source

• Data-centric approach

– Other sampling-based tools associate info with instructions

– Memphis associates info with variables

– Example: Hot spot cause is variable init, problems evident at use

– Programmers want to know

1. What variable is causing problems

2. Where (likely multiple sites)

• Consists of three components

– Kernel module interface with IBS hardware

– Library API to set “calipers” and gather samples

– Post-processing executable

Key Insight: The source of a NUMA problem is not necessarily where it’s evidenced

7 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Recent Extensions

• Mapping addresses to dynamically allocated
variables

• Port to Cray CNL*

• Eclipse-based GUI

*C. McCurdy, J.S. Vetter, P. Worley, and D. Maxwell, "Memphis on an XT5: Pinpointing Memory Performance Problems on Cray

Platforms," in Proc. Cray Users Group Conference (CUG 2011), May 2011.

8 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Allocation Instrumentation Tool

• Adds capability to map addresses to dynamically allocated variables

• Based on a Tau tool, built on top of Program Database Toolkit from

University of Oregon

• Easily integrated into build process

– Extra step in the rule to compile F90 files in Makefile

• At runtime, each dynamic allocation dumps variable-to-address-

range mapping for use by post-processing tool

• Potential drawbacks

– Adds overhead to each dynamic allocation

– Requires access to source (i.e., cannot instrument libraries)

• In practice, benefits significantly outweigh drawbacks

9 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Memphis on Cray Platforms

• Compute Node Linux (CNL) is Linux-based

– many components of Memphis work on Cray platforms without
modification

• One exception: the kernel module

– Several predefined kernel constants and functions not contained in the
CNL distribution

– Required finding and hard-coding values into calls that set configuration
registers

• Kernel module port complicated by the black-box nature of CNL
(not open-source)

– Required the help of a patient Cray engineer to perform first half of each
iteration of the compile-install-test-modify loop

• Also implemented: mechanism for making Memphis available to
jobs that want to use it

10 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Eclipse GUI

11 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Memphis Evaluation

• Quick demonstration of two aspects of „performance‟

– Runtime overhead

– Usefulness: application performance improvements

12 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Runtime Overhead

• Even with allocation statements instrumented,
overhead is ~1%.

 IBS Off,
No Instrumentation

IBS On,
Instrumented

Base 40.69 41.18

Mod1 36.29 36.63

Mod2 35.90 36.31

13 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Performance Improvements: CESM

• Memphis-directed changes to one file (of many).

• Performance of 12 threads (two NUMA nodes) is comparable.

0

1

2

3

4

5

6

7

8

2700 5400 10800 21600 43200 86400 172800

Si
m

u
la

te
d

 Y
e

ar
s

p
e

r
D

ay

Cores (6 threads/process)

CAM/HOMME on Jaguarpf

orig

opt

14 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

Conclusion

• NUMA is already a problem, and it will only get
worse...but there is hope.

– Memphis is a toolset that uses sampling-based hardware
performance monitoring extensions to pinpoint the sources
of memory performance problems

– Memphis is now available on Cray platforms

– We have used Memphis to find and fix significant problems
in several large-scale production applications

• Want us to look at an application? Let us know!

• Want Memphis on your system? Let us know!

15 Managed by UT-Battelle
 for the U.S. Department of Energy Memphis

15 Managed by UT-Battelle
 for the U.S. Department of Energy

Contacts

Jeffery S. Vetter

Future Technologies Group
Computer Science and Mathematics Division
(865) 356-1649
vetter@ornl.gov

Collin McCurdy

(865) 241-6433
cmccurdy@ornl.gov

