A UT/ORNL PARTNERSHIP NATIONAL INSTITUTE FOR COMPUTATIONAL SCIENCES

A Regression Testing Framework for Noncatastrophic Failure Detection

Lonnie D. Crosby

Justin L. Whitt, Patricia A. Kovatch and George Herring University of Tennessee, NICS Chris Buckley – University of Tennessee

Non-catastrophic Failure Detection

- Benchmark or diagnostic tests are good for the detection of catastrophic failures.
- Non-catastrophic failures:
 - adversely affect application execution without system instability or notification.
 - unknown frequency and can have long durations
 - user facing
- Appropriate first-response methods could quickly detect these failures and reduce impact.
- Detection of non-catastrophic failures may be performed by observing the historical behavior of applications.

Applications as Indicators of System Performance

- Scientific applications interact with computing resources in unique, varied, and complex ways.
 - -Use, store, and alter data in RAM
 - Perform mathematical operations and comparisons on data
 - Communicate data between processes
 - -Write data to and read data from file systems
 - Utilize and are integrated with system and third party libraries and code
- Changes in application performance can indicate a hardware/software problem.

- Applications (source, executables, and tests) are stored in a software repository.
- The "compile" component produces executable files utilizing system compilers and libraries.

- The "execute" component uses executables to run defined test cases.
- Data collected through the compile and execute steps are collected in a dedicated database.

 The "analyze" component gathers results of test cases and compares against historical performance. Data may be correlated from external databases. Reports may be visualized through a web interface.

• The "driver" component orchestrates complex operations requiring compilation, execution, and analysis.

Modularity of Components

 The compile, execute, and analyze components utilize the System Environment Specification System (SESS) to interact with specific system components. Interactions are configurable per system via an initialization file.

Current Work/Future Directions

- Chris Buckley University of Tennessee Student
 - Developed the database design and PostgreSQL interface.
- George Herring NICS Summer Intern
 - Developed the SESS interface for the Database, Repository, and Machine classes.
 - Developed the PostgreSQL, Subversion, Cray, and Linux modules for SESS.
 - Developed the "compile" component of the Regression Testing Framework.
- Future Work
 - Develop the "execute" and "analyze" components.
 - Develop the Batch class and additional SES modules.

Lonnie D. Crosby

University of Tennessee, NICS lcrosby1@utk.edu

NATIONAL INSTITUTE FOR COMPORTATIONAL SCIENCES

