

## the **ENERGY** lab

Where energy challenges converge and energy solutions emerge

# Process for CO<sub>2</sub> Capture Using Zeolites from High Pressure and Moderate Temperature Gas Streams

#### Opportunity

Research is currently active on the patented technology "Process for CO<sub>2</sub> Capture Using Zeolites from High Pressure and Moderate Temperature Gas Streams." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory.

#### **Overview**

This invention discloses a method for separating  $CO_2$  from a high-pressure and moderate- temperature gas stream composed of  $CO_2$  and other gaseous constituents using a zeolite sorbent in a temperature-swing adsorption process, which produces a  $CO_2$  stream at a high  $CO_2$  pressure contributing to low compression costs for  $CO_2$  sequestration. The method also uses  $CO_2$  desorption in a  $CO_2$  atmosphere and effectively integrates heat transfer to optimize overall efficiency. Current commercial processes for  $CO_2$  removal from high-pressure

gas streams require gas cooling to ambient temperatures contributing to lower thermal efficiencies of the process. The overall efficiency of the CO<sub>2</sub> removal process in the invention disclosure is higher than that of the commercial processes since the CO<sub>2</sub> removal process takes place at moderate temperatures and CO<sub>2</sub> can be recovered at high pressure. Presence of moisture in the gas stream does not affect the CO<sub>2</sub> sorption/desorption process of the zeolites at the reaction conditions used in the process.

The emission of CO<sub>2</sub> from power plants has been identified as a potential factor in long-term environmental problems. As a result, the separation of CO<sub>2</sub> from gaseous streams by using adsorption of gases and vapors by microporous solids has attracted industry attention due to its importance in the fields of gas separation and gas purification. Therefore, technologies based on CO<sub>2</sub> adsorption/desorption that use natural and synthetic zeolites are among the most effective methods.

Researchers have generally used two methods for  $CO_2$  adsorption/desorption that apply zeolite adsorbents for  $CO_2$  separation: temperature-swing adsorption and pressure-swing adsorption. However, at lower pressures, the  $CO_2$  adsorption capacity of zeolites generally diminish rapidly as the temperature of the gas being separated increases. In addition, moisture sorption contributes to decreasing  $CO_2$  capture capacities during multiple cycles.

Therefore, researchers needed a method to address these issues if zeolites are to be used in the  $CO_2$  capture process. This invention does just that by providing a method of  $CO_2$  separation by using zeolite adsorbents in a manner that preserves adsorption capacities at higher temperatures, recovering  $CO_2$  at high pressure and addressing the moisture issue.

### Significance

- Provides an effective method for separating CO<sub>2</sub> from a gas stream
- Uses a zeolite sorbent in a temperature swing adsorption process
- Preserves adsorption capacity at higher temperatures

# **Applications**

- Fossil-fueled power systems
- Natural gas treatment
- Hydrocarbon purification
- Hydrogen gas production

#### **Patent Details**

Contact

U.S. Patent No. 8,128,735 B1; titled "Process for CO<sub>2</sub> Capture Using Zeolites from High Pressure and Moderate Temperature Gas Streams." Inventor(s): Ranjani V. Siriwardane and Robert W. Stevens, Jr.

NETL Technology Transfer Group techtransfer@netl.doe.gov



NATIONAL ENERGY TECHNOLOGY LABORATORY