
Bilel Hadri and Haihang You

University of Tennessee
NICS

Introduction and motivation

•  Facts
–  ALTD (Automatic Tracking Library Database) ref Fahey, Jones,

Hadri, CUG 2010
•  Numerical libraries are one of the most used packages
•  LAPACK library is linked with different package

– Craypat, Amber, nwchem, Cactus, Abinit, Chromo and qdp
–  Kraken supports optimized version of LibSci (Cray), ACML (AMD)

and MKL (Intel) with different compilers (PGI, GNU, Intel, Cray)
–  Architecture-optimized versions of libraries is not always used on

Kraken by the users.

•  Goal
–  Study Choosing the most efficient library for a given application is

essential for achieving good performance.
–  Design a framework to help researchers to determine the fastest

library choices for their applications.

Interface framework

•  Three numerical libraries have been studied: LibSci (10.4.5),
ACML (4.4.0) and Intel MKL (10.2) using dense and random
matrix.

•  Each numerical library is built with the following compilers: PGI
(10.6.0), GNU (4.4.3) and Intel (11.1.038).

•  Developed a set of scripts to build executables, submit jobs,
gather data and plot results automatically.

•  Store the results to build a Knowledge database
–  Function, Data size (vector/matrix),
–  For ScaLAPACK, FFT, need to add other dimensions:

–  number of cores, topology , accuracy
•  Further development is needed to provide an API for the users

–  to query the system for suggestions of using certain library
with certain compiler for better performance for their
scientific applications

BLAS level 3 : Matrix matrix
multiplication

•  ACML library has the fastest implementation for DGEMM, reaching 113 Gflop/s (91% of
the theoretical peak). LibSci is 2% slower than ACML.

•  Libraries compiled with Intel perform less than 40% of the theoretical peak.
•  For very small matrices, MKL is the fastest implementation,

~ 2 times

~ 3 times

LAPACK – DPOTRF : Cholesky
factorization

•  DPOTRF is based mostly on DGEMM. Both MKL and LibSci are the fastest
implementation for the small and large matrix size respectively.

•  ACML and LibSci built with Intel compiler gives the worst performance

LAPACK – DGELS – QR factorization
and solve

•  ACML achieved the best performance with PGI and GNU.
•  LibSci has a behaviour of a library not used the optimizing BLAS. Compare to the ACML, LibSci is 3

times slower with PGI and GNU and 10 times slower with Intel
•  Libsci has the small block size (NB)and it is set by default to 32, while for MKL, it depends on the

matrix size (it varies from 16 to 128)

~ 3 times

LAPACK : DSYGV : generalized
symmetric-definite eigenproblem

•  ACML and MKL gives the fastest implementation.

•  LibSci is the slowest implementation and with GNU, the performance does not exceed
0.3 Gflops while ACML reaches 16 Glops.

~ 6 times

DFTB density-functional tight-binding

t=0 (ps) t=1.5 (ps) t=2.5 (ps) t=5 (ps) t=28 (ps)

DFTB is a quantum chemistry molecular dynamic application solving eigenvalues of the Hamiltonian :

refs: Zheng, Morokuma, Jakowski, Int. J.Quantum Chem. (2009)
Algorithm:

1) Solve electronic Schrödinger equation (with DSYGV) at nuclear configuration until
convergence (~10-20 iterations per MD step)
2) calculate forces (gradient of energy)
3) move nuclei classically (Newton Eq. and quantum forces from 2)
4) repeat step 1-3 several thousand of times (typically 10,000 MD steps)

DFTB results

 	
 DSYGV	
 Total Time in sec	
 Speedup	

Library	
 Compiler	
 small	
 large	
 small	
 large	
 small	
 large	

LIBSCI
 	

PGI	
 31.3	
 1193	
 38.9	
 1416	
 1.00	
 1.00	

GNU	
 205	
 7034	
 221	
 7136	
 0.18	
 0.20	

Intel	
 42.3	
 1401	
 51.2	
 1599	
 0.76	
 0.89	

ACML	

PGI	
 7.49	
 137	
 15.3	
 355	
 2.54	
 3.99	

GNU	
 11.5	
 177	
 22.3	
 374	
 1.74	
 3.79	

Intel	
 15.3	
 275	
 22.8	
 468	
 1.71	
 3.03	

MKL	

PGI	
 11.7	
 284	
 21.2	
 502	
 1.83	
 2.82	

GNU	
 15.8	
 388	
 25.5	
 573	
 1.53	
 2.47	

Intel	
 16.2	
 292	
 23.9	
 475	
 1.63	
 2.98	

•  Performance match the DSYGV Performance. ACML best implementation with a speedup of 4 (reduced
to 50% of the overall time in DSYGV) while LibSci with GNU is the worst !

•  For Larger size, MKL library improves and reduce the gap from ACML

•  Two simulations are considered : small with 121 atoms and a larger one with 363 which makes the matrix size 460
and 1460 respectively.

•  Memory bound. Problem scales cubically with number of atoms O(N3)
•  The default is the LibSci with PGI. Solving the system takes about 80% of the total execution

Conclusions

•  Different library implementations have different strong points.
–  LibSci gives generally the fastest implementation (except for DGELS and DSYGV).
–  ACML should be considered to be the safest solution to avoid weak performance

•  The best library implementation often varies depending on the individual routine
and the size of input data

•  Experiment with different versions and parameters and find what works for your
code

 	
 Small	
 Medium	
 Large	

DAXPY	
 MKL/PGI	
 LibSci/PGI	
 LibSci/PGI	

DGEMV	
 LibSci/PGI	
 LibSci/PGI	
 ACML/ LibSci	

DGEMM	
 LibSci/PGI	
 ACML/PGI	
 ACML/PGI	

DGETRF	
 ACML/PGI	
 LibSci/PGI	
 LibSci/PGI	

DGESV	
 ACML/PGI	
 LibSci/PGI	
 LibSci/PGI	

DPOTRF	
 MKL/PGI	
 LibSci/PGI	
 LibSci/PGI	

DGELS	
 MKL/Intel	
 ACML/PGI	
 MKL/PGI	

DGEEV 	
 ACML/PGI	
 LibSci/PGI	
 LibSci/PGI	

DSYGV 	
 ACML/PGI	
 ACML/PGI	
 MKL/PGI	

Future work

• Similar performance on other architectures
and other vendor libraries

• Expand the work to ScaLAPACK and FFT
• Provide an API for the users in order to query

the system for suggestions of using certain
library with certain compiler for better
performance for their scientific applications

Bilel Hadri
University of Tennessee, NICS
bhadri@utk.edu

Haihang You
University of Tennessee, NICS
hyou@utk.edu

