Using SOILTAXONOMY to Identify Hydric Soils

Soil Taxonomy is

A basic system of soil classification for making and interpreting soil surveys.

Objective:

To develop a hierarchical classification that reflects the relationships between different soils, and between soils and the factors responsible for their character.

Soil Taxonomy

Procedure:

Soils are classified on the basis of:

- **#**Soil properties observed in the field (e.g., soil horizons, texture, color, pH) and
- **%**Soil properties inferred from the combined data of soil science and other disciplines (e.g., soil temperature and moisture regimes inferred from soil science and meteorology).

Soil Taxonomy

Fine-loamy, mixed (calcareous), frigid, Mollic Ustifluvent

Korchea Series Not Hydric

Soil Taxonomy

Category

Number of Taxa

Nature of Differentiating Characteristics

Order

12

Soil-forming processes as indicated by presence or absence of major diagnostic horizons

Soil Orders

- **#** Alfisols
- **#** Andisols
- **#** Aridisols
- # Entisols
- # Gelisols
- # Histosols

- **#** Inceptisols
- **# Mollisols**
- **#** Oxisols
- **#** Spodosols
- **#** Ultisols
- **#** Vertisols

Taxonomic Names

Soil Order Names Ends in:

Alfisols -Alf

Andisols -And

Aridisols -ld

Entisols -Ent

Gelisols -El

Histosols -lst

Inceptisols -Ept

Mollisols -OII

Oxisols -Ox

Spodosols -Od

Ultisols -Ult

Vertisols -Ert

Entisol Suborders

Aquents

(L. Aqua, Water)

Wet Entisols

Fluvents

(L. Fluvius, River)

Floodplain Soils

Orthents

(Gr. Orthos, True)

The Common Ones

Psamments

(Gr. Psammons, Sand)

Sandy Soils

Entisol Great Groups

Suborder

Aquents

(Wet Entisols)

Great Group

Cryaquents - cold

Fluvaquents - flood plain

Hydraquents - water

Psammaquents - sand

Epiaquents - perched

Entisol Great Groups

Suborder

Fluvents

(Floodplain soils)

Great Group

Cryofluvents

Torrifluvents - Torrid

(hot and dry)

Tropofluvents

Udifluvents - Humid

(not dry in most years)

Ustifluvents - Semi-arid

(between Udic-Aridic)

Xerofluvents - Semi-arid

(moist cold winter - dry

warm summer;

Mediterranean climate)

Soil Taxonomy

Suborder

Psamments

(Sandy Soils)

Great Group

Cryopsamments

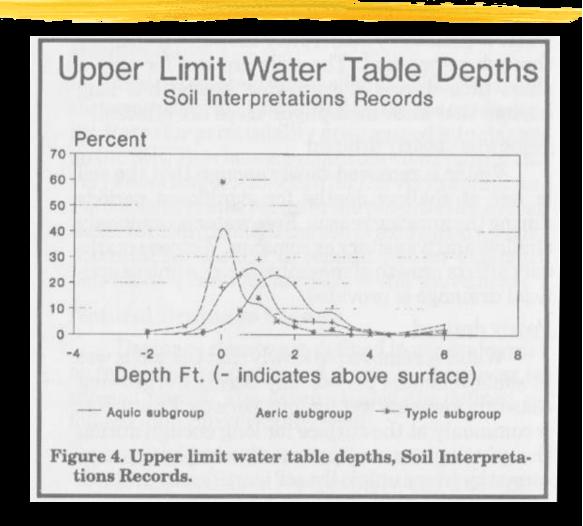
Quartzipsamments - Quartz

Torripsamments

Udipsamments

Ustipsamments

Xeropsamments


Soil Taxonomy -How to interpret the formative elements

- **#**Sub group Great group, Suborder, Order

 - Vertic Udifluvent

 - ■3 Udi(c) great group humid

Aquic Soil Moisture Regimes

Subgroups

```
3 2 1
        Typic Fluvaquents
Typical Entisols with aquic moisture
regimes that occur on floodplains.
```

- 1. Order 3. Great Group
- 2. Suborder 4. Subgroup

Subgroups

Mollic Fluvaquents Entisols with aquic moisture regimes that occur on floodplains, and that have thick, dark surface layers. 1. Order 3. Great Group

2. Suborder 4. Subgroup

Subgroups

4 3 2 1 Aeric Fluvaquents

1 3

Entisols, occurring on floodplains, with an aquic

moisture regime that are not so wet. Better 4 aerated in the "upper" part of the soil.

- Order
 Great Group
- 2. Suborder 4. Subgroup

Soil Taxonomy

Number Category of Taxa

Series 15,000+

Nature of Differentiating Characteristics

A series may have virtually the full range that is permitted in a family in several properties, but in one or more properties the range is restricted, such as:

- Kind and arrangement of horizons
- Color
- Texture
- Structure

Soil Taxonomy- Predicting "Problem" Hydric Soils

Formative Element	Soil Order	Why a Problem
Alf	Alfisols	Gray / White (high value / low chroma) horizon below A, not always indicative of wetness.
And	Andisols	Fe immobilized, redox. features are often deeper than depth to water table. Some Andisols have thick, dark colored surface layers.
Ent	Entisols	Recent depositional events exceed rate of typical hydric morphology formation. Also many sandy soils are Entisols.

"Problem" Orders, cont.

OII	Mollisols	Dark colored surface layers "mask" redox features. Check colors below mollic, allow surface layers to dry then look for redox (NTCHS Indicator F6).	
Od	Spodosols	Sandy surface layers, no redox features evident in upper part. (Use organic layers, dark surface, and stripped matrix indicators).	
Ult	Ultisols	Some have gray / white (high value / low chroma) horizon below A, not necessarily indicative of wetness.	
Ert	Vertisols	High shrink-swell clays, surface hydrology. Many Vertisols also have dark-colored surface layers.	

"Problem" Great Groups

Alb	Albic horizon	Gray / White (high value / low chroma) horizon below A, not necessarily indicative of wetness
Calci, calc	Presence of a calcic horizon	Gray / White (high value / low chroma) horizon below A, not necessarily indicative of wetness
Dur	Presence of a Duripan (dense layer)	Subsoil may be brownish color. Perched water table situation.
Epi	Perched water table	Subsoil may be brownish color.
Fluv	Floodplain	Surface hydrology, recent deposition

Great Groups, cont.

Fragi	Presence of a Fragipan (dense layer)	Subsoil may be brownish color, perched water table.
Gloss	Presence of a Glossic horizon	Multi-colored horizon below A horizon.
Melan	High organic content	Dark colors may mask redox features.
Psamm	Sandy texture	No, or low Fe content, also low OM.
Sal	Presence of a Salic horizon	High pH, low OM; no, or few redox features.

Typic Haplosaprists

TORRY SERIES TYPIC MEDISAPRIST

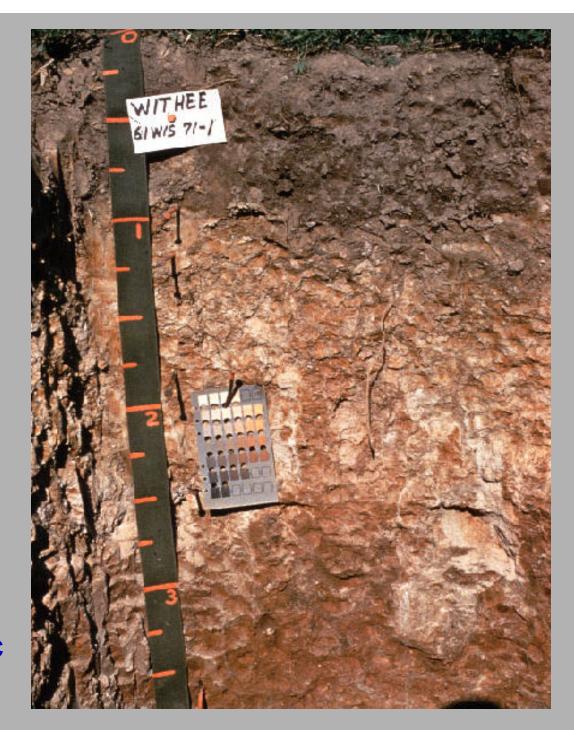
Torry Series
Hydric

Terric Haplosaprists

Tawas Series Hydric

Lithic Cryofolists

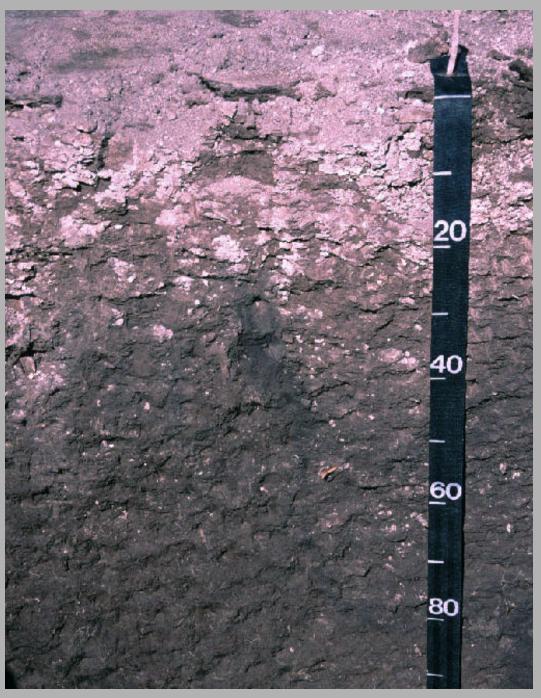
Ricker Series Not Hydric



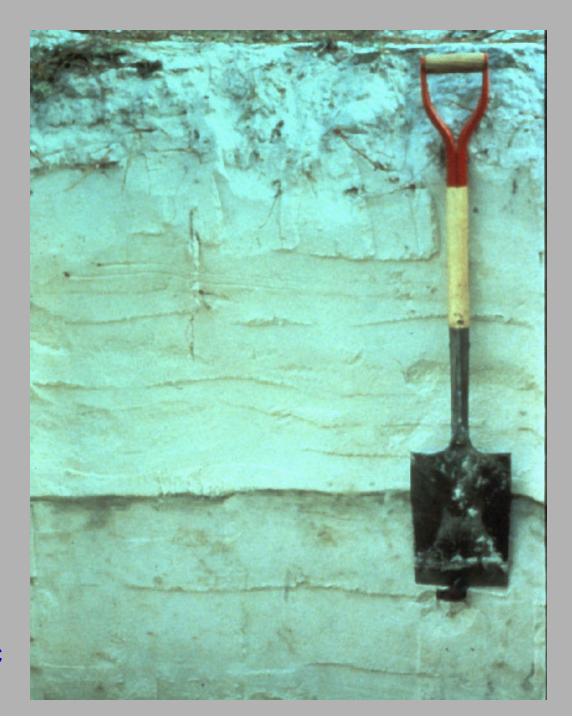
Aquic Paleudalfs

Katy Series Not Hydric

Aquic Glossudalfs



Withee Series Not Hydric


Typic Aquisalids

Unknown Series Hydric

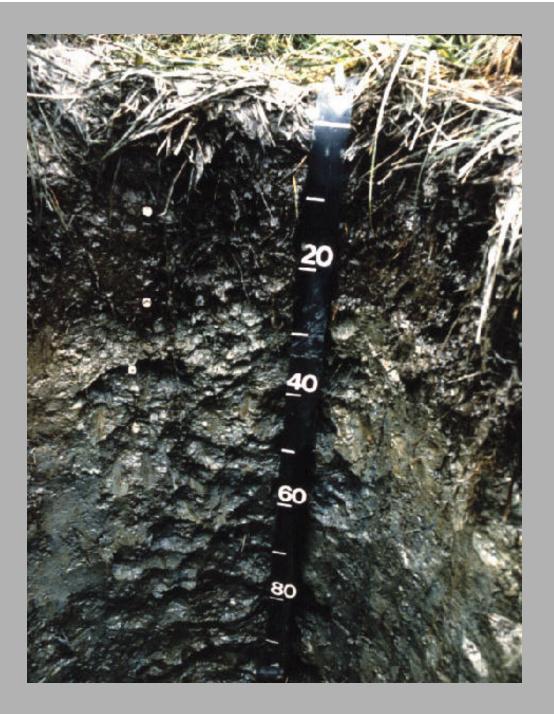
Aquic Quartzipsamments

Unknown Series

Not Hydric

Oxyaquic Dystrudepts

Paxton Series Not Hydric



Typic Humaquepts

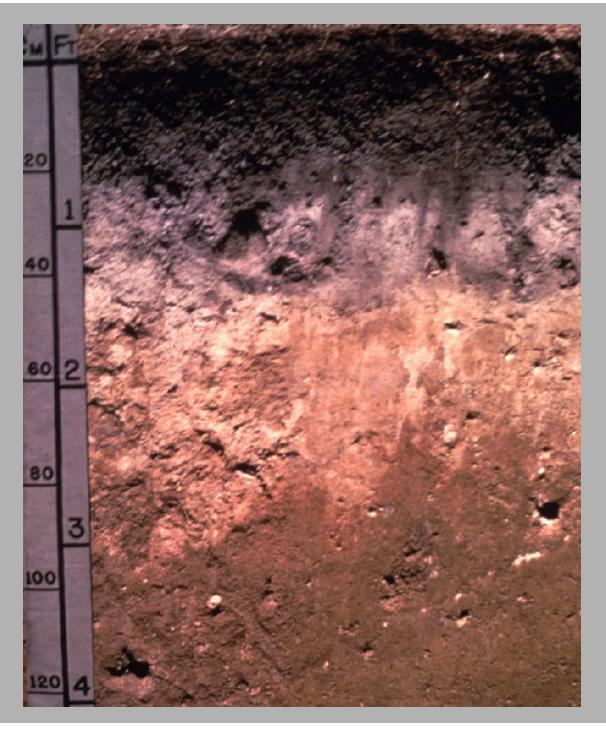
Birdsall Series Hydric

Vertic Argiaquolls

Parnell Series Hydric

Argiaquic Argialbolls

Tonka Series Hydric



Aeric Calciaquolls

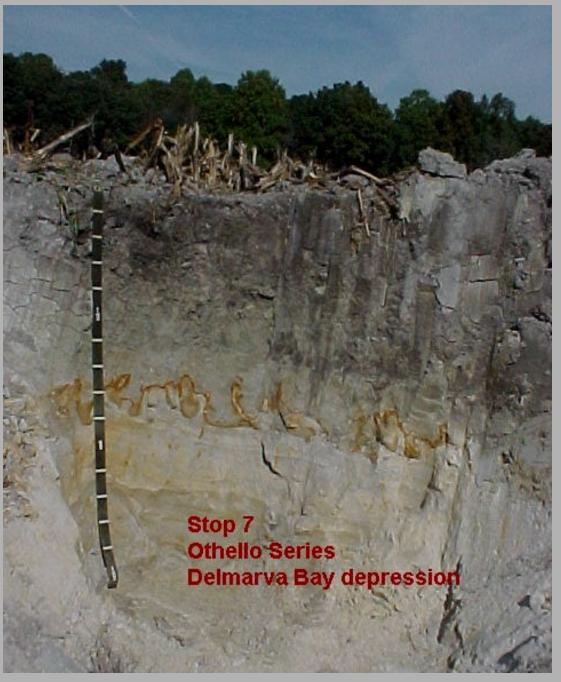
Hamerly Series
Not Hydric

Aquic Haplorthods

Sunapee Series Not Hydric

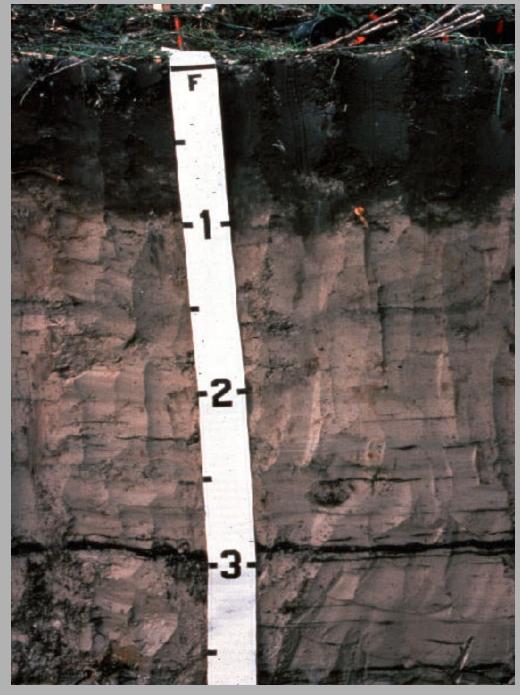
Aeric Alaquods

Leon Series Non-hydric phase



Typic Endoaquits

Othello Series Hydric



Typic Umbraquits

Series Unknown

Hydric

Chromic Epiaquerts

Sharkey Series Hydric

Summary

- **#** Interpretation of Soil Taxonomic names in Soil Survey manuscripts provides another tool for identifying hydric soils.
 - Most useful off-site as part of preliminary analysis
 - Also useful to identify potential "problem" hydric soils