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Direct numerical simulation (DNS) of 

turbulent combustion 

DNS approach and role  

• Fully resolve all continuum scales 
without using subgrid models 

• Only a limited range of scales is 
computationally feasible 

– Petascale computing = DNS with 
O(104) scales for cold flow 

• DNS of small-scale laboratory 
flames  

– Investigate turbulence-chemistry 
interactions relevant in devices 

– Validate experimental 
measurement approach (e.g., 2D 
vs. 3D, surrogate scalars) 

– Provide numerical benchmark 
data for predictive model 
development and validation for 
coarse-grain engineering CFD 

Combustor size 

~1 m 

Molecular 

reactions ~1 nm 

• Turbulent combustion involves coupled 
phenomena at a wide range of scales 

• O(104) continuum scales 

Turbulent combustion 

is a grand challenge 
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S3D—first-principles combustion solver 

• Used to perform first-principles-
based DNS of reacting flows 

• Solves compressible reacting 
Navier-Stokes equations 

• High-fidelity numerical methods 

• Detailed reaction-kinetics and 
molecular-transport models 

• Multiphysics (sprays, radiation, 
and soot) from SciDAC-TSTC 

• Ported to all major platforms 

• Particle-tracking capability 

 DNS provides unique fundamental insight 

into the chemistry-turbulence interaction Engineering 
CFD codes 

(RANS, LES) 
DNS 

Physical 
models 
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Efficient parallel scaling on Jaguar 
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Combustion science enabled by NCCS 

CO/H2 non-premixed 
flames (2005)  
500M grid points  

Flame-wall interaction (2006)  

Lifted hydrocarbon 
flames (2008)  
1.3B grid points  

Ethylene non-premixed flames (2007) 

350M grid points 

Lean 

premixed 

flames 

(2006) 

200M grid 

points 
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DNS of lifted ethylene-air jet flame  

in a heated coflow 

• 3D slot burner configuration:  

– Lx  Ly  Lz = 30  40  6 mm3 with  
1.28 billion grid points 

– High fuel jet velocity (204 m/s); coflow velocity (20 m/s) 

– Nozzle size for fuel jet, H = 2.0 mm 

– Rejet = 10,000; j = 0.15 ms; 3 flow-through times 

– Cold fuel jet (18% C2H4 + 82% N2) at 550 K, ηst ≈ 0.27 

– Detailed C2H4/air chemistry, 22 species, 18 global 
reactions, 201 steps 

– Hot coflow air at 1,550 K 

• Performed on CrayXT4 at ORNL on  
30,000 cores and 7.5 million cpu hours 

– 240 TB field data, 50 TB particle data 

 

 

Ethylene-air lifted jet flame 
at Re = 10000 
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Conceptual stabilization mechanism 

1. Ignition occurs in lean mixtures with low  

2. No self-propagation upstream with mixing structure 

3. Local extinction occurs by high , or flame 
shortening occurs as the point is convected 
downstream 

4. Ignition occurs in another coherent jet structure 

1 2 3 4 

Convective velocity greater than 
displacement speed for ηst = 0.27 

Temporal evolution of OH 
mass fraction showing 
ignition kernel growth 
and convection with jet 
mixing structure at  
t/j = 0.227 ~ 1.160, black 
line stoichiometric 
mixture fraction, arrows 
are velocity vectors 
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DNS of lifted jet flames in hot coflow – chemical 

explosive mode analysis (Lu et al. 2010) 
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• Chemical explosive mode (CEM) diagnostic developed as a 
chemical diagnostic to delineate explosive regions from  
normal flames 

• A chemical mode is defined as the eigenmode of the Jacobian 
matrix of the chemical source terms in the species and temperature 
equations. CEM is a chemical mode whose eigenvalue is positive, 
and hence, large eigenvalues of the CEM at a given location indicate 
that the mixture is highly autoignitive 

• A Damkohler number based on the ratio of CEM to local mixing rate 
determines whether the region is autoignitive or a normal flame 

• Explosive index (EI) reveals important species aligned with CEM 
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A posteriori evaluation of LES/Flamelet model 

with DNS of lifted ethylene jet flame  

(Knudsen, Pitsch, Richardson, Chen) 

9 

Red  
Auto-

ignition 

Regime Indicator 
in LES 

• Universal auto-ignition underpredicts liftoff  

• Steady burning overpredicts liftoff 

• Multiregime approach promising for efficiently describing turbulent ignition 

• Continuing work: using DNS to understand model shortcomings 

DNS LES 1, Non-Prem. LES 2, Auto-ign. LES 3, Multireg. 
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Reacting H
2
 jet in heated air cross flow (JICF) 

Volume rendering of HO2, temperature, and H2 with a Z cutting plane  
through the center of the counter-rotating vortex pair 

Grout et al. 2010 

• Canonical configuration 
useful for studying fuel 
injection/flashback safety 
in stationary gas turbines 

• H2/N2 jet, O2/N2 boundary 
layer flow 

• 1 mm jet,  
25 mm x 20 mm x 20 mm 
domain 

• Mass, momentum, 
energy, species balance 
equations solved using 
‘S3D’ 

• FD grid (1408 x 1080 x 
1100), 9 species  
~8M cpu hours on Jaguar,  
1.6 billion grids, ADIOS 
used for fast I/O on  
94,000 cores 
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Mean jet trajectory and stabilization location 

RANS heat release rate (black isocontour 
lines) in a spanwise slice showing 
stabilization point is near stoichiometric 
mixture fraction and low velocity region in 
between counter-rotating vortex pair (CVP), 
a recirculation region with hot products of 
combustion 

RANS low velocity region (<25 m/s denoted 
by black isoline) in streamwise slice 
superimposed on heat release color 
isocontours showing peak heat release at 
stabilization location is in between the CVP 
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Instantaneous behavior of JICF 

• Stabilization picture is much more complex than mean fields suggest 

• Key issues 
– Burning mode – non-premixed or premixed? 

– Interaction between flame and turbulence? 

Instantaneous z  

slice showing  

heat release  

(black isocontours) 

and mixture fraction  
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HCCI combustion with stratification 

• Motivation: next generation internal combustion engine concept 
– Strategy: Operate engines lean and at low temperatures 

– Benefits: Less NOx, fewer particulates, high efficiency 

– Challenges: High rates of pressure rise, ignition control difficult 

• Fundamental DNS study of turbulence-autoignition interaction in nonhomogeneous mixtures at high 
pressures (~30 atm) 

• Detailed dimethyl-ether (DME) chemistry – 30 chemical species; DME proposed as good biofuel 
substitute to diesel 

• Key Results 
– Three stages of heat release in DME-air mixtures 

– 2nd and 3rd stage waves are simultaneously present 

– 2nd stage predominantly spontaneous ignition front; 3rd stage predominantly deflagration wave 

– Twin-ringed structure of heat release rate for both thermal and composition stratification case 

Heat release rate field (colormap inverted) at 1.4, 2.075, and 2.135 ms 
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In situ visualization and analysis in S3D 

• In situ processing 
– Execute on the same processors 

– Avoid intermediate file I/O 

– Runtime monitoring, interpreting, and steering 

– Access the full resolution simulation data and  
perform data analysis in a more accurate fashion  

• Challenges 
– Optimize memory usage: make data processing  

code interact directly with the simulation code and share the same data structures 
and optimize memory usage 

– Balance workload: difficult to achieve as data partition and distribution are dictated by 
the simulation code  

– Lower data processing  
calculations cost: lower the cost  
without hardware acceleration 

– Implement highly scalable  
parallel volume rendering,  
particle rendering, and image  
compositing 

– Visualization cost is less than  
1% of simulation time 
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Topological methods for extracting and 

tracking combustion and flow features 

• Topological methods allow robust segmentation, simplification, and quantification 
of important features in scalar fields  

• Parallel computation of merge tree will enable analysis of massive data sets 

–  We compute the merge tree in parallel for each piece of the domain 

–  We combine the merge trees of the pieces into the global merge tree using a binary 
reduction along the 3 axes 

At the end of O(log(Px)), 
combine steps; each 
process at the leftmost 
face has the merge 
tree for its row 

Segmentation of conditional mixing 
rates in a turbulent jet flame 
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Refactoring S3D for hybrid multicore 

architectures 

 
Programming for the hybrid multicore architectures 

• Generate hybrid (MPI+threads) multicore software for heterogeneous 
architectures 

• Improve performance through better utilization  
of memory hierarchy and bandwidth 

• Ensure scalability of MPI parallelism  
to O(106) nodes 

Strategy 

• Identify key computational kernels that  
consume 90% of the time 

• Extract kernels to stand-alone serial programs 

• Reprogram kernels for multiple options for  
heterogeneous computing 

– OpenMP threading 

– Compiler directive assisted porting to accelerator hardware 

– Reprogram in CUDA 

Reaction 
39% 

Transport 
coefficients 

12% 

Thermo 
properties 

4% 

RHS 
20% 

Derivatives 
7% 

Fluxes 
7% 

Integrator 
4% 

MPI 
7% 

Time spent in S3D 
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