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Overview 

• Current projections call for each chip in an Exascale 
system to contain 100s to 1000s of processing cores  

– Already (~10 cores/chip) memory limitations and performance 
considerations are forcing scientific application teams to 
consider alternatives to “MPI-everywhere” 

– At the same time, trends in micro-processor design are 
pushing memory performance problems associated with Non-
Uniform Memory Access (NUMA) to ever-smaller scales 

• Memphis* uses sampling-based hardware performance 
monitoring extensions to pinpoint the sources of memory 
system performance problems due to, or exacerbated by, 
NUMA 

*C. McCurdy and J. S. Vetter, “Memphis: Finding and Fixing NUMA-Related Performance Problems on Multi-core Platforms,” In 

Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software, March 2010. 
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NUMA Performance Problems 

• Typical performance problems associated w/ NUMA: 

– Hot-spotting 

• Due to poor initialization, memory not distributed across nodes 

– Computation/Data-partition mismatch 

• Memory distributed, but not appropriately 

• NUMA can also amplify small performance bugs, 
turning them into significant problems 

– Example: contention for locks and other shared variables 

• NUMA can significantly increase latency (and thus waiting time), 
increasing possibility of further contention.  
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So, more for programmers to worry 

about, but there is good news… 

1. Mature infrastructure  for handling NUMA from software 
level already exists 

– NUMA-aware operating systems, compilers and runtime  

– Based on years of experience with distributed shared memory 
platforms like SGI Origin/Altix 

2. New access to performance counters that help identify 
problems and their sources 

– NUMA performance problems caused by references to remote data 

– Counters naturally located in Network Interface 

• On chip        easy access, accurate correlation 
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Instruction-based Sampling 

• AMD‟s hardware-based performance monitoring extensions 

• Similar to ProfileMe hardware introduced in DEC Alpha 21264 

• Like event-based sampling, interrupt driven; but not due to cntr overflow 

– HW periodically interrupts, follows the next instruction through pipeline 

– Keeps track of what happens to and because of the instruction 

– Calls handler upon instruction retirement 

• Intel‟s PEBS-LoadLatency extensions are similar, but limited to memory (lds) 

• Both provide the following data useful for finding NUMA problems: 

– Precise program counter of instruction 

– Virtual address of data referenced by instruction 

– Where the data came from: i.e., DRAM, another core‟s cache 

– Whether the agent was local or remote 

• Post-pass looks for patterns in resulting data 

• Instruction and data address enables precise attribution to code and variables 
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Memphis Introduction 

• Toolset using IBS to pinpoint NUMA problems at source 

• Data-centric approach 

– Other sampling-based tools associate info with instructions 

– Memphis associates info with variables 

 

 

– Example: Hot spot cause is variable init, problems evident at use 

– Programmers want to know 

1. What variable is causing problems 

2. Where (likely multiple sites) 

• Consists of three components 

– Kernel module interface with IBS hardware 

– Library API to set “calipers” and gather samples 

– Post-processing executable 

Key Insight: The source of a NUMA problem is not necessarily where it’s evidenced 
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Recent Extensions 

• Mapping addresses to dynamically allocated 
variables 

• Port to Cray CNL* 

• Eclipse-based GUI 
 

*C. McCurdy, J.S. Vetter, P. Worley, and D. Maxwell, "Memphis on an XT5: Pinpointing Memory Performance Problems on Cray 

Platforms," in Proc. Cray Users Group Conference (CUG 2011), May 2011. 
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Allocation Instrumentation Tool 

• Adds capability to map addresses to dynamically allocated variables 

• Based on a Tau tool, built on top of Program Database Toolkit from 

University of Oregon 

• Easily integrated into build process  

– Extra step in the rule to compile F90 files in Makefile 

• At runtime, each dynamic allocation dumps variable-to-address-

range mapping for use by post-processing tool 

• Potential drawbacks 

– Adds overhead to each dynamic allocation 

– Requires access to source (i.e., cannot instrument libraries) 

• In practice, benefits significantly outweigh drawbacks 
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Memphis on Cray Platforms 

• Compute Node Linux (CNL) is Linux-based  

– many components of Memphis work on Cray platforms without 
modification 

• One exception: the kernel module  

– Several predefined kernel constants and functions not contained in the 
CNL distribution 

– Required finding and hard-coding values into calls that set configuration 
registers 

• Kernel module port complicated by the black-box nature of CNL 
(not open-source) 

– Required the help of a patient Cray engineer to perform first half of each 
iteration of the compile-install-test-modify loop 

• Also implemented: mechanism for making Memphis available to 
jobs that want to use it 
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Eclipse GUI 
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Memphis Evaluation 

• Quick demonstration of two aspects of „performance‟ 

– Runtime overhead 

– Usefulness: application performance improvements 
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Runtime Overhead 

• Even with allocation statements instrumented, 
overhead is ~1%. 

  IBS Off, 
No Instrumentation 

IBS On,  
Instrumented 

Base 40.69 41.18 

Mod1 36.29 36.63 

Mod2 35.90 36.31 
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Performance Improvements: CESM 

• Memphis-directed changes to one file (of many). 

• Performance of 12 threads (two NUMA nodes) is comparable. 
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Conclusion 

• NUMA is already a problem, and it will only get 
worse...but there is hope. 

– Memphis is a toolset that uses sampling-based hardware 
performance monitoring extensions to pinpoint the sources 
of memory performance problems 

– Memphis is now available on Cray platforms 

– We have used Memphis to find and fix significant problems 
in several large-scale production applications 

• Want us to look at an application?  Let us know! 

• Want Memphis on your system?  Let us know! 



15 Managed by UT-Battelle 
 for the U.S. Department of Energy Memphis 

15 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Contacts 

Jeffery S. Vetter 

Future Technologies Group 
Computer Science and Mathematics Division 
(865) 356-1649 
vetter@ornl.gov 

Collin McCurdy 

(865) 241-6433 
cmccurdy@ornl.gov 


