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The Quest for Alternative Programming Paradigms 
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DAGuE / DPLASMA 

Direct Acyclic Graph Unified Environment  
Performance Portability across large-scale  
hybrid platforms  
Algorithm described as task dependencies 
•  Algebraic, problem-size independent  

representation of the algorithms 
•  Data distribution is independent of the  

algorithm description 
The runtime manage the data dependencies, task 
scheduling and data movement between nodes 
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DAGuE/DPLASMA: Cholesky 

Original pseudo-code is converted by  
a preprocessor into DAGuE internal 
representation (shown below) 

The DAGuE framework schedules the tasks 
based on the data flow dependencies, taking 
into account the architectural features of the 
underlying hardware (core and NUMA) 

Step k of Cholesky factorization 
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Scalability and Performance 
One-sided factorizations on Griffon (81 nodes with 8 cores each) 

Cholesky on a single node multi-GPU 
(up to 4 Tesla C1060) 

Cholesky on a GPU cluster (distributed 4 C2050, 4 C1060) 
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(a) Cholesky factorization.
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(b) QR factorization.
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(c) LU factorization.

Figure 5. Problem Scaling of the Cholesky, QR and LU Factorizations, on 648 cores (Griffon platform)

the amount of memory per node: for four nodes, the target T4 is
26, 880; for 81 nodes, the target T81 is 120, 000. To compare all
runs in a normalized way, the figure represents the efficiency as a
percentage of the theoretical peak for each setup.

All curves present the same general shape: the performance
first increases with the block size until a peak, then decreases
slowly when the block size increases. For a single node, this is
the consequence of the optimization of cache effects in the BLAS
kernels. For a distributed run, the optimal block size is the result of
a trade-off between an ideal size for optimizing the cache effects in
the kernels, and network efficiency. Starting at 1MB, the DAGuE
engine reaches network saturation. Thus, for blocks of 360 × 360
elements and larger, the transfer time increases linearly with the
amount of data (as the square of the block size). Smaller block sizes
experience a lower network efficiency. However, when the size of
the matrix is large, there are enough tasks ready to be scheduled
at all times to overlap communication costs with computation, and
as a consequence, block size tuning mostly depends on the BLAS
kernels.

One can see however that for 81 nodes, the best NB value
is 340, while it is 460 for one node. A distributed run requires
communications which themselves introduce memory accesses,
that pollute parts of the cache. This increased pressure on the cache
due to MPI communications drives the optimal tile size to be the
smallest size that reaches both the plateau of the single node kernel
performance and the network saturation.

5.3 Impact of intra-node versus inter-node communication

Figure 7 presents the performance per core, for a fixed total number
of cores, when varying the repartition between distributed memory
and shared memory accesses. The performance per core decreases
only slightly when, for a given total number of cores, the number
of nodes is higher (hence the number of cores per node is smaller).
For this matrix size, the tile algorithm provides enough parallelism
to enable overlap of communications by computations; the DAGuE
engine communication mechanism is asynchronous, implicit and
non-blocking. This enables it to exploit the extra parallelism and
concretize this potential overlap, without help from the application
developer, and with a negligible impact on the performance.
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Figure 7. Performance comparison at fixed total number of
cores between distributed and shared memory performance with
N=18,200 on the Cholesky factorization (Dancer platform).

5.4 Problem Scaling

Figure 5 presents the problem scaling of the DAGuE factorizations
compared to state of the art comparable algorithms. We ran the
different factorizations on the Griffon platform, with 81 nodes (648
cores), and for a varying problem size (from 13, 600 × 13, 600
to 130, 000 × 130, 000). We took the best block size value for
each of the reference implementations; tile sizes were tuned as
demonstrated in Figure 6 for the DAGuE implementation; block
size, process grid and other parameters are tuned by experimental
exploration for HPL, DSBP and ScaLAPACK. We kept the best
value of the runs for each plot in the figure.

When the problem size increases, the total amount of compu-
tation increases as the cube of the size, while the total amount of
data increases as the square of the size. For a fixed tile size, this
also means that the number of tiles in the matrix increases with
the square of the matrix size, and so does the number of tasks to
schedule. Therefore, the global performance of each benchmark
increases until a plateau is reached. On the Griffon platform, the
amount of available memory was not sufficient to reach the plateau
with neither of the implementations, except for the DAGuE QR.
On the entire range of benchmarks and problem sizes, DAGuE out-
performs the non-multi-core aware ScaLAPACK. This advantage
is more pronounced for smaller problem sizes, although the lower
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Optimized MPI Collective Communications 
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Optimization process 

•  Minimize the collective communication execution time, by 
selecting the right algorithm based on the network characteristics 
and collective parameters (data size, number of processes) 
–  We use performance models, graphical encoding, and statistical learning 

techniques to build platform-specific, efficient, and fast run-time decision 
functions 

Fastest collective communications algorithms for 
a specific network depending on the message and 

communicator size 
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Model prediction vs. experimentation 

Fastest collective communications algorithms for a specific network depending on 
the message and communicator size 

(A) (B) 

(C) (D) 
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Intra-node shared memory collectives 

•  Taking advantage of the architecture features (cores and memory node 
placement) significantly improves collective communication performance 

•  Using knem for minimizing the number of memory copies 
•  HWLOC for accessing the information about the hardware capabilities 

Memory node aware Allgather (normalized to default collective implementation)   
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Fault Tolerance Diskless Checkpointing 
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Diskless checkpointing 

Fault tolerance 
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Diskless checkpointing 

• How to checkpoint 
–  Either floating-point arithmetic or binary arithmetic will work 
–  If checkpoints are performed in floating-point arithmetic, then 

we can exploit the linearity of the mathematical relations on 
the object to maintain the checksums 

• How to support multiple failures 
–  Reed-Salomon algorithm 
–  Support of p failures requires p additional processors 

(resources) 
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Fault Tolerant PCG 
•  64×2 AMD 64 connected using GigE 

Performance of PCG with 
different MPI libraries 

For checkpoint we 
generate one 
checkpoint every  
2000 iterations 

PCG Checkpoint Overhead PCG Recovery Overhead 
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Figure 8. Weak scalability of FT-LU: performance and overhead
on Kraken, compared to non fault tolerant LU

FT overhead (Tflop/s) 0.051 0.066 0.070 0.021 0.018 0.008
FT overhead (%) 26.203 10.357 3.044 0.309 0.086 0.016

fault tolerance aspects, for example generating checksum, check-
pointing and recovery. An efficient and scalable algorithm will in-
cur a minimal overhead over the original algorithm while protecting
the data against failures.

We use the NICS Kraken supercomputer hosted at the Oak
Ridge National Laboratory as our testing platform. This machine
features 112,896 2.6GHz AMD Opteron cores with the Seastar in-
terconnect. At the software level, to serve as a comparison base, we
use the non fault tolerant ScaLAPACK LU and QR in double preci-
sion with block size NB = 100. The fault tolerance functions are
implemented and plugged in directly into ScaLAPACK routines.

In this section, we first evaluate the storage overhead in the form
of extra memory usage, then show experimental result on Kraken
to assess the computational overhead.

6.1 Storage Overhead

Checksum takes extra storage (memory) on each process, and on
large scale systems memory usage is normally maximized for com-
puting tasks. Therefore, it is preferable to have a small ratio of
checksum size over matrix size, in order to minimize the impact
on the memory available to the application itself. For the sake of
simplicity, and because of the small impact in term of memory us-
age, neither the pivoting vector nor the column shift are considered
in this evaluation.

Different protection algorithms require different amounts of
memory. In the following, we consider the duplication algorithm
presented in Section 4.5.2 for computing the upper memory bound.
The storage of the checksum includes the row-wise and column-
wise checksums and a small portion at the bottom-right corner.

For an input matrix of size M×N on a P ×Q process grid, the
memory used for checksum (including duplicates) is M × N

Q × 2.
The ratio Rmem of checksum memory over the memory of the
input matrix, equals to 2

Q , becomes negligible with the increase
in the number of processes used for the computation.

6.2 Overhead without Failures

Figure 8 evaluates the completion time overhead and performance,
using the LU factorization routine PDGETRF. The performance of
both the original and fault tolerant version is reported in Tflop/s.
This experiment is carried out to test the weak scalability where
both the matrix and grid dimension doubles. The result shows that
as the problem size and grid size increases, the overhead drops

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

%!(")*+*," '!(")$%+$%," -!(")%'+%'," $*!(")'-+'-,"

!"
#$
%&

'$
()
'*
+'

,-
$./

0$

1,2*34$536'$.7*3-$536'0$

./01234"56"7"8/6419":53;43"

./01234"<0=>06"7"8/6419"

?5"43353"

Figure 9. Weak scalability of FT-LU: run time overhead on
Kraken when failures strike at different steps

quickly and eventually becomes negligible. At the matrix size of
640, 000 × 640, 000 on 36, 864 (192 × 192) cores, both versions
achieved over 48Tflop/s, with an overhead of 0.016% for the ABFT
algorithm. As a side experiment, we implemented the naive vertical
checkpointing method discussed in section 5.2, and as expected the
measured overhead quickly exceed 100%.

As the left factor is touched only once during the computation,
the approach of checkpointing the result of a panel synchronously
can, a-priori, look sound when compared to system based check-
point, where the entire dataset is checkpointed periodically. How-
ever, as the checkpointing of a particular panel suffers from its in-
ability to exploit the full parallelism of the platform, it is subject
to a derivative of Amdahl’s law, where its importance is bound to
grow when the number of computing resources increases. Its par-
allel efficiency is bound by P, while the overall computation enjoys
a P ×Q parallel efficiency. As a consequence, in the experiments,
the time to compute the naive checkpoint dominates the compu-
tation time. On the other hand, the hybrid checkpointing approach
exchanges the risk of a Q-step rollback with the opportunity to ben-
efit from a P × Q parallel efficiency for the panel checkpointing.
Because of this improved parallel efficiency, the hybrid checkpoint-
ing approach benefits from a competitive level of performance, that
follows the same trend as the original non fault tolerant algorithm.

6.3 Recovery Cost

In addition to the “curb” overhead of fault tolerance functions, the
recovery from failure adds extra overhead to the host algorithm.
There are two cases for the recovery. The first one is when failure
occurs right after the reverse neighboring checkpointing of Q pan-
els. At this moment the matrix is well protected by the checksum
and therefore the lost data can be recovered directly from the check-
sum. We refer to this case as “failure on Q panels border”. The sec-
ond case is when the failure occurs during the reverse neighboring
checkpointing and therefore local snapshots have to be used along
with re-factorization to recover the lost data and restore the matrix
state. This is referred to as the ”failure within Q panels”.

Figure 9 shows the overhead from this two cases for LU fac-
torization, along with the no-error overhead for reference. In the
“border” case, the failure is simulated to strike when the 96th

panel (which, in another word, is a multiple of grid columns,
6, 12, · · · , 48) has just finished. In the “non-border” case, failure
occurs during the (Q+2)th panel factorization. For example, when
Q = 12, the failure is injected when the trailing update for the step
with panel (1301,1301) finishes. From the result in Figure 9, the

Algorithm Based Fault Tolerance - LU 

no longer active in any further computation (except pivoting) and
should be excluded from the computing scope to reduce the ABFT
overhead. This is problematic, as splitting the PBLAS calls to avoid
excluded columns has a significant impact on the trailing matrix
update efficiency.

4.5.3 Reverse Neighboring Checksum Storage

With the observation of how checksum is maintained during fac-
torization, we propose the following reverse neighboring checksum
duplication method that allows for applying the update in a single
PBLAS call without incurring extraneous computation.

Algorithm 1 Checksum Management
On a P ×Q grid, matrix is M ×N , block size is NB ×NB
Ck represents the kth checksum block column
Ak represents the kth data block column
Before factorization:
Generate the initial checksum:

Ck =
�(k−1)×Q+Q

j=(k−1)×Q+1 Aj , k = 1, · · · ,
�

N
NB×Q

�

For each of Ck, make a copy of the whole block column and put
right next to its original block column
Checksum Ck and its copy are put in the kth position starting
from the far right end
Begin factorization

Host algorithm starts with an initial scope of M rows and
N +

�
N
Q

�
columns

For each Q panel factorizations, the scope decreases M rows
and 2×NB columns
End factorization
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Figure 4. Reverse neighboring checksum storage, with two check-
sum duplicates per Q-wide groups

Figure 4 is an example of the reverse neighboring checksum
method on a 2 × 3 grid. The data matrix has 8 × 8 blocks and
therefore the size of checksum is 8 × 3 blocks with an extra
8 × 3 blocks copy. The arrows indicate where blocks checksum
is stored on the right of the data matrix, according to the reverse
storage scheme. For example, in the LU factorization, the first 3
block columns produce the checksum in the last two block columns
(hence making 2 duplicate copies of the checksum). Because copies
are stored consecutive columns of the process grid, for any 2D grid,
the checksum duplicates are guaranteed to be stored on different
processors. The triangular solve (TRSM) and trailing matrix update
(GEMM) is applied to the whole checksum area until the first
three columns are factored. From this moment, the two last block
columns of checksum are excluded from the TRSM and GEMM

scope. Since TRSM and GEMM claim most of the computation in
LU factorization, this shrinking scope greatly reduces the overhead
of the ABFT mechanism. One can note that only the upper part of
the checksum is useful, we will explain in the next section how this
extra storage can be used to protect the lower part of the matrix.

4.6 Delayed Recovery and Error Propagation

In this work, we assume that a failure can strike at any moment
during the life span of factorization operations or even the recovery
process. Theorem 4.2 proves that at the moment where the failure
happens, the checksum invariant property is satisfied, meaning that
the recovery can proceed successfully. However, in large scale sys-
tems, which are asynchronous by nature, the time interval between
the failure and the moment when it is detected by other processes
is unknown, leading to delayed recoveries, with opportunities for
error propagation.

The ZU factorization is composed of several sub-algorithms
that are called on different parts of the matrix. Matrix multiplica-
tion, which is used for trailing matrix updates and claims more than
95% of the execution time, has been shown to be ABFT compat-
ible [4] , that is to compute the correct result even with delayed
recovery. One feature that has the potential to curb this compati-
bility is pivoting, in LU , especially when a failure occurs between
the panel factorization and the line swapping updates, there is a
potential for destruction of lines in otherwise unaffected blocks.

Figure 5. Ghost pivoting Issue
Gray: Result in previous steps
Light Green: Panel factorization result in current step
Deep Green: The checksum that protects the light green
Blue: TRSM zone Yellow: GEMM zone
Red: one of the columns affected by pivoting

Figure 5 shows an example of such a case. Suppose the current
panel contributes to the ith column of checksum. When panel
factorization finishes, the ith column becomes intermediate data
which does not cover any column of matrix. If a failure at this
instant causes holes in the current panel area, then lost data can
be recovered right away. Pivoting for this panel factorization has
only been applied within the light green area. Panel factorization
is repeated to continue on the rest of the factorization. However, if
failure causes holes in other columns that also contribute to the
ith column of checksum, these holes cannot be recovered until
the end of the trailing matrix update. To make it worse, after the
panel factorization, pivoting starts to be applied outside the panel
area and can move rows in holes into healthy area or vice versa,
expending the recovery area to the whole column, as shown in red
in Figure 5 including triangular solving area. To recover from this

Gray: Result in previous steps 
Light Green: Panel factorization result in 
                     current step 
Deep Green: The checksum that protects the 
                      light green 
Blue: TRSM zone 
Yellow: GEMM zone 
Red: one of the columns affected by pivoting  
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Automatic Fault Tolerance Using Message Logging 
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Interposition in Open MPI 

• Vampire PML loads a new class of MCA components 
–  Vprotocols provide the entire FT protocol  

(optimistic and pessimistic) 
–  You can use the ability to define  

subframeworks in your components 

• Keep using the optimized low level  
and zero-copy devices (BTL) for  
communication 

• Unchanged message scheduling logic 
• Generic framework where researchers can  

easily plug their own message logging–based  
fault tolerant approach 
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Detailing event types to avoid 
intrusiveness 

•  Order of message receptions are non-deterministic events; messages received but not 
sent are inconsistent 

•  Possible loss of the whole execution and unpredictable fault cost 
•  Message logging enforces deterministic replay to restore a globally coherent state 
•  Protocol to avoid payload logging for correlated failure set (such as processes hosted on 

a shared memory environment) 
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Performance overhead 

Table 1. Percentage of non-deterministic events to total number of exchanged 
messages on the NAS Parallel Benchmarks (class B)   
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4.3 Cluster of Multicore Performance

Figure 6 presents the performance of the HPL benchmark on the Dancer cluster,
with a one process per core deployment. For small matrix sizes, the behavior is
similar between the three MPI versions. However, for slightly larger matrix sizes,
the performance of regular message logging suffers. Conversely the coordinated
message logging algorithm performs better, and only slightly slower than the
non fault tolerant MPI, regardless of the problem size.

On the Dancer cluster, the available 500MB of memory per core is a strong
limitation. In this memory envelope, the maximum computable problem size on
this cluster is N=28260. The extra memory consumed by payload copy limits the
maximum problem size to only N=12420 for regular message logging, while the
reduction on the amount of logged messages enables the coordinated message
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Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

logging approach to compute problems as large as N=19980. Not only does
partial coordination of the message logging algorithm increase communication
performance, it also decreases memory consumption.

5 Related Works

Recent advances in message logging have decreased the cost of event logging [3].
As a consequence, more than the logging scheme adopted, the prominent source
of overhead in message logging is the copy of message payload caused by in-
transit messages [4]. While attempts at decreasing the cost of payload copy have
been successful to some extent [2], these optimizations are hopeless at improving
shared memory communication speed. Our approach circumvents this limitation
by completely eliminating the need for copies inside many-core processors.

Communication Induced Checkpoint (CIC) [12] is another approach that
aims at constructing a consistent recovery set without coordination. The CIC
algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint traffic, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in

HPL performance on multi-core clusters 
connected via Infiniband 20Gbs 
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