Geospatial Data Sciences

Presented by

Ranga Raju Vatsavai Budhendra Bhaduri

Geographic Information Science and Technology Computational Sciences and Engineering

2 Managed by UT-Battelle for the U.S. Department of Energy

Urban mapping for global population distribution

Identify urban regions from high-resolution satellite imagery by using Gabor texture analysis

	Area (sq km)	Imagery data	Intermediate data created	Time 10 nodes
Sample area	114	219 MB	~3.9 GB	~30 min
Projected computing requirements				
Global populated land area	56,863,754	~103 TB	~1.8 PB	~30 years

Statistical analysis for satellite image characterization

- Power spectrum analysis
- Image gradient distribution
- Wavelet analysis

Challenge is to extend automated processing to fine-resolution images over large geographic regions

Semantic classification

Why Semantics? Set of objects like "switch yard," "containment building," "turbine generator," "cooling towers" AND their spatial arrangement may imply a semantic label like "nuclear power plant"

for the U.S. Department of Energy

Biomass monitoring framework

Spatial classification and prediction

- Spatial autoregressive regression (SAR)
- Markov random fields (MRF)

7 Managed by UT-Battelle for the U.S. Department of Energy

Large geographic area classification

Challenges

- Large extents, insufficient ground-truth
- Spatial heterogeneity

Unsupervised change detection

- How many clusters?
- Which clusters changed?
- Iterative and computationally expensive algorithms

AVRISS (224 Spectral Bands)

GX-Means Clustering

Online change detection using multitemporal remote sensing images

Challenges

- Existing approaches cannot deal with all types of changes
- Existing approaches are mostly applicable to static data
- Missing and noisy data
- Not scalable to massive streaming data

Parallel approaches

Contacts

Ranga Raju Vatsavai

Geographic Information Science and Technology Computational Sciences and Engineering (865) 576-3569 vatsavairr@ornl.gov

Budhendra Bhaduri

Geographic Information Science and Technology Computational Sciences and Engineering (865) 241-9272 bhaduribl@ornl.gov

2 Managed by UT-Battelle for the U.S. Department of Energy