14.1 Special Notation14.3 Definitions and Hypergeometric Representations

§14.2 Differential Equations

Contents

§14.2(i) Legendre’s Equation

14.2.1\left(1-x^{2}\right)\frac{{d}^{2}w}{{dx}^{2}}-2x\frac{dw}{dx}+\nu(\nu+1)w=0.

Standard solutions: \mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(\pm x\right), \mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(\pm x\right), \mathop{\mathsf{Q}_{{-\nu-1}}\/}\nolimits\!\left(\pm x\right), \mathop{P_{{\nu}}\/}\nolimits\!\left(\pm x\right), \mathop{Q_{{\nu}}\/}\nolimits\!\left(\pm x\right), \mathop{Q_{{-\nu-1}}\/}\nolimits\!\left(\pm x\right). \mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(x\right) are real when \nu\in\Real and x\in(-1,1), and \mathop{P_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{Q_{{\nu}}\/}\nolimits\!\left(x\right) are real when \nu\in\Real and x\in(1,\infty).

§14.2(ii) Associated Legendre Equation

(14.2.2) reduces to (14.2.1) when \mu=0. Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations \mathop{\mathsf{P}^{{0}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{Q}^{{0}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{P^{{0}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{P_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{Q^{{0}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{Q_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\boldsymbol{Q}^{{0}}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{\boldsymbol{Q}_{{\nu}}\/}\nolimits\!\left(x\right)=\mathop{Q_{{\nu}}\/}\nolimits\!\left(x\right)/\mathop{\Gamma\/}\nolimits\!\left(\nu+1\right).

\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{P}^{{\mu}}_{{-\frac{1}{2}+i\tau}}\/}\nolimits\!\left(x\right), and \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) are real when \nu, \mu, and \tau\in\Real, and x\in(-1,1); \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) are real when \nu and \mu\in\Real, and x\in(1,\infty).

Unless stated otherwise in §§14.214.20 it is assumed that the arguments of the functions \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) lie in the interval (-1,1), and the arguments of the functions \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), and \mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) lie in the interval (1,\infty). For extensions to complex arguments see §§14.2114.28.

§14.2(iii) Numerically Satisfactory Solutions

Equation (14.2.2) has regular singularities at x=1, −1, and \infty, with exponent pairs \left\{-\frac{1}{2}\mu,\frac{1}{2}\mu\right\}, \left\{-\frac{1}{2}\mu,\frac{1}{2}\mu\right\}, and \left\{-\nu-1,\nu\right\}, respectively; compare §2.7(i).

When \mu-\nu\neq 0,-1,-2,\dots, and \mu+\nu\neq-1,-2,-3,\dots, \mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(-x\right) are linearly independent, and when \realpart{\mu}\geq 0 they are recessive at x=1 and x=-1, respectively. Hence they comprise a numerically satisfactory pair of solutions (§2.7(iv)) of (14.2.2) in the interval -1<x<1. When \mu-\nu=0,-1,-2,\dots, or \mu+\nu=-1,-2,-3,\dots, \mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(-x\right) are linearly dependent, and in these cases either may be paired with almost any linearly independent solution to form a numerically satisfactory pair.

When \realpart{\mu}\geq 0 and \realpart{\nu}\geq-\frac{1}{2}, \mathop{P^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) and \mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) are linearly independent, and recessive at x=1 and x=\infty, respectively. Hence they comprise a numerically satisfactory pair of solutions of (14.2.2) in the interval 1<x<\infty. With the same conditions, \mathop{P^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(-x\right) and \mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(-x\right) comprise a numerically satisfactory pair of solutions in the interval -\infty<x<-1.

§14.2(iv) Wronskians and Cross-Products

14.2.3\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{\mathsf{P}^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(-x\right)\right\}=\frac{2}{\mathop{\Gamma\/}\nolimits\!\left(\mu-\nu\right)\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)\left(1-x^{2}\right)},
14.2.4\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\right\}=\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)\left(1-x^{2}\right)},
14.2.5\mathop{\mathsf{P}^{{\mu}}_{{\nu+1}}\/}\nolimits\!\left(x\right)\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\mathop{\mathsf{Q}^{{\mu}}_{{\nu+1}}\/}\nolimits\!\left(x\right)=\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+2\right)},
14.2.8\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{P^{{-\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\right\}=-\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)\left(x^{2}-1\right)},
14.2.9\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{\boldsymbol{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{\boldsymbol{Q}^{{\mu}}_{{-\nu-1}}\/}\nolimits\!\left(x\right)\right\}=\frac{\mathop{\cos\/}\nolimits\!\left(\nu\pi\right)}{x^{2}-1},
14.2.10\mathop{\mathscr{W}\/}\nolimits\left\{\mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right),\mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\right\}=-e^{{\mu\pi i}}\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+1\right)\left(x^{2}-1\right)},
14.2.11\mathop{P^{{\mu}}_{{\nu+1}}\/}\nolimits\!\left(x\right)\mathop{Q^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)\mathop{Q^{{\mu}}_{{\nu+1}}\/}\nolimits\!\left(x\right)=e^{{\mu\pi i}}\frac{\mathop{\Gamma\/}\nolimits\!\left(\nu+\mu+1\right)}{\mathop{\Gamma\/}\nolimits\!\left(\nu-\mu+2\right)}.