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Geospatial data sciences
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Urban mapping for global population
distribution

Identify urban regions from high-resolution satellite imagery
by using Gabor texture analysis
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Statistical analysis
for satellite image
characterization

* Power spectrum analysis

* Image gradient distribution
» Wavelet analysis

Challenge is to extend automated processing to
fine-resolution images over large geographic regions

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1




Semantic classification
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Challenges

« What are the right features?
« What are right objects?

« Which spatial relationships?
 Bottom-up vs. top-down?

Why Semantics?

Set of objects like
“switch yard,”
“containment
building,”
“turbine generator,”
“cooling towers”
AND
their spatial
arrangement may
imply a semantic
label like “nuclear
power plant”




Biomass

MODIS (4800x4800)
3 bands, 250 m, 8 days
2000-2009

H11V04, MOD09Q1

(LP DACC)

27 GB; 432 products

AWIFS
(12,300x12,000)
4 bands, 56 m
May-Sep 2008
lowa (USDA)
130 products

monitoring framework

Image and
Ancillary Data
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Pre-processing
* Reprojection
* Atmospheric
* Filtering

Change detection

* Time series based
— Time series prediction

* Multidimensional image based
— Unsupervised clustering

GE Visualization

>1
Characterize changes

* Phenology based
* Type based

Challenges

+ Daily Data, needs to be
processed before new
images arrive

+ Computationally expensive
algorithms




Spatial classification and prediction

* Spatial autoregressive regression (SAR)

» Markov random fields (MRF)
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Challenges

 Spatial homogeneity
* Large neighborhood matrices
 Overlapping computation
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Large geographic area classification

 Spatial heterogeneity

Semi-supervised Learning
Insufficient Ground-truth
Challenges

* Large extents, insufficient ground-truth

Gaussian Process (GP) Learning
Spatial Heterogeneity
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Unsupervised change detection
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Challenges
* How many clusters?
 Which clusters changed?

* lterative and computationally
expensive algorithms
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Online change detection using
multitemporal remote sensing images
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- Existing approaches are mostly
applicable to static data

 Missing and noisy data
* Not scalable to massive streaming data




Parallel approaches

Change detection on Filtering and NDVI on Knowledge discovery
multi-core machines many-core machines on Clouds
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