High Fidelity Direct Numerical Simulations of Turbulent Combustion

Presented by

Jacqueline H. Chen (PI), Chun Sang Yoo, Gaurav Bansal, Hongfeng Yu, Ajith Mascarenhas

Combustion Research Facility Sandia National Laboratories, Livermore, CA

Ray Grout

National Renewable Energy Lab

Tianfeng Lu

University of Connecticut

Ramanan Sankaran

National Center for Computational Sciences Oak Ridge National Laboratory

Direct numerical simulation (DNS) of turbulent combustion

Turbulent combustion is a grand challenge

- Turbulent combustion involves coupled phenomena at a wide range of scales
- O(10⁴) continuum scales

DNS approach and role

- **Fully resolve all continuum scales without using subgrid models**
- **Only a limited range of scales is computationally feasible**
	- **Petascale computing = DNS with O(10⁴) scales for cold flow**
- **DNS of small-scale laboratory flames**
	- **Investigate turbulence-chemistry interactions relevant in devices**
	- **Validate experimental measurement approach (e.g., 2D vs. 3D, surrogate scalars)**
	- **Provide numerical benchmark data for predictive model development and validation for coarse-grain engineering CFD**

S3D—first-principles combustion solver

- **Used to perform first-principlesbased DNS of reacting flows**
- **Solves compressible reacting Navier-Stokes equations**
- **High-fidelity numerical methods**
- **Detailed reaction-kinetics and molecular-transport models**
- **Multiphysics (sprays, radiation, and soot) from SciDAC-TSTC**
- **Ported to all major platforms**
- **Particle-tracking capability**

DNS provides unique fundamental insight *Engineering* **into the chemistry-turbulence interaction**

Efficient parallel scaling on Jaguar

4 Managed by UT-Battelle for the U.S. Department of Energy Chen S3D SC11

Combustion science enabled by NCCS

Iational Laborator

DNS of lifted ethylene-air jet flame in a heated coflow

- **3D slot burner configuration:**
	- $L_x \times L_y \times L_z = 30 \times 40 \times 6$ mm³ with **1.28 billion grid points**
	- **High fuel jet velocity (204 m/s); coflow velocity (20 m/s)**
	- **Nozzle size for fuel jet,** *H* **= 2.0 mm**
	- **Rejet = 10,000;** *^j* **= 0.15 ms; 3 flow-through times**
	- **Cold fuel jet (18% C2H⁴ + 82% N²) at 550 K, ηst ≈ 0.27**
	- **Detailed C2H⁴ /air chemistry, 22 species, 18 global reactions, 201 steps**
	- **Hot coflow air at 1,550 K**
- **Performed on CrayXT4 at ORNL on 30,000 cores and 7.5 million cpu hours**
	- **240 TB field data, 50 TB particle data**

Ethylene-air lifted jet flame at Re = 10000

Conceptual stabilization mechanism

Temporal evolution of OH mass fraction showing ignition kernel growth and convection with jet mixing structure at t/j = 0.227 ~ 1.160, black line stoichiometric mixture fraction, arrows are velocity vectors

4. Ignition occurs in another coherent jet structure

Managed by UT-Battelle for the U.S. Department of Energy Chen S3D SC11 **displacement speed for** $n_{\text{st}} = 0.27$

Convective velocity greater than

DNS of lifted jet flames in hot coflow – chemical explosive mode analysis (Lu et al. 2010)

- **Chemical explosive mode (CEM) diagnostic developed as a chemical diagnostic to delineate explosive regions from normal flames**
- **A chemical mode is defined as the eigenmode of the Jacobian matrix of the chemical source terms in the species and temperature equations. CEM is a chemical mode whose eigenvalue is positive, and hence, large eigenvalues of the CEM at a given location indicate that the mixture is highly autoignitive**
- **A Damkohler number based on the ratio of CEM to local mixing rate determines whether the region is autoignitive or a normal flame**
- **Explosive index (EI) reveals important species aligned with CEM**

A posteriori evaluation of LES/Flamelet model with DNS of lifted ethylene jet flame (Knudsen, Pitsch, Richardson, Chen)

- **Universal auto-ignition underpredicts liftoff**
- **Steady burning overpredicts liftoff**
- **Multiregime approach promising for efficiently describing turbulent ignition**
- **Continuing work: using DNS to understand model shortcomings**

Reacting H₂ jet in heated air cross flow (JICF)

Volume rendering of HO² , temperature, and H² with a Z cutting plane through the center of the counter-rotating vortex pair

- **Canonical configuration useful for studying fuel injection/flashback safety in stationary gas turbines**
- **H² /N2 jet, O² /N² boundary layer flow**
- **1 mm jet, 25 mm x 20 mm x 20 mm domain**
- **Mass, momentum, energy, species balance equations solved using 'S3D'**
- **FD grid (1408 x 1080 x 1100), 9 species ~8M cpu hours on Jaguar, 1.6 billion grids, ADIOS used for fast I/O on 94,000 cores**

Mean jet trajectory and stabilization location

RANS heat release rate (black isocontour lines) in a spanwise slice showing stabilization point is near stoichiometric mixture fraction and low velocity region in between counter-rotating vortex pair (CVP), a recirculation region with hot products of combustion

RANS low velocity region (<25 m/s denoted by black isoline) in streamwise slice superimposed on heat release color isocontours showing peak heat release at stabilization location is in between the CVP

11 Managed by UT-Battelle for the U.S. Department of Energy Chen S3D SC11

Instantaneous behavior of JICF

- **Stabilization picture is much more complex than mean fields suggest**
- **Key issues**
	- **Burning mode – non-premixed or premixed?**
	- **Interaction between flame and turbulence?**

Instantaneous z slice showing heat release (black isocontours) and mixture fraction

HCCI combustion with stratification

- **Motivation: next generation internal combustion engine concept**
	- **Strategy: Operate engines lean and at low temperatures**
	- **Benefits: Less NO^x , fewer particulates, high efficiency**
	- **Challenges: High rates of pressure rise, ignition control difficult**
- **Fundamental DNS study of turbulence-autoignition interaction in nonhomogeneous mixtures at high pressures (~30 atm)**
- **Detailed dimethyl-ether (DME) chemistry – 30 chemical species; DME proposed as good biofuel substitute to diesel**
- **Key Results**
	- **Three stages of heat release in DME-air mixtures**
	- **2nd and 3rd stage waves are simultaneously present**
	- **2nd stage predominantly spontaneous ignition front; 3rd stage predominantly deflagration wave**
	- **Twin-ringed structure of heat release rate for both thermal and composition stratification case**

Heat release rate field (colormap inverted) at 1.4, 2.075, and 2.135 ms

In situ visualization and analysis in S3D

- **In situ processing**
	- **Execute on the same processors**
	- **Avoid intermediate file I/O**
	- **Runtime monitoring, interpreting, and steering**
	- **Access the full resolution simulation data and perform data analysis in a more accurate fashion**
- **Challenges**
	- **Optimize memory usage: make data processing code interact directly with the simulation code and share the same data structures and optimize memory usage**
	- **Balance workload: difficult to achieve as data partition and distribution are dictated by the simulation code**
	- **Lower data processing calculations cost: lower the cost without hardware acceleration**
	- **Implement highly scalable parallel volume rendering, particle rendering, and image compositing**
	- **Visualization cost is less than 1% of simulation time**

14 Managed by UT-Battelle for the U.S. Department of Energy

Topological methods for extracting and tracking combustion and flow features

- **Topological methods allow robust segmentation, simplification, and quantification of important features in scalar fields**
- **Parallel computation of merge tree will enable analysis of massive data sets**
	- **We compute the merge tree in parallel for each piece of the domain**
	- **We combine the merge trees of the pieces into the global merge tree using a binary reduction along the 3 axes**

Refactoring S3D for hybrid multicore architectures

Programming for the hybrid multicore architectures

- **Generate hybrid (MPI+threads) multicore software for heterogeneous architectures**
- **Improve performance through better utilization of memory hierarchy and bandwidth**
- **Ensure scalability of MPI parallelism to O(10⁶) nodes**

Strategy

- **Identify key computational kernels that consume 90% of the time**
- **Extract kernels to stand-alone serial programs**
- **Reprogram kernels for multiple options for heterogeneous computing**
	- **OpenMP threading**
	- **Compiler directive assisted porting to accelerator hardware**
	- **Reprogram in CUDA**

Contact

Jacqueline H. Chen

Principal Investigator Combustion Research Facility Sandia National Laboratories Livermore, CA 94550 jhchen@sandia.gov

Ramanan Sankaran

Scientific Computing liaison National Center for Computational Sciences Oak Ridge National Laboratory sankaranr@ornl.gov

Managed by UT-Battelle for the U.S. Department of Energy Chence Chen_S3D_SC11