14.10 Recurrence Relations and Derivatives14.12 Integral Representations

§14.11 Derivatives with Respect to Degree or Order

14.11.1\frac{\partial}{\partial\nu}\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)=\pi\mathop{\cot\/}\nolimits\!\left(\nu\pi\right)\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\frac{1}{\pi}\mathsf{A}_{{\nu}}^{{\mu}}(x),
14.11.2\frac{\partial}{\partial\nu}\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)=-\tfrac{1}{2}\pi^{2}\mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)+\frac{\pi\mathop{\sin\/}\nolimits\!\left(\mu\pi\right)}{\mathop{\sin\/}\nolimits\!\left(\nu\pi\right)\mathop{\sin\/}\nolimits\!\left((\nu+\mu)\pi\right)}\mathop{\mathsf{Q}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right)-\tfrac{1}{2}\mathop{\cot\/}\nolimits\!\left((\nu+\mu)\pi\right)\mathsf{A}_{{\nu}}^{{\mu}}(x)+\tfrac{1}{2}\mathop{\csc\/}\nolimits\!\left((\nu+\mu)\pi\right)\mathsf{A}_{{\nu}}^{{\mu}}(-x),

where

14.11.3\mathsf{A}_{{\nu}}^{{\mu}}(x)=\mathop{\sin\/}\nolimits\!\left(\nu\pi\right)\left(\frac{1+x}{1-x}\right)^{{\mu/2}}\*\sum _{{k=0}}^{{\infty}}\frac{\left(\frac{1}{2}-\frac{1}{2}x\right)^{k}\mathop{\Gamma\/}\nolimits\!\left(k-\nu\right)\mathop{\Gamma\/}\nolimits\!\left(k+\nu+1\right)}{k!\mathop{\Gamma\/}\nolimits\!\left(k-\mu+1\right)}\*\left(\mathop{\psi\/}\nolimits\!\left(k+\nu+1\right)-\mathop{\psi\/}\nolimits\!\left(k-\nu\right)\right).

(14.11.1) holds if \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right) is replaced by \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), provided that the factor (\ifrac{(1+x)}{(1-x)})^{{\mu/2}} in (14.11.3) is replaced by (\ifrac{(x+1)}{(x-1)})^{{\mu/2}}. (14.11.4) holds if \mathop{\mathsf{P}^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{\mathsf{P}_{{\nu}}\/}\nolimits\!\left(x\right), and \mathop{\mathsf{Q}_{{\nu}}\/}\nolimits\!\left(x\right) are replaced by \mathop{P^{{\mu}}_{{\nu}}\/}\nolimits\!\left(x\right), \mathop{P_{{\nu}}\/}\nolimits\!\left(x\right), and \mathop{Q_{{\nu}}\/}\nolimits\!\left(x\right), respectively.

See also Szmytkowski (2006, 2009, 2011, 2012) and Magnus et al. (1966, pp. 177–178).