10.21 Zeros10.23 Sums

§10.22 Integrals

Contents

§10.22(i) Indefinite Integrals

In this subsection \mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right) and \mathscr{D}_{\mu}(z) denote cylinder functions(§10.2(ii)) of orders \nu and \mu, respectively, not necessarily distinct.

10.22.1
\int z^{{\nu+1}}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)dz=z^{{\nu+1}}\mathop{\mathscr{C}_{{\nu+1}}\/}\nolimits\!\left(z\right),
\int z^{{-\nu+1}}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)dz=-z^{{-\nu+1}}\mathop{\mathscr{C}_{{\nu-1}}\/}\nolimits\!\left(z\right).
10.22.2\int z^{\nu}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)dz=\pi^{{\frac{1}{2}}}2^{{\nu-1}}\mathop{\Gamma\/}\nolimits\!\left(\nu+\tfrac{1}{2}\right)\* z\left(\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)\mathop{\mathbf{H}_{{\nu-1}}\/}\nolimits\!\left(z\right)-\mathop{\mathscr{C}_{{\nu-1}}\/}\nolimits\!\left(z\right)\mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(z\right)\right),\nu\neq-\tfrac{1}{2}.

For the Struve function \mathop{\mathbf{H}_{{\nu}}\/}\nolimits\!\left(z\right) see §11.2(i).

10.22.3
\int e^{{iz}}z^{\nu}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)dz=\frac{e^{{iz}}z^{{\nu+1}}}{2\nu+1}(\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)-i\mathop{\mathscr{C}_{{\nu+1}}\/}\nolimits\!\left(z\right)),\nu\neq-\tfrac{1}{2},
\int e^{{iz}}z^{{-\nu}}\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)dz=\frac{e^{{iz}}z^{{-\nu+1}}}{1-2\nu}(\mathop{\mathscr{C}_{{\nu}}\/}\nolimits\!\left(z\right)+i\mathop{\mathscr{C}_{{\nu-1}}\/}\nolimits\!\left(z\right)),\nu\neq\tfrac{1}{2}.

§10.22(ii) Integrals over Finite Intervals

Throughout this subsection x>0.

Trigonometric Arguments

10.22.17\int _{0}^{{\frac{1}{2}\pi}}\mathop{Y_{{2\nu}}\/}\nolimits\!\left(2z\mathop{\cos\/}\nolimits\theta\right)\mathop{\cos\/}\nolimits(2\mu\theta)d\theta=\tfrac{1}{2}\pi\mathop{\cot\/}\nolimits(2\nu\pi)\mathop{J_{{\nu+\mu}}\/}\nolimits\!\left(z\right)\mathop{J_{{\nu-\mu}}\/}\nolimits\!\left(z\right)-\tfrac{1}{2}\pi\mathop{\csc\/}\nolimits(2\nu\pi)\mathop{J_{{\mu-\nu}}\/}\nolimits\!\left(z\right)\mathop{J_{{-\mu-\nu}}\/}\nolimits\!\left(z\right),-\tfrac{1}{2}<\realpart{\nu}<\tfrac{1}{2},
10.22.18\int _{0}^{{\frac{1}{2}\pi}}\mathop{Y_{{0}}\/}\nolimits\!\left(2z\mathop{\sin\/}\nolimits\theta\right)\mathop{\cos\/}\nolimits\!\left(2n\theta\right)d\theta=\tfrac{1}{2}\pi\mathop{J_{{n}}\/}\nolimits\!\left(z\right)\mathop{Y_{{n}}\/}\nolimits\!\left(z\right),n=0,1,2,\dots.
10.22.19\int _{0}^{{\frac{1}{2}\pi}}\mathop{J_{{\mu}}\/}\nolimits\!\left(z\mathop{\sin\/}\nolimits\theta\right)(\mathop{\sin\/}\nolimits\theta)^{{\mu+1}}(\mathop{\cos\/}\nolimits\theta)^{{2\nu+1}}d\theta=2^{\nu}\mathop{\Gamma\/}\nolimits\!\left(\nu+1\right)z^{{-\nu-1}}\mathop{J_{{\mu+\nu+1}}\/}\nolimits\!\left(z\right),\realpart{\mu}>-1, \realpart{\nu}>-1,
10.22.22\int _{0}^{{\frac{1}{2}\pi}}\mathop{J_{{\mu}}\/}\nolimits\!\left(z{\mathop{\sin\/}\nolimits^{{2}}}\theta\right)\mathop{J_{{\nu}}\/}\nolimits\!\left(z{\mathop{\cos\/}\nolimits^{{2}}}\theta\right)(\mathop{\sin\/}\nolimits\theta)^{{2\mu+1}}(\mathop{\cos\/}\nolimits\theta)^{{2\nu+1}}d\theta=\frac{\mathop{\Gamma\/}\nolimits\!\left(\mu+\tfrac{1}{2}\right)\mathop{\Gamma\/}\nolimits\!\left(\nu+\tfrac{1}{2}\right)\mathop{J_{{\mu+\nu+\frac{1}{2}}}\/}\nolimits\!\left(z\right)}{(8\pi z)^{\frac{1}{2}}\mathop{\Gamma\/}\nolimits\!\left(\mu+\nu+1\right)},\realpart{\mu}>-\tfrac{1}{2},\realpart{\nu}>-\tfrac{1}{2}.

For \mathop{I_{{\nu}}\/}\nolimits see §10.25(ii).

10.22.26\int _{0}^{{\frac{1}{2}\pi}}\mathop{J_{{\mu}}\/}\nolimits\!\left(z\mathop{\sin\/}\nolimits\theta\right)\mathop{J_{{\nu}}\/}\nolimits\!\left(\zeta\mathop{\cos\/}\nolimits\theta\right)(\mathop{\sin\/}\nolimits\theta)^{{\mu+1}}(\mathop{\cos\/}\nolimits\theta)^{{\nu+1}}d\theta=\frac{z^{\mu}\zeta^{\nu}\mathop{J_{{\mu+\nu+1}}\/}\nolimits\!\left(\sqrt{\zeta^{2}+z^{2}}\right)}{(\zeta^{2}+z^{2})^{{\frac{1}{2}(\mu+\nu+1)}}},\realpart{\mu}>-1,\realpart{\nu}>-1.

Fractional Integral

10.22.36\frac{1}{\mathop{\Gamma\/}\nolimits\!\left(\alpha\right)}\int _{0}^{x}(x-t)^{{\alpha-1}}\mathop{J_{{\nu}}\/}\nolimits\!\left(t\right)dt=2^{\alpha}\sum _{{k=0}}^{\infty}\frac{(\alpha)_{k}}{k!}\mathop{J_{{\nu+\alpha+2k}}\/}\nolimits\!\left(x\right),\realpart{\alpha}>0,\realpart{\nu}\geq 0.

When \alpha=m=1,2,3,\ldots the left-hand side of (10.22.36) is the mth repeated integral of \mathop{J_{{\nu}}\/}\nolimits\!\left(x\right) (§§1.4(v) and 1.15(vi)).

Orthogonality

If \nu>-1, then

10.22.37\int _{0}^{1}t\mathop{J_{{\nu}}\/}\nolimits\!\left(j_{{\nu,\ell}}t\right)\mathop{J_{{\nu}}\/}\nolimits\!\left(j_{{\nu,m}}t\right)dt=\tfrac{1}{2}\delta _{{\ell,m}}\left({\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(j_{{\nu,\ell}}\right)\right)^{2},

where j_{{\nu,\ell}} and j_{{\nu,m}} are zeros of \mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)10.21(i)), and \delta _{{\ell,m}} is Kronecker’s symbol.

Also, if a,b,\nu are real constants with b\neq 0 and \nu>-1, then

10.22.38\int _{0}^{1}t\mathop{J_{{\nu}}\/}\nolimits\!\left(\alpha _{\ell}t\right)\mathop{J_{{\nu}}\/}\nolimits\!\left(\alpha _{m}t\right)dt=\delta _{{\ell,m}}\left(\frac{a^{2}}{b^{2}}+\alpha _{\ell}^{2}-\nu^{2}\right)\frac{(\mathop{J_{{\nu}}\/}\nolimits\!\left(\alpha _{\ell}\right))^{2}}{2\alpha _{\ell}^{2}},

where \alpha _{\ell} and \alpha _{m} are positive zeros of a\mathop{J_{{\nu}}\/}\nolimits\!\left(x\right)+bx{\mathop{J_{{\nu}}\/}\nolimits^{{\prime}}}\!\left(x\right). (Compare (10.22.55)).

§10.22(iii) Integrals over the Interval (x,\infty)

§10.22(iv) Integrals over the Interval (0,\infty)

10.22.45\int _{0}^{\infty}\frac{1-\mathop{J_{{0}}\/}\nolimits\!\left(t\right)}{t^{\mu}}dt=-\frac{\pi\mathop{\sec\/}\nolimits\!\left(\frac{1}{2}\mu\pi\right)}{2^{\mu}{\mathop{\Gamma\/}\nolimits^{{2}}}\!\left(\frac{1}{2}\mu+\frac{1}{2}\right)},1<\realpart{\mu}<3.
10.22.46\int _{0}^{\infty}\frac{t^{{\nu+1}}\mathop{J_{{\nu}}\/}\nolimits\!\left(at\right)}{(t^{2}+b^{2})^{{\mu+1}}}dt=\frac{a^{\mu}b^{{\nu-\mu}}}{2^{\mu}\mathop{\Gamma\/}\nolimits\!\left(\mu+1\right)}\mathop{K_{{\nu-\mu}}\/}\nolimits\!\left(ab\right),a>0, \realpart{b}>0, -1<\realpart{\nu}<2\realpart{\mu}+\tfrac{3}{2}.
10.22.47\int _{0}^{\infty}\frac{t^{\nu}\mathop{Y_{{\nu}}\/}\nolimits\!\left(at\right)}{t^{2}+b^{2}}dt=-b^{{\nu-1}}\mathop{K_{{\nu}}\/}\nolimits\!\left(ab\right),a>0,\realpart{b}>0,-\tfrac{1}{2}<\realpart{\nu}<\tfrac{5}{2}.

For \mathop{K_{{\nu}}\/}\nolimits see §10.25(ii).

10.22.48\int _{0}^{\infty}\mathop{J_{{\mu}}\/}\nolimits\!\left(x\mathop{\cosh\/}\nolimits\phi\right)(\mathop{\cosh\/}\nolimits\phi)^{{1-\mu}}(\mathop{\sinh\/}\nolimits\phi)^{{2\nu+1}}d\phi=2^{\nu}\mathop{\Gamma\/}\nolimits\!\left(\nu+1\right)x^{{-\nu-1}}\mathop{J_{{\mu-\nu-1}}\/}\nolimits\!\left(x\right),x>0,\realpart{\nu}>-1,\realpart{\mu}>2\realpart{\nu}+\tfrac{1}{2}.
10.22.49\int _{0}^{\infty}t^{{\mu-1}}e^{{-at}}\mathop{J_{{\nu}}\/}\nolimits\!\left(bt\right)dt=\frac{(\tfrac{1}{2}b)^{\nu}}{a^{{\mu+\nu}}}\mathop{\Gamma\/}\nolimits\!\left(\mu+\nu\right)\*\mathop{\mathbf{F}\/}\nolimits\!\left(\frac{\mu+\nu}{2},\frac{\mu+\nu+1}{2};\nu+1;-\frac{b^{2}}{a^{2}}\right),\realpart{(\mu+\nu)}>0,\realpart{(a\pm ib)}>0,
10.22.50\int _{0}^{\infty}t^{{\mu-1}}e^{{-at}}\mathop{Y_{{\nu}}\/}\nolimits\!\left(bt\right)dt=\mathop{\cot\/}\nolimits(\nu\pi)\frac{(\tfrac{1}{2}b)^{\nu}\mathop{\Gamma\/}\nolimits\!\left(\mu+\nu\right)}{(a^{2}+b^{2})^{{\frac{1}{2}(\mu+\nu)}}}\*\mathop{\mathbf{F}\/}\nolimits\!\left(\frac{\mu+\nu}{2},\frac{1-\mu+\nu}{2};\nu+1;\frac{b^{2}}{a^{2}+b^{2}}\right)-\mathop{\csc\/}\nolimits(\nu\pi)\frac{(\tfrac{1}{2}b)^{{-\nu}}\mathop{\Gamma\/}\nolimits\!\left(\mu-\nu\right)}{(a^{2}+b^{2})^{{\frac{1}{2}(\mu-\nu)}}}\*\mathop{\mathbf{F}\/}\nolimits\!\left(\frac{\mu-\nu}{2},\frac{1-\mu-\nu}{2};1-\nu;\frac{b^{2}}{a^{2}+b^{2}}\right),\realpart{\mu}>|\realpart{\nu}|,\realpart{(a\pm ib)}>0.

For the hypergeometric function \mathop{\mathbf{F}\/}\nolimits see §15.2(i).

10.22.53\int _{0}^{\infty}\mathop{Y_{{2\nu}}\/}\nolimits\!\left(bt\right)\mathop{\exp\/}\nolimits\!\left(-p^{2}t^{2}\right)dt=-\frac{\sqrt{\pi}}{2p}\mathop{\exp\/}\nolimits\!\left(-\frac{b^{2}}{8p^{2}}\right)\left(\mathop{I_{{\nu}}\/}\nolimits\left(\frac{b^{2}}{8p^{2}}\right)\mathop{\tan\/}\nolimits\!\left(\nu\pi\right)+\frac{1}{\pi}\mathop{K_{{\nu}}\/}\nolimits\left(\frac{b^{2}}{8p^{2}}\right)\mathop{\sec\/}\nolimits\!\left(\nu\pi\right)\right),|\realpart{\nu}|<\tfrac{1}{2}, \realpart{(p^{2})}>0.

For \mathop{I\/}\nolimits and \mathop{K\/}\nolimits see §10.25(ii).

10.22.54\int _{0}^{\infty}\mathop{J_{{\nu}}\/}\nolimits\!\left(bt\right)\mathop{\exp\/}\nolimits\!\left(-p^{2}t^{2}\right)t^{{\mu-1}}dt=\frac{(\tfrac{1}{2}b/p)^{\nu}\mathop{\Gamma\/}\nolimits\!\left(\tfrac{1}{2}\nu+\tfrac{1}{2}\mu\right)}{2p^{\mu}}\mathop{\exp\/}\nolimits\!\left(-\frac{b^{2}}{4p^{2}}\right)\*\mathop{{\mathbf{M}}\/}\nolimits\!\left(\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1,\nu+1,\frac{b^{2}}{4p^{2}}\right),\realpart{(\mu+\nu)}>0, \realpart{(p^{2})}>0.

For the confluent hypergeometric function \mathop{{\mathbf{M}}\/}\nolimits see §13.2(i).

Weber–Schafheitlin Discontinuous Integrals, including Special Cases

When \realpart{\mu}>0,

10.22.63\int _{0}^{\infty}\mathop{J_{{\mu}}\/}\nolimits\!\left(at\right)\mathop{J_{{\mu-1}}\/}\nolimits\!\left(bt\right)dt=\begin{cases}b^{{\mu-1}}a^{{-\mu}},&0<b<a,\\
(2b)^{{-1}},&b=a(>0),\\
0,&0<a<b.\end{cases}

Other Double Products

In (10.22.66)–(10.22.70) a,b,c are positive constants.

For the associated Legendre function \mathop{Q\/}\nolimits see §14.3(ii) with \mu=0. For \mathop{I\/}\nolimits and \mathop{K\/}\nolimits see §10.25(ii).

Equation (10.22.70) also remains valid if the order \nu+1 of the \mathop{J\/}\nolimits functions on both sides is replaced by \nu+2n-3, n=1,2,\dots, and the constraint \realpart{\nu}>-\frac{3}{2} is replaced by \realpart{\nu}>-n+\frac{1}{2}.

See also §1.17(ii) for an integral representation of the Dirac delta in terms of a product of Bessel functions.

Triple Products

In (10.22.74) and (10.22.75), a,b,c are positive constants and

10.22.73
A=s(s-a)(s-b)(s-c),
s=\tfrac{1}{2}(a+b+c).

(Thus if a,b,c are the sides of a triangle, then A^{{\frac{1}{2}}} is the area of the triangle.)

Additional infinite integrals over the product of three Bessel functions (including modified Bessel functions) are given in Gervois and Navelet (1984, 1985a, 1985b, 1986a, 1986b).

§10.22(v) Hankel Transform

The Hankel transform (or Bessel transform) of a function f(x) is defined as

10.22.76g(y)=\int _{0}^{\infty}f(x)\mathop{J_{{\nu}}\/}\nolimits\!\left(xy\right)(xy)^{{\frac{1}{2}}}dx.

Hankel’s inversion theorem is given by

10.22.77f(y)=\int _{0}^{\infty}g(x)\mathop{J_{{\nu}}\/}\nolimits\!\left(xy\right)(xy)^{{\frac{1}{2}}}dx.

Sufficient conditions for the validity of (10.22.77) are that \int _{0}^{\infty}|f(x)|dx<\infty when \nu\geq-\tfrac{1}{2}, or that \int _{0}^{\infty}|f(x)|dx<\infty and \int _{0}^{1}x^{{\nu+\frac{1}{2}}}|f(x)|dx<\infty when -1<\nu<-\tfrac{1}{2}; see Titchmarsh (1986a, Theorem 135, Chapter 8) and Akhiezer (1988, p. 62).

For asymptotic expansions of Hankel transforms see Wong (1976, 1977) and Frenzen and Wong (1985).

For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972).

§10.22(vi) Compendia

For collections of integrals of the functions \mathop{J_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{Y_{{\nu}}\/}\nolimits\!\left(z\right), \mathop{{H^{{(1)}}_{{\nu}}}\/}\nolimits\!\left(z\right), and \mathop{{H^{{(2)}}_{{\nu}}}\/}\nolimits\!\left(z\right), including integrals with respect to the order, see Andrews et al. (1999, pp. 216–225), Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5 and 6.5–6.7), Gröbner and Hofreiter (1950, pp. 196–204), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1974, §§1.10 and 2.7), Oberhettinger (1990, §§1.13–1.16 and 2.13–2.16), Oberhettinger and Badii (1973, §§1.14 and 2.12), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.8–1.10, 2.12–2.14, 3.2.4–3.2.7, 3.3.2, and 3.4.1), Prudnikov et al. (1992a, §§3.12–3.14), Prudnikov et al. (1992b, §§3.12–3.14), Watson (1944, Chapters 5, 12, 13, and 14), and Wheelon (1968).