
Lonnie D. Crosby
Justin L. Whitt, Patricia A. Kovatch and George Herring

University of Tennessee, NICS
Chris Buckley – University of Tennessee

Non-catastrophic Failure Detection

 Benchmark or diagnostic tests are good for the
detection of catastrophic failures.

 Non-catastrophic failures:
– adversely affect application execution without system

instability or notification.

– unknown frequency and can have long durations

– user facing

 Appropriate first-response methods could quickly
detect these failures and reduce impact.

 Detection of non-catastrophic failures may be
performed by observing the historical behavior of
applications.

Applications as Indicators of

System Performance

 Scientific applications interact with computing
resources in unique, varied, and complex ways.
– Use, store, and alter data in RAM

– Perform mathematical operations and comparisons on
data

– Communicate data between processes

– Write data to and read data from file systems

– Utilize and are integrated with system and third party
libraries and code

 Changes in application performance can indicate
a hardware/software problem.

Regression Testing Framework

 Applications (source, executables, and tests) are
stored in a software repository.

 The “compile” component produces executable
files utilizing system compilers and libraries.

Regression Testing Framework

 The “execute” component uses executables to
run defined test cases.

 Data collected through the compile and execute
steps are collected in a dedicated database.

Regression Testing Framework

 The “analyze” component gathers results of test
cases and compares against historical performance.
Data may be correlated from external databases.
Reports may be visualized through a web interface.

Regression Testing Framework

 The “driver” component orchestrates complex
operations requiring compilation, execution, and
analysis.

Modularity of Components

 The compile, execute, and analyze components
utilize the System Environment Specification System
(SESS) to interact with specific system components.
Interactions are configurable per system via an
initialization file.

Current Work/Future Directions

 Chris Buckley – University of Tennessee Student
– Developed the database design and PostgreSQL interface.

 George Herring – NICS Summer Intern
– Developed the SESS interface for the Database,

Repository, and Machine classes.

– Developed the PostgreSQL, Subversion, Cray, and Linux
modules for SESS.

– Developed the “compile” component of the Regression
Testing Framework.

 Future Work
– Develop the “execute” and “analyze” components.

– Develop the Batch class and additional SES modules.

Lonnie D. Crosby

University of Tennessee, NICS
lcrosby1@utk.edu

