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Introduction 
•  Tokamak fusion plasma is a gaseous system of charged particles (D+ ,T+ and e-) 

that flow along strong magnetic field lines in a torus (called magnetic 
confinement) 

•  When D+ and T+ ions are hot enough (>10 keV), they fuse together to form  
α particles (energetic He2+) and release 14 MeV neutrons (E = Δm c2) 

•  Energy from 14 MeV neutrons is used for electricity generation 
•  Tokamak plasma is subject to 

–  Collisional transport enhanced by an inhomogeneous toroidal magnetic field 
(neoclassical transport) 

–  Microscale turbulences and slow loss of plasma 
–  Macroscale instabilities and fast loss of plasma 

•  Assuming that the macroscale instabilities (item 3) are controlled in a fusion 
reactor 

 Our simulation performs item 1 and 2 in full-function multiscale in realistic 
diverted geometry.  
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Difficult to simulate: 
XGC is unique. 

Tokamak geometry 

Poloidal cross-section 
(poloidal plane) at a constant 
toroidal angle 
 
Poloidal magnetic flux label ψ
(r):  1 at r/a = 1;  0 at r/a = 0 ϕ 
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Gyrokinetic particle simulation of 
fusion plasma 
•  Gyrokinetic: Reduce 6D (x,y,z,v1,v2,v3) to 5D (x,y,z,v||,v⊥) 

by assuming that the gyrofrequency is much faster and that the 
gyroradius is much shorter than the interesting physics scale 

 
•  Particle-in-cell approach: Solve the marker particle 

dynamics in 5D space, and solve the Maxwell’s equations on 
3D position grid 
–  Optimal for leadership-class computing (larger device or higher 

resolution physics  bigger grid  larger # particles  larger # 
cores) 
•  Because particle # per core is limited by memory size 

–  Reduced memory requirement via random v-space sampling 
–  Statistical particle noise 1/sqrt(N)  smoothing or large enough N (convergence 

and sensitivity studies are needed) 
–  Full-function simulation is needed for solving the background and turbulence 

dynamics together, and for handling the edge plasma 

B 
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Difficulty of the whole volume simulation 

Magnetic separatrix is a 
singular surface for core codes 
which use the easy-to-handle 
“magnetic” coordinate system 
 
Thus all the gyrokinetic codes stay in 
the core  
•  At a safe distance inside the magnetic 

separatrix surface 
•  Delta-f perturbed simulation is used in 

the core 

Core 

Higher fidelity physics needs whole volume simulation 
in full-function: many experimental evidences exist for 
critical nonlocal core-edge interactions 

XGC on cylindrical grid is the only kinetic code capable of 
the whole-volume simulation in full-function. 

Edge 
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Understanding the edge-core interaction 
is critical for fusion 

•  30 years of experiments find that the edge plasma condition 
has a direct influence on the core fusion plasma condition 
–  At a much faster information transmission speed than a plasma 

heat transport speed 
•  Overall ΔrTi  profile is “stiff,” with the core ΔrTi responding to the edge 

plasma within only several milliseconds, while the plasma heat transport 
time scale is 102 slower 

•  ITER operation assumes this experimental finding, but an 
agreeable physics understanding does not exist 

• Whole-volume first-principles full-function modeling of 
background and turbulence dynamics  HPC is needed 
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XGC1 gyrokinetic PIC code 
(typically on 30K–220K cores, 1–10 wall-clock 
days) XGC1: full-function (full-f), X-point included Gyrokinetic  
Code in realistic tokamak geometry across magnetic  
separatrix surface 
•  Spatial simulation domain: Whole tokamak plasma volume  

with realistic tokamak edge geometry and Dirichlet wall  
boundary condition (grounded wall) 

•  Unstructured triangular grid: Particles advance in cylindrical coordinate. Field 
solver on B-following grid 

•  Capability in hand: Electrostatic turbulence without scale-separation from 
mean plasma (ion) dynamics, with heat source and conserving Coulomb 
collisions 
–  Full-f  ions and full-f electrons (for axisymmetric solution) 
–  Full-f ions and adiabatic electrons (for turbulent solution) 
–  Delta-f ions (for verification against other delta-f simulations) 

•  Capability under development: Full-function electromagnetic turbulence 
–  Current electromangetic capability: delta-f 
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XGC1 scales efficiently to the 
maximal number of Jaguar cores 

•  900K particles per thread problem is more computationally intensive than 300K 
problem, which leads to ~20% higher particle push rate 

•  Performance scaling is excellent for both problems 

12 cores per node, 2 MPI processes per node 

223,488 cores 

(Jan. 1 – June 27, 2010) 
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Whole-volume, full-f ITG simulation for 
DIII-D 
•  ITG (ion temperature gradient) 

driven turbulence is the most robust 
and fundamental microturbulence in 
a tokamak plasma  

•  Includes diverted edge geometry 
and magnetic axis 

•  Realistic Dirichlet BD condition  
Φ = 0 on conducting wall 

•  Heat source in the central core 
•  This type of simulation is possible 

only on extreme HPCs  will push 
the edge of future HPC 

•  Several new scientific discoveries 
have emerged SciDAC 2010                                  July 11–15, 2010 
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Edge turbulence propagates deep into 
the core and self-organizes the global 
temperature profile to criticality (SOC) 
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As edge turbulence arrives, local turbulence is aroused/modified 
and induces adequate heat flux to yield self-organized criticality.  
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Turbulence propagation and heat burst settle down 
to quasi-steady SOC (avalanching) state in ~3–5 ms  
 Experimental core-edge interaction time 

ψN ψN 

ExB Shearing Rate Heat Flux 

t v
i/R

o 
Textbook type of turbulence interaction 
with self-organized ExB shearing dynamics 
is observed 
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Self-organized δΦ2/T2 increases  
toward the edge 

Turbulence 
source region 

Inward 
spreading 

Core Edge 

Seen in experiments, but unexplained for 30 years 
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Looking forward to exascale simulation 

•  Lack of computing power has been forcing us to study the 6D 
Vlasov plasma system in the reduced 5D system, restricting the 
kinetic simulation validity to << gyrofrequency and ≥ gyroradius 

•  On exascale HPC, the dream of a 6D whole-volume tokamak 
simulation can be realized but highly challenging: requires close 
co-design with computer science and applied mathematics 
–  Implicit time-marching to avoid CFL trouble with Alfven waves 
–  How well can we localize the computation? 
–  Efficient in-memory data staging and data analysis 
–  Resiliency and fault tolerance? 
–  Concurrency issue: dynamics load balancing? 
–  How much can we improve I/O? 
–  Flexibility to unknown new hardware and programming models 



15  Managed by UT-Battelle 
 for the U.S. Department of Energy Klasky_XGC1_SC11 

XGC1 roadmap to exascale  
(1 day run-target) 

2010          2012         2014         2016          2018        2020         2022 

2 PF          10–20 PF            150 PF                1–2 EF            10 EFlops 

Existing devices, core-edge ITG 

Existing devices, ion-scale  
electromagnetic core-edge turbulence 

ITER core-edge ion-scale 
electromagnetic turbulence 

ITER core-edge electron-scale 
electromagnetic turbulence 

ITER 6D electromagnetic 
turbulence 

Validation 

Validation and prediction 

Gyrokinetic prediction 
for ITER operation 

Begin virtual ITER 

SciDAC 2010                                  July 11–15, 2010 
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Conclusion 

•  XGC1 is a new generation fusion particle code, efficiently scaling 
to the maximal number of Jaguarpf cores 
–  Unlike other existing gyrokinetic codes, XGC1 simulates the whole-volume 

tokamak in realistic diverted magnetic field geometry in full-function (as 
opposed to the perturbative delta-f) 

–  XGC1 performs multiscale background and turbulence dynamics in a 
single framework 

–  XGC1 has already made several scientific discoveries 

•  For a higher degree first-principles multiscale tokamak modeling 
in XGC1, more extreme-scale HPC is needed 
–  XGC1 is getting ready for next-generation HPC with state-of-the-art  

computational and applied math technologies 

•  If an exascale HPC is available in the future, fusion particle code 
can make a quantum jump into the formidable 6D tokamak 
physics simulation.  An efficient co-design is a necessity 
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