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Effectiveness and Comparative Effectiveness Reviews, systematic reviews of existing research 
on the effectiveness, comparative effectiveness, and comparative harms of different health care 
interventions, are intended to provide relevant evidence to inform real-world health care 
decisions for patients, providers, and policymakers.  In an effort to improve the transparency, 
consistency, and scientific rigor of the work of the Effective Health Care Program, through a 
collaborative effort, the Agency for Healthcare Research and Quality (AHRQ), the Scientific 
Resource Center, and the Evidence-based Practice Centers (EPCs) have developed a Methods 
Guide for the conduct of Comparative Effectiveness Reviews.  We intend that these documents 
will serve as a resource for our EPCs as well as for other investigators interested in conducting 
Comparative Effectiveness Reviews.   
  
The first draft of the Methods Guide was posted for public comment for 8 weeks in late 2007.  In 
response to requests from investigators and others interested in Comparative Effectiveness 
Review methods, we have reposted the original chapters of the draft manual below.  As these 
chapters are revised in response to public and peer review comment, they will replace the 
previous draft chapter and be posted below. It is anticipated that these papers will also be 
published as a series in the Journal of Clinical Epidemiology in 2008.  As further empiric 
evidence develops and our understanding of better methods improves, we anticipate that there 
will be subsequent updates and additional chapters to this Methods Guide and that it will 
continue to be a living document.  Comments and suggestions on the Methods Guide and the 
Effective Health Care Program can be made at www.effectivehealthcare.ahrq.gov.  

http://www.effectivehealthcare.ahrq.gov/


    

Preface 
 
As part of the Medicare Prescription Drug, Improvement, and Modernization Act (MMA) of 
2003, Congress directed the Agency for Healthcare Research and Quality (AHRQ) to conduct 
and support research on the evidence of outcomes, clinical effectiveness, and appropriateness of 
pharmaceuticals, devices, and health care services to meet the needs of Medicare, Medicaid, and 
the State Children’s Health Insurance Program (SCHIP).  Section 1013 of the Act requires 
AHRQ to conduct activities pertinent to evaluating, generating, and disseminating evidence 
about the comparative effectiveness of medications, devices, and other interventions.  These 
activities include, but are not limited to, the following: 
 

• identify priorities for research related to health care items and services, including 
prescription drugs; 

• evaluate and synthesize evidence about comparative clinical effectiveness related to these 
priorities; 

• identify key information gaps for future research; and 
• disseminate the results of comparative effectiveness reviews (CERs) to the public, to 

Medicare Advantage plans, and to other health plans. 
 
These and related activities constitute AHRQ’s Effective Health Care (EHC) program, which is 
described in full at http://effectivehealthcare.ahrq.gov/aboutUs.cfm?abouttype=program.  
 
AHRQ has an established network of Evidence-based Practice Centers (EPCs) that produce 
Evidence Reports/Technology Assessments to assist public- and private-sector organizations in 
their efforts to improve the quality of health care.  The EPCs lend their expertise to the Effective 
Health Care program by conducting CERs of medications, devices, and other relevant 
interventions, including strategies for how these items and services can best be organized, 
managed, and delivered. 
 
Systematic and comparative effectiveness reviews are the building blocks underlying evidence-
based practice; they focus attention on the strengths and limitations of evidence from research 
studies about the effectiveness and safety of a clinical intervention.  In the context of developing 
recommendations for practice, these reviews are useful because they define the strong and weak 
points of the evidence, and they clarify whether assertions about the value of the intervention are 
based on robust evidence from clinical studies. 
 
AHRQ expects that CERs will be helpful to patients, clinicians, health plans, purchasers, 
government programs, researchers, and the health care system as a whole.  CERs are not 
intended to set national standards of clinical practice or criteria for health care quality standards.  
Instead, as Congress stated in the MMA, research conducted in the EHC program “should reflect 
the principle that clinicians and patients should have the best available evidence upon which to 
make choices…recognizing that patient subpopulations and patient and physician preferences 
may vary.”  AHRQ is committed to presenting information in different formats so that 
consumers who make decisions about their own and their family’s health can benefit from the 
evidence. 
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1. OVERVIEW 
This guide provides methodological guidance to Evidence-based Practice Centers (EPCs) 
conducting comparative effectiveness reviews (CERs).  It describes recommended approaches 
for addressing difficult, frequently encountered methodological issues.  It informs the public of 
standards for conducting CERs.  Finally, it identifies areas of methodological controversy for 
which, at present, no standard can be recommended; these will be addressed in future work by 
EPCs, in updates to this guide, or by others. 
 
Purpose of This Guide 
AHRQ and the participating EPCs are fully committed to improving the consistency and quality 
of CERs.  The science of systematic reviews is evolving and dynamic, and thus the 
recommendations in this guide should be viewed as a work in progress.  At the same time, we 
recognize that excessive variation in methods among systematic reviews gives the appearance of 
arbitrariness and idiosyncrasy, which undercuts the goals of transparency and scientific 
impartiality intended for all this work. 
 
The guide is organized around key issues at each step involved in researching and writing a 
CER, including the following: 
 

• developing key questions for a CER (Chapter 2),  
• selecting different types of evidence (Chapters 3 and 4),  
• searching for relevant trials and observational studies (Chapter 5), 
• assessing the risk of bias (quality) and applicability of studies (Chapter 6),  
• when and how to pool studies (Chapter 9), and  
• rating the strength of a body of evidence (Chapter 11). 

 
Some topics, such as eligibility criteria, extracting evidence from studies, and constructing 
evidence tables, are not discussed in this version of the guide.  
 
This guide is not aimed at beginners, and it is not a comprehensive source of guidance for 
conducting systematic reviews in all circumstances.  Nevertheless, we hope that a wide range of 
users of CERs and those with a broad interest in evidence-based practice will find it a useful 
reference and sourcebook. 
 
Comparative Effectiveness Reviews 
Comparative Effectiveness Reviews (CERs) are a key component of the EHC program.  They 
provide building blocks to support evidence-based practice and decision making. They seek to 
answer important questions about treatments or diagnostic tests to help clinicians and patients 
choose the best treatments and tests and to help healthcare policy makers make informed 
decisions about health care services and quality improvement.  
 
CERs are a type of systematic review, which synthesizes the available scientific evidence on a 
specific topic. CERs expand the scope of a typical systematic review, which focuses on the 
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effectiveness of a single intervention, by comparing the relative benefits and harms among a 
range of available treatments or interventions for a given condition. In doing so, CERs more 
closely parallel the decisions facing clinicians, patients and policymakers, who must choose 
among a variety of alternatives in making diagnostic, treatment, and health care delivery 
decisions. 
 
Comparative Effectiveness Reviews follow the explicit principals of systematic reviews. The 
first essential step is to carefully formulate the problem, selecting questions that are important to 
patients and other health care decision makers and examining how well the scientific literature 
answers them. Studies that measure health outcomes (events or conditions that the patient can 
feel, such as disability, quality of life or death) are given more weight than studies of 
intermediate outcomes, such as a change in a laboratory measure. Studies that measure benefits 
and harms over extended periods of time are usually more relevant than studies that examine 
outcomes over short periods. 
 
Second, CERs explicitly define what types of research studies provide useful evidence and apply 
empirically tested search strategies to find all relevant studies. To assess effectiveness of other 
interventions, such as the efficacy of a drug, reviews may focus on the results of randomized 
controlled trials. For other questions, or to compare results of trials with those from everyday 
practice, observational studies may play a key role. The hallmark of the systematic review 
process is the careful assessment of the quality of the collected evidence, with greater weight 
given to studies following methods that have been shown to reduce the likelihood of biased 
results. Although well-done randomized trials generally provide the highest quality evidence, 
well-done observational studies may provide better evidence when trials are too small, too short, 
or have important methodological flaws. 
 
A third critical step is to consider whether studies performed in carefully controlled research 
settings (efficacy studies) are applicable to the patients, clinicians and settings for whom the 
review is intended. A number of factors may limit the generalizability of results from efficacy 
studies. Patients are often carefully selected, excluding patients who are sicker or older and those 
who have trouble adhering to treatment. Racial and ethnic minorities may also be 
underrepresented. Efficacy studies also often use regimens and follow-up protocols that 
maximize benefits and limit harms but which may be impractical in usual practice. Effectiveness 
studies, which are conducted in practice-based settings, use less stringent eligibility criteria and 
assess longer-term health outcomes, are intended to provide results that are more applicable to 
“average” patients. They remain much less common than efficacy studies, however. A 
comparative effectiveness review examines the efficacy data thoroughly to ensure that decision 
makers can assess the scope, quality, and relevance of the available data and points out areas of 
clinical uncertainty. Clinicians can judge the relevance of the study results to their practice and 
should note where there are gaps in the available scientific information. Identified gaps in the 
available scientific evidence can provide important insight to organizations that fund research. 
 
Finally, CERs aim to present benefits and harms for different treatments and tests in a consistent 
way so that decision makers can fairly assess the important tradeoffs involved for different 
treatment or diagnostic strategies. Expressing benefits in absolute terms (for example, a 
treatment prevents one event for every 100 treated patients) is more meaningful than presenting 

 Page 5 of 127 



    

results in relative terms (for example, a treatment reduces events by 50%). These reviews also 
highlight where evidence indicates that benefits, harms, and tradeoffs are different for distinct 
patient groups, high- vs. low-risk patients, for example.  Reviews do not attempt to set a standard 
for how results of research studies should be applied to patients or settings that were not 
represented in the studies. With or without a comparative effectiveness review, these are 
decisions that must be informed by clinical judgment. 
 
In the context of developing recommendations for practice, comparative effectiveness reviews 
are useful because they define the strengths and limits of the evidence and clarify which 
interventions are supported by strong evidence from clinical studies and which issues are less 
certain. Comparative effectiveness reviews do not contain recommendations and they do not tell 
readers what to do: judgment, reasoning, and considerations of the values of the relevant parties 
(patients, clinicians, decision makers, and society) must also play a role in decision making. 
Users of a comparative effectiveness review must also keep in mind that “not proven” does not 
mean an intervention is proven not effective; that is, if the evidence supporting a specific 
intervention is weak (i.e., strength of evidence is judged to be low or insufficient), it does not 
mean that the intervention is ineffective. The quality of the evidence on effectiveness is a key 
component, but not the only component, in making decisions about clinical policies. Additional 
factors to consider include acceptability to physicians or patients, the potential for unrecognized 
harms, the consequences of deferring decisions until better evidence becomes available, 
applicability of the evidence to practice, and consideration of equity and justice.  
 
CERs are written for an audience of clinical decision makers. The text should be simple, clear, 
and as free as possible of the jargon of systematic reviews.  Although CERs may be used in a 
variety of settings, the primary users are likely to be clinicians appointed by organizations or 
public agencies to make recommendations for the use of treatments, diagnostic tests, or other 
interventions.  Payers and insurers may use them to make clinical and group policy decisions on 
benefits and coverage, and professional groups may base their clinical practice guidelines on 
them. Experts in informed consumer decision making can use the reports to develop decision 
aids and other tools that consumers can use to choose among alternative diagnostic and 
therapeutic strategies. 
 
Review Team 
EPC Directors are responsible for ensuring that a qualified team of investigators is available to 
conduct CERs.  At a minimum, the EPC review team must have: 
 

• expertise in conducting systematic reviews, including clinical epidemiology and 
statistical expertise; 

• knowledge of specific issues that arise in conducting CERs; and  
• relevant clinical expertise and, when indicated, access to specialists who have expertise in 

the interventions under review. 
 
EPC directors are also responsible for ensuring that members of the CER teams are familiar with 
the information in this guide and that they take advantage of opportunities for training and other 
support provided by AHRQ and the Scientific Resource Center (SRC).  EPC investigators 
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participate in regularly scheduled conference calls with AHRQ and SRC personnel, and they 
should use these calls to discuss how to apply the guidance. 
 
To maintain public confidence in the scientific integrity and credibility of work produced by an 
Evidence-based Practice Center (EPC), it is essential that all aspects of the process and 
methodological approach on which the EPC evidence reports rest are clear and credible.  The 
need for maintaining the scientific integrity of EPC products extends to and includes disclosure 
of participants’ financial, business, and professional interests that are related to the subject matter 
of an EPC evidence report or other product or that could be affected by the findings of the EPC 
work.  With respect to the types of financial interests to be disclosed, AHRQ is guided by the 
Department of Health and Human Services Regulations 45 CFR Part 94.  Disclosure is required 
of EPC staff, consultants, subcontractors, and other technical experts.  EPC Directors must 
ensure that all members of the review team comply with AHRQ policy. 
 
Related financial, business and professional interests of EPC staff, consultants, and 
subcontractors do not, of themselves, disqualify one from substantive participation in 
development of an EPC evidence report or other product.  AHRQ will consider such interests 
along with other technical attributes of the EPC and potential scientific contribution of available 
experts and options.  Lead authors on the reports are barred from having any significant 
competing interests.  Disclosure of financial, business, and professional interests assists AHRQ 
in carrying out its stewardship responsibilities in use of public resources to obtain evidence-
based products in which the health care community, providers, purchasers, payers, and 
consumers will have confidence. 
 

How the Guide was Developed 
The material in this guide draws on published research and the experience of the investigators at 
the EPCs and of staff at the Scientific Resource Center and AHRQ in producing systematic 
reviews.  Some of these issues and principles were discussed in a 2005 supplement to the Annals 
of Internal Medicine produced by the EPC program.   In 2006, AHRQ commissioned the SRC to 
work with EPC scientists and AHRQ staff to develop more complete and explicit guidance for 
comparative effectiveness reviews.   We initiated this process by establishing five workgroups 
made up of EPC investigators, AHRQ staff, and SRC staff.  The five workgroups developed 
chapters on observational studies, applicability, harms and adverse effects, quantitative synthesis, 
and methods for rating a body of evidence.  The workgroups met regularly, identified key issues 
and relevant methods papers, and reviewed the published guidance from major bodies producing 
systematic reviews—most importantly the Cochrane Collaboration Handbook (Cochrane 
Collaboration 2006) and the Centre for Reviews and Dissemination manual on conducting 
systematic reviews (CRD 2001; CRD 2007).  Chapters for this guide were developed 
collaboratively by members of each workgroup.  Individual workgroup leads were responsible 
for helping to produce the final draft and representing their workgroup decisions throughout the 
editorial process.  
 
The goal for this draft of the guide was to improve the overall quality of CERs and increase 
consistency and transparency by providing guidance on a limited number of key issues.  A list of 
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the most important points can be found at the end of this chapter.  These points outline principles 
we are committed to following consistently in all CERs.   A chapter on assessing evidence on 
diagnostic tests will be developed over the coming year and additional topics are likely to be 
added.  The guide also provides discussion, key points, and preliminary guidance on a wider 
range of issues.  For many of these issues, particularly those concerning statistical methods, 
some variation in practice may persist due to differing opinions about the relative advantages of 
different approaches and a lack of sufficiently strong empiric evidence to dictate a single 
method.  As further information accumulates, we expect to define more specific requirements 
related to these issues.   Finally, we will continue to assess the ability to implement our 
recommendations—both primary recommendations and secondary concepts introduced in this 
guide—as we undertake comparative reviews on a wide assortment of topics.   We anticipate this 
guide will continue to evolve as we identify new issues and accumulate experience with new 
topic areas 
 
Key Recommendations of this Guide 
1) Authors of a review should begin by understanding the clinical and policy decisions that the 
review is intended to inform.  Public input on key questions and consultation with stakeholders 
and content experts can help define critical issues involving details of the intervention, specific 
sub-populations of interest, and key outcomes of importance. 
 
2) Decisions to include or exclude studies should be explicit and based on prespecified criteria.  
High-quality observational studies should generally be included where they can address 
important gaps in the evidence available from trials. Consulting experts and examining recent 
reviews and selected major trials provide insight into whether existing trials have sufficient 
power and are applicable to current practice.  
 
3) All important harms should be assessed, using multiple sources of information.  Observational 
studies should be included to assess long-term harms, uncommon events, and harms in more 
representative populations. 
 
4) Comprehensive literature searches should include at least two electronic databases and 
supplemental measures to find relevant studies.  Reviews should state whether they excluded 
studies based on language or publication status.   
 
5) Included and excluded studies should be reported including reasons for exclusion. 
 
6) Characteristics of included studies should be reported in summary tables, including aspects 
relevant to applicability of studies.  Quality (i.e., risk of bias) of individual studies should be 
assessed and reported using predetermined criteria.   
 
7) Quantitative synthesis should be performed to address pre-specified questions and following 
consistent approaches outlined in this guide. Clinical and methodological diversity as well as 
statistical heterogeneity should be considered before pooling studies to calculate a summary 
effect. 
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8) Heterogeneity should be explored with subgroup analysis or meta-regression techniques.  The 
relationship between effect size and control rate should be examined if there is sufficient 
variation in both parameters. Sensitivity analysis is encouraged to explore the robustness of 
quantitative estimates to specific decisions in the review.  
 
9) The strength of evidence should be assessed and reported for the major conclusions of the 
review using explicit criteria.  Any factors that may limit the applicability of evidence for major 
conclusions should be summarized.   
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2. TOPIC DEVELOPMENT 

Since the inception of the EPC program in 1997, AHRQ has emphasized the importance of input 
from technical experts and patients to elucidate the clinical logic or reasoning underlying 
questions for systematic reviews (Woolf, DiGuiseppi et al. 1996).  For the Effective Health Care 
program, topic development extends this approach by soliciting and incorporating public 
commentary to develop the scope of a review. 
 
Topic Nomination 
ARHQ invites the public to nominate topics for CERs on a public website at 
http://effectivehealthcare.ahrq.gov/getInvolved.cfm. On a quarterly basis, the SRC collates and 
categorizes nominated topics from a variety of sources, including the public Web site, letters, 
key stakeholder groups, and program partners.  This initial process involves combining duplicate 
topics and eliminating topics that previously have been evaluated.  Once a list of topic 
nominations is compiled and approved as meeting initial priority criteria by AHRQ, the 
Scientific Resource Center (SRC) prepares a summary of relevant information for each proposed 
topic to assist AHRQ in further selecting priorities for research development.   AHRQ considers 
several criteria in considering each nominated topic, include the following. 
 

• The burden, prevalence, incidence, and impact of the condition or disease. 
• The type of evidence supporting the efficacy and safety of the interventions (e.g., whether 

randomized trials have been conducted) and whether there are reasonably well-defined 
patient populations, interventions, and outcome measures. 

• Current controversy about this topic or important uncertainties for decision makers. 
• A topic’s potential impact, with higher ratings for those nominations that address issues 

that impose high direct or indirect costs on patients or society; may be under- or over-
utilized; or that may significantly improve the prevention, treatment, or cure of diseases 
and conditions.   

• The potential value of a comparative effectiveness review relative to existing sources of 
systematic information. 

 
Formulation and Refinement of Key Questions  
A fully formulated CER topic consists of a set of questions, denoted “key questions,” that 
specify the patient populations, interventions, comparators, outcome measures of interest, timing, 
and settings (PICOTS) to be addressed in the review (Counsell 1997).  The elements of the 
PICOTS constructs are outlined below. 
 

• Population: Condition(s), disease severity and stage, comorbidities, patient 
demographics. 

• Intervention: Dosage, frequency, and method of administration. 
• Comparator: Placebo, usual care, or active control. 
• Outcome:  Health outcomes: morbidity, mortality, quality of life. 
• Timing:  Duration of follow-up. 
• Setting:  Primary, specialty, in-patient; co-interventions. 
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The research questions largely dictate criteria for determining study eligibility for the systematic 
review. Therefore, clear, unambiguous, and precise questions are of paramount importance in 
selecting studies that address the same problem and are clinically and methodologically 
cohesive.   
 
The formulation stage of a CER has three objectives: (1) developing key questions, (2) 
constructing definitions of the key concepts that distinguish relevant from irrelevant studies, and 
(3) establishing inclusion and exclusion criteria for the review.  CERs should address important, 
specific questions that reflect the uncertainty that decision makers, patients, clinicians, and others 
may have about the topic. A perfunctory set of questions or an incomplete problem formulation 
that describes only the general outline of comparisons but not the specific circumstances that are 
of most interest to decision makers would reduce the usability of such a review (Woolf 1996; 
Counsell 1997; Atkins, Fink et al. 2005; Bravata, McDonald et al. 2005; Matchar, Westermann-
Clark et al. 2005). 
 
For each CER, a technical expert group (TEG)—consisting of a wide range of experts, including 
patients and stakeholders—participates in refining the questions before they are put into final 
form and assigned to an EPC.  SRC personnel interview these experts, either individually or in 
small groups.  Interviews aim to clarify and refine key questions early in the CER process by 
obtaining information about: 
 

• populations and clinical subgroups of interest, 
• patient characteristics that may affect outcomes, 
• what interventions should be compared, 
• the therapeutic aims of treatment, and  
• what outcomes (intended and unintended effects) are relevant, including timing. 

 
The key question process should identify the overarching, long-range goals of interventions.  
Focusing only on what is actually studied in the literature is insufficient.  Sometimes very 
important questions concern assumptions about long-term effects on quality of life, morbidity, 
and mortality.   
 
Beliefs about the advantages or disadvantages of various alternative treatments are an important 
target for exploration in interviews with experts. Some beliefs about the advantages and 
disadvantages of a treatment are based on direct evidence about health outcomes from long-term 
comparative trials.  More often, though, beliefs about comparative effectiveness are based on 
clinical theories that invoke understanding of the pathophysiology of a disease, assumptions 
about its course, or expectations about the health benefits associated with improvements in a 
surrogate measure of outcome.   Often, experts can bring attention to issues that underlie 
uncertainty about the comparative effectiveness of alternative tests or therapies (Box 2-1).   
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BOX 2-1.  Topic development and clinical theories 
 
  “…every review, just like every intervention, is based on a theory.  Systematic reviews gather 
evidence to assess whether the expected effect of an intervention does indeed occur.”  
(Cochrane Manual) 
 
Understanding the clinical logic underlying claims about comparative effectiveness is an 
important goal of topic development.  Interviews with technical experts aim to answer questions 
such as: 
 Why do proponents of one or another treatment believe it is better?   
 When and for whom?   
 What characteristics of the alternative treatments are likely to drive choices? 
 
The following examples illustrate how beliefs are linked to clinical theories: 
 
Belief:  Newer antisecretory drugs are likely to be better for glycemic control of diabetes than 
are sulfonylureas. 
 
Theory:  Sulfonylureas have been disappointing, and their use has not brought about a 
meaningful reduction in the risk of macrovascular complications.  They may, in fact, be 
implicated in progression of diabetes, and they make it difficult to lose weight.  Newer classes of 
drugs may result in better long-term outcomes because they have a better metabolic profile. 
 
Context:  Proponents of the new drugs do not base their claim of superiority on evidence about 
short-term glycemic control.  The belief that the new drug will have an advantage is based on 
the understanding on how diabetes progresses; how the new drug works; and evidence from 
short-term efficacy trials about effects on lipid levels, weight gain, and other metabolic markers. 
 
Belief:  A new long-acting opioid drug for relief of pain is likely to play an important role in 
chronic pain treatment. 
 
Theory:  Because of tolerance and individual differences in response, chronic pain patients may 
have more consistent and prolonged symptom relief when several long-acting opioid 
medications are used in rotation. 
 
Context:  The belief that the new drug has an advantage is based on the fact that it has a long 
half-life, rather than on how the likelihood and degree of pain relief and the frequency and 
severity of side effects compare with alternatives.  The review may want to focus on evidence 
about how this drug performs as a part of an opioid rotation regimen rather than as the sole or 
initial treatment for chronic pain. 
 
Stakeholders and other technical experts can provide important insight to direct the search for 
evidence that is most relevant to current practice.  First, they can clarify specific populations or 
interventions of greatest clinical or policy interest.  For example, if a topic is important to 
Medicare policy decisions, finding evidence relevant to older Americans becomes critical.  
Clinical and research experts can offer insights about the extent to which studies in one 
population are relevant to other populations.  For example, studies of oral cancer screening in 
India may not be applicable in a North American context because of the very high rates of oral 
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cancer in India.  Second, knowledge of current practice can identify areas in which studies differ 
in ways that may reduce their applicability.  For example, important changes in standards of care 
for acute myocardial infarction over the past 2 decades limit the relevance of studies of 
interventions for acute MI from the 1980s.  Some other features of studies that affect 
applicability to current practice are dosing of drugs, modifications or special features of devices, 
and surgical settings.   
 
Key questions—and systematic reviews—must also be patient-centered.  Interviews with 
patients, as well as studies of patients’ preferences when they are available, are essential to 
identify pertinent clinical concerns that even expert health professionals may overlook 
(Santaguida, Helfand et al. 2005). 
 
Before key questions are put into final form, AHRQ invites the public to comment on them.  
AHRQ staff use the public comments to develop the final set of questions to be assigned to an 
EPC.  Once AHRQ makes an assignment, the Agency provides a document describing the 
background and context for the CER and the key questions. The EPC analyzes these materials 
and prepares questions about its context and content.  On a “kickoff” call, the EPC investigators, 
the AHRQ Task Order Officer, and the SRC investigator who worked on topic development 
discuss these questions, providing additional information about the input from experts and 
stakeholders that led to the specific wording and organization of the questions. 
 
Analytic Frameworks 
An evidence model, variously also referred to as an analytic framework or causal pathway,  
portrays relevant clinical concepts and the clinical logic underlying beliefs about the mechanism 
by which interventions may improve health outcomes (Woolf, DiGuiseppi et al. 1996).  In 
particular, the evidence model describes the relationship between surrogate or intermediate 
outcome measures (such as cholesterol levels) and health outcomes (such as myocardial 
infarctions or strokes). 
 
Several graphical and analytical approaches can be used to build an evidence model.  In the EPC 
program, the most commonly used approach is called an “analytic framework” (Harris, Helfand 
et al. 2001; Whitlock, Orleans et al. 2002).  The main function of the framework is to define the 
populations, interventions, outcomes, and adverse effects for the literature search and synthesis.  
 
Analytic frameworks are good for illustrating the relationship between intermediate measures 
and health outcomes, to define bodies of evidence (Mulrow, Langhorne et al. 1997), and to 
depict clinical controversies and uncertainties (Figure 2-1).  They reflect insights into the 
relationship between intermediate or surrogate outcomes and health outcomes and specify the 
populations, interventions, comparisons, and outcomes of greatest interest.  
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Figure 2-1. Analytic framework for a new enteral supplement to heal bedsores. 

 

Geriatric  
Patients 
with 
bedsores 

Enteral   
supplement  
nutrition 
(type, dose, 
etc) Improved energy  

supply to,  
and 
microcirculation  
of, the wound  

4 

Quality of life*

Healing  
of 
the 
bedsore* 

Mortality* 

Diarrhea, 
Other  
adverse  
effects 
 

Improved 
nutritional 
status 

1 

2

3 

Key questions are associated with the linkages (arrows) in the analytic frameworks.  In the 
figure, Arrow 1 corresponds to a question directly linking enteral supplementation to the two 
most important outcomes: mortality and quality of life.  In the absence of evidence directly 
linking enteral supplementation with these outcomes, the case for using the nutritional 
supplement depends on a series of questions representing several bodies of evidence: 
 

• Key question 2:  Does enteral supplementation improve wound healing? 
• Key question 3:  How frequent and severe are side effects such as diarrhea? 
• Key question 4:  Is wound healing associated with improved survival and quality of life? 

 
Note that in the absence of controlled studies demonstrating that using enteral supplement 
improves healing (link #2), EPCs may need to evaluate additional bodies of evidence.  
Specifically this would include evidence linking enteral supplementation to improved nutritional 
status and other evidence linking nutritional status to wound healing.     
 
A more rigorous alternative to depicting the clinical logic underlying a service is to use a 
decision analysis or influence diagram to model key parameters of a decision and their 
relationships (Bravata, McDonald et al. 2005).  In either case, the evidence model reflects 
insights into the relationship between intermediate or surrogate outcomes and health outcomes 
and specifies the populations, interventions, comparisons, and outcomes of greatest interest. 



    

 
Modifying Key Questions 
Review teams may identify problems with key questions that warrant discussion at the outset.  
These may include excessively vague terms that would broaden the scope beyond anything 
manageable.  Such problems may also include inappropriate or nonspecific clinical terms when 
more specific diagnostic or interventional terms are needed.  These matters should be clarified at 
the earliest possible moment. 
 
Occasionally, in the process of conducting a review, investigators may realize that the questions 
need to be refined (CRD 1996).  The most common reason to consider modifying the key 
questions is that a new patient group or outcome of emerging importance was not specified in the 
original questions.  Occasionally, a new compound or device will receive approval for use in the 
United States after the work is under way. 
 
The Cochrane Handbook 
(http://www.cochrane.org/resources/handbook/Handbook4.2.6Sep2006.doc) notes that, when 
proposing a change in the key questions, investigators should answer the following questions. 
 

• What is the motivation for the refinement? 
• When was the refinement made? 
• Are the search strategies appropriate for the refined question (especially any that have 

already been undertaken)? 
• Is data collection tailored to the refined question? 

 
Because avoiding bias is critical when changing key questions, EPCs should discuss proposed 
revisions with AHRQ and the SRC as early as possible.  AHRQ will then determine whether the 
key questions should be modified and, if so, how.  Often, incorporating a new patient group, 
intervention, or outcome into the next update of a report is a reasonable alternative to modifying 
the key questions in the course of a review. 
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3.  SELECTING EVIDENCE: CONTROLLED TRIALS 
This chapter addresses the use of trials in comparative effectiveness reviews (CERs).  The term 
“controlled trials” refers to experimental studies in which there is a comparison between 
different interventions.  The investigator assigns 
the intervention and patients are allocated to groups 
either randomly (randomized controlled trials or 
RCTs) or nonrandomly (other controlled trials).  
Such studies are also called “experimental” studies 
to distinguish them from “observational” studies, in 
which investigators do not assign interventions to 
subjects.  Chapters 4 and 8 discuss the role of 
observational studies in CERs.  
 
Evidence-based medicine has been associated with 
a hierarchy of evidence that ranks RCTs higher 
than other types of evidence in all possible 
situations (Bigby 2001; Devereaux and Yusuf 
2003).  The reason is the superiority of RCTs over 
other types of studies in reducing the risk of bias 
(i.e., poor internal validity).  In recent years, 
broader use of systematic reviews in policymaking 
has brought attention to the danger of over-reliance 
on RCTs: 
 

…the simplifications involved in creating and 
applying hierarchies have also led to 
misconceptions and abuses. In particular, 
criteria designed to guide inferences about the 
main effects of treatment have been 
uncritically applied to questions about 
aetiology, diagnosis, prognosis, or adverse 
effects. (Glasziou, Vandenbroucke et al. 2004)    

Box 3-1.  Selecting Trials 
 
Published studies vary widely in their quality 
and relevance.  The value of any individual 
study as evidence depends on the specific 
question being addressed. 
 
Different types of studies have differential 
relevance and risk of bias, and their use as 
evidence depends on the question 
addressed. 
 
Randomized trials and other controlled 
clinical trials can (but often don’t) address 
effectiveness and provide evidence that is 
directly applicable in clinical settings.   
 
Head-to-head effectiveness trials—trials that 
meet the criteria for effectiveness studies—
are the best evidence to assess comparative 
effectiveness Other types of trials usually 
have characteristics that limit their 
applicability in practice and their usefulness 
in comparative effectiveness reviews.  
 
Such characteristics include small or highly 
selected samples, short duration of follow-
up, use of intermediate endpoints, and 
incomplete ascertainment of benefits and 
adverse outcomes.   

 
Various experts have made suggestions for changing or expanding the hierarchy of evidence to 
take better account of evidence about adverse effects and effectiveness in actual practice 
(Concato, Shah et al. 2000; Tucker and Roth 2006; Walach, Falkenberg et al. 2006).   
 
From the outset, AHRQ’s EPC program has taken a broad view of eligible evidence (Box 3-2) 
(Woolf 1996; Atkins, Fink et al. 2005).  In contrast to Cochrane reviews, most of which exclude 
all types of evidence except for RCTs, inclusion of a wider variety of study designs has been the 
norm rather than the exception in the EPC program (Bravata, McDonald et al. 2005; Chou and 
Helfand 2005; Norris and Atkins 2005; Pignone, Saha et al. 2005; Shekelle, Morton et al. 2005; 
Tatsioni, Zarin et al. 2005). 
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Box 3-2.  Types of Evidence: Excerpt from the EPC Manual for Conducting a Systematic 
Review (1996) (Woolf 1996) 
 
Collecting and reading the literature is one of the most time-consuming tasks in a systematic 
review.  Expanding these resources can be especially wasteful if the reviewers “cast too wide a 
net” and gather evidence of poor quality or with limited relevance to the questions raised by the 
evidence model.  On the other hand, if the literature review is too narrow, important sources of 
evidence may be omitted (Slavin 1995).  
 
Published evidence can include a heterogeneous group of data sources of variable quality and 
relevance.  Excluding an entire category of literature is not without risks.  Randomized 
controlled trials are unavailable for many aspects of medicine, due largely to the cost and time 
requirements to perform them.  Limiting a review to such trials might exclude important data 
from other types of studies (e.g., cohort studies, case-control studies, descriptive epidemiology).  
For some topics, evidence from animal models or laboratory studies is essential.  Even review 
articles, editorials, and letters-to-the-editor, which are often omitted because they lack primary 
research data, can provide important insights about published studies.  Their reference lists can 
also help verify the comprehensiveness of the review’s bibliographic database. 
 
On the other hand, casting a wide net opens the door to studies of dubious quality and can 
expand the volume of a search to hundreds or thousands of superfluous articles.  Doing so can 
be especially inefficient.  If good evidence from a few major clinical trials is available, there may 
be no purpose in spending time and money to collect hundreds of retrospective studies and 
case reports on the same subject.  Thus, before they determine the appropriate boundaries for 
admissible evidence, reviewers should conduct a preliminary literature search to obtain a sense 
of the type of evidence that is available.  They can then perform a “best-evidence” synthesis, 
limiting the review to the highest quality studies and foregoing the collection and review of other 
evidence (Slavin 1995).  
 
In the Effective Health Care program, the conceptual model for considering different types of 
evidence still emphasizes minimizing the risk of bias, but it places highly applicable evidence 
about effectiveness at the top of the hierarchy.  The model also emphasizes that simply 
distinguishing RCTs from observational studies is insufficient because different types of RCTs 
vary in their usefulness in comparative effectiveness reviews.  This chapter describes the roles of 
different types of controlled trials in conducting CERs.  Chapter 4 describes the role of 
observational studies in addressing gaps in the evidence, gaps that often reflect the limited 
applicability of some kinds of RCTs. 
 
While CER investigators usually begin with controlled trials, it’s clear that evidence obtained 
under the carefully controlled setting of RCTs may not accurately reflect the benefits and harms 
observed under the conditions of everyday practice.  Measures to promote rigor in clinical trials, 
such as careful patient selection criteria and tight control of the intervention may produce results 
that are less relevant for clinicians and decision makers.  Haynes has noted that a useful 
assessment of a clinical intervention needs to answer not only “Can it work?” but “Will it work?” 
and “Is it worth it?” (Haynes 1999).   
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Effectiveness Trials 
For CERs, trials that address the questions, “Will it work?” are the best evidence.  Such trials are 
called “effectiveness” or “practical” trials.  Effectiveness trials aim to study patients who are 
likely to be offered the intervention in everyday practice.  They also examine clinical strategies 
that are more representative or likely to be replicated in practice.  They may measure a broader 
set of benefits and harms (whether anticipated or unanticipated), including self-reported 
measures of quality of life or function and they seek to measure the degree of beneficial effect 
and harms under “real world” clinical settings. Thus, effectiveness trials are better at answering 
the second and third questions posed by Haynes: whether an intervention will work in typical 
practice and whether it is worth it in terms of the balance of important benefits and harms. 
 
Gartlehner and colleagues developed seven criteria to distinguish effectiveness studies from 
efficacy (explanatory) studies (Table 3-2) (Gartlehner, Hansen et al. 2006; Gartlehner, Hansen et 
al. 2006).  Effectiveness is context-specific.  This list is most useful to judge the applicability of 
a drug study of a common chronic condition in primary care, but would not work well to define 
“effectiveness” for studies of treatment of a self-limited, acute episode of illness (e.g, a urinary 
tract infection) or of a highly specialized procedure (e.g., the MAZE procedure to restore sinus 
rhythm in patients undergoing open heart surgery who have atrial fibrillation.) 
 
Table 3-2.  Criteria for effectiveness studies. 

Item 1 Populations in primary care 
Item 2 Less stringent eligibility 

Item 3 Health outcomes 

Item 4 Long study duration; clinically relevant treatment modalities 

Item 5 Assessment of adverse events 
Item 6 Adequate sample size to assess a minimally important difference from a  

patient perspective 
Item 7 Intention-to-treat analysis 
 
When they are available, head-to-head effectiveness trials—randomized trials that meet the 
criteria for effectiveness studies—are the best evidence to assess comparative effectiveness.  
With respect to evaluating results in actual practice, effectiveness trials have the same 
advantages as observational studies but use better means to minimize the risk of bias from 
confounding by indication and other threats to internal validity (Mosteller 1996; McAlister, 
Straus et al. 1999; Medical Research Council 2000; Godwin, Ruhland et al. 2003; Tunis, Stryer 
et al. 2003; Kotaska 2004; Glasgow, Magid et al. 2005).  
 
Efficacy Trials 
For many topics, effectiveness trials are either unavailable or do not address all the key questions 
about comparative effectiveness and safety.  In this common situation, efficacy (also called 
explanatory) trials may provide the best available evidence to answer a question.  Efficacy trials 
are an efficient, necessary type of clinical research for testing hypotheses about novel 
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interventions (“Does it work?”).  They usually incorporate design elements that provide a high 
degree of internal validity, such as randomization, concealment of allocation, blinding, and 
intention-to-treat analysis.  They also incorporate features that maximize the chance of finding a 
difference between the intervention under study and a comparator in the shortest possible time at 
the lowest possible cost.  For example, they may exclude patients who have mild disease or 
comorbidities, use medications for other conditions, take other effective treatments for the 
condition under study, or are relatively unlikely to adhere to medication regimens. They may use 
a placebo for comparison instead of a viable treatment alternative.  They usually focus on a 
selected number of short-term intermediate outcomes.  These features reduce the number of 
subjects needed to enroll and the time required to get the answer to a specific hypothesis about 
the intervention under study. 
 
Types of efficacy trials used in CERs include: 
 

• long-term head-to-head trials that do not meet all of the criteria for effectiveness studies; 
• short-term head-to-head trials that focus on short-term surrogate measures of tolerability 

and side effects, often in highly selected samples under rigorous study conditions; 
• long-term placebo-controlled trials assessing important health outcomes or harms of a 

particular drug; and  
• short-term, placebo-controlled trials that focus on surrogate outcome measures. 

 
The ordering of these categories reflects the policy of looking carefully at head-to-head trials 
first, then looking at placebo-controlled trials.  However, many variations are possible.  A 
particular CER may use any or all of these types of trials, depending on the questions to be 
answered and the completeness and relevance of evidence from effectiveness trials.  Box 3-2 
shows an example in which placebo-controlled trials played an important role in a comparative 
effectiveness review. 
 
Some efficacy trials can also be described as dose-finding, equivalence or noninferiority trials.  
Dose-finding studies seek to identify the optimal starting dose of a drug by comparing, several 
different doses to placebo.  Equivalence and noninferiority trials compare a new drug with one or 
more established drugs.  An equivalence trial assesses whether the drugs are therapeutically 
similar.  A noninferiority trial seeks to determine whether whether the new treatment has at least 
as much efficacy as the standard treatment.  CER investigators should be familiar with the 
conceptual underpinnings (Sackett 2005) and methods for reporting equivalence and 
noninferiority trials (Piaggio, Elbourne et al. 2006). 
 
Box 3-2.  Examples Using Different Categories of Trials in a CER of Statins 
 
For lipid-lowering therapies, all-cause mortality, cardiovascular mortality, cardiovascular events, 
and severe adverse events are the four most important outcome categories.  Effects on 
reaching targets for serum levels of low-density lipoprotein-c (LDL-c) and high-density 
lipoprotein-c (HDL-c) are important, too, particularly from the viewpoint of everyday clinical 
management of patients in primary care.  No trials met all of the criteria for an effectiveness 
study.  The available trials were categorized as follows: 
 

 Page 19 of 127 



    

1. A few long-term, comparative trials reported mortality and cardiovascular events, but they 
concerned selected patients and compared a high dose of one statin with a low dose of 
another.  Although of some interest, such studies are not effectiveness studies and leave 
many questions about comparative effectiveness unanswered. 

 
2. Many head-to-head trials report comparative efficacy of statins on serum levels of LDL-c, 

HDL-c, and triglycerides and on their side effects.  However, this body of head-to-head 
efficacy trials recruits highly selected subjects and may not reflect results in actual practice. 

 
3. Many placebo-controlled trials of statins assessed important outcomes and harms, and, in 

fact, proved that specific statins can reduce mortality and cardiovascular events.  Because 
they use intention-to-treat analysis, they demonstrate that these benefits accrued after 
taking into account the effects of early discontinuation and rare but serious adverse 
reactions.  Indirectly, these placebo-controlled trials facilitate comparison among the 
options, because they show which treatments are proven to improve long-term outcomes in 
specified populations.  However, these trials do not provide a clear picture of the risks of 
treatment in subgroups underrepresented in these trials, including racial minorities, the 
elderly, women, and patients with other diseases. 

 
4. Placebo-controlled RCTs that focus on LDL-c, HDL-c, and other intermediate measures 

and have minimal information about adverse effects.  These trials add little to the 
information available from short-term, head-to-head trials (category 2 above.)  Such studies 
may be useful in a CER if, for example, they address an intervention or outcome (e.g., C-
reactive protein levels) not addressed in other studies. 

 
 
Applicability of Efficacy Trials 
The main disadvantage of efficacy trials is that they rarely provide all the necessary information 
to answer how well a treatment will work in practice or how the benefits compare with adverse 
effects for a specific patient (Atkins 2007). This has been variously termed applicability, 
external validity, generalizability, and relevance, each with a slightly different connotation.  For 
the purposes of this discussion, we will use the term applicability, but we borrow the definition 
that Shadish and others have put forward for external validity: 
 

Inferences about the extent to which a causal relationship holds over variations in persons, 
settings, treatments and outcomes. (Shadish, Cook et al. 2002) 

 
Because efficacy trials are not designed to answer “Will it Work?” questions about their 
applicability arise in most CERs.  It is important that CER authors use a consistent approach to 
identifying gaps in the trial evidence due to limitations in the applicability of efficacy studies.  
As described in Chapter 3, identifying these gaps early on can guide selection of observational 
studies for inclusion in a CER.  As described in Chapter 6, it is also important to describe 
specific study features that may limit applicability in a way that will enable decision makers to 
judge the relevance of the trials to their patients and settings. 
 
The aspect of applicability that has received the most attention has been whether the study 
population is representative.  A variety of publications have noted that patients enrolled in 
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clinical trials often differ in important ways from patients seen in practice with the same 
condition (Zarin, Young et al. 2005; Steg, Lopez-Sendon et al. 2007), usually having better 
outcomes than patients in the community.  Other factors, however, are equally important in 
assessing applicability.  These include the nature of the interventions used, the appropriateness of 
the comparator chosen, the outcomes and time frame for measuring them, and the setting in 
which the research was conducted.  Rothwell has detailed how specific features of clinical trials 
may produce results that may not apply to other populations or settings (Rothwell 2005). 
 
Investigators with an interest in behavioral and community-based interventions have highlighted 
similar concerns about applicability but from a slightly different perspective.  Of primary 
concern is whether interventions in research studies are suited for wider implementation and 
address needs of policymakers and the community.  Green and Glasgow have argued that 
research publications should pay closer attention to the costs, suitability, population “reach,” 
adaptability, and sustainability of interventions, and they have proposed specific criteria for 
reporting on such issues (Green and Glasgow 2006).  
 
The availability of evidence from more inclusive trials with longer-term endpoints or better 
ascertainment of benefits and adverse outcomes may render efficacy studies irrelevant.  
However, when efficacy studies are included in a CER, it is essential to evaluate and report their 
applicability. 
 
The primary aim of assessing applicability is to determine whether the results obtained under 
research conditions are likely to reflect the results that would be expected in broader populations, 
under “real-world” conditions.  To do this, reviewers must begin with basic understanding of the 
characteristics of treated patients, which interventions are used in practice and how (for example, 
typical doses for drugs), and the results of interventions in everyday clinical settings.  This 
information can be obtained by consulting clinical experts, examining recent clinical review 
articles, and retrieving selected studies reporting treatment experience in the community.  This 
approach is more feasible than more systematic attempts to review current practice patterns. 
Without information about what happens in actual practice, speculation about the applicability of 
trial results is just speculation.   
 
Applicability is a relative rather than absolute concept; no trial can enroll the exact population or 
deliver the exact intervention appropriate to all settings and populations of interest. Whether 
these differences are important enough to render a study’s conclusions of limited use is 
ultimately a judgment that cannot be reduced to simple algorithms or scoring instruments.  
 
Domains of Applicability 
The PICOTS (Population, Intervention, Comparator, Outcome, Timing, Setting) format is 
recommended as a way to consistently frame key questions and present study results, and it 
provides a useful way of organizing information relevant to applicability (Chapter 6) 
(Richardson, Wilson et al. 1995).  Different domains should be emphasized based on the nature 
of the intervention: distinguishing among drugs, surgery and invasive procedures, diagnostic 
tests, and behavioral interventions.  The most important issue with respect to applicability is 
whether the outcomes are different across studies that recruit different populations, use different 
doses or forms of the intervention or comparator, or differ in duration.  That is, important 
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characteristics are those that affect baseline (control group) rates of events, intervention group 
rates of events, or both.   
 
Study Characteristics That Affect Applicability  
Differences between trial circumstances and everyday circumstances are the rule rather than the 
exception.  Typically, the spectrum of patients who receive an intervention in practice is broader 
than the spectrum of patients recruited and retained in clinical trials; dosing and adherence are 
often very different in practice; practitioners use a broad range of alternative treatments (and 
never use a placebo); and patients are observed for longer periods of time than in most efficacy 
trials. 
 
Characteristics of efficacy trials that may limit applicability of results in drug and device studies 
are listed below, using the PICOTS framework.  CER investigators should pay attention to these 
features of individual studies in their decisions about which efficacy trials to include or exclude.  
Sometimes applicability concerns may become an exclusion criterion – reviewers may elect to 
exclude studies only reporting intermediate endpoints or other outcomes that are not felt to be 
sufficiently applicable to clinically important outcomes.  Alternatively, reviewers may choose to 
include a broader set of efficacy trials because it allows them to examine the intervention in a 
broader population of patients 
 

• Patient population: Strategies for recruiting participants in clinical trials can result in 
homogeneous samples that differ from target population in severity of illness, 
comorbidities, and demographics (age, sex, and race).  Efficacy trials typically seek to 
maximize the effect of the intervention by selecting for patients with more severe disease 
or those at highest risk of the outcome of interest, while excluding patients with 
comorbidities, the frail elderly, and those who may have trouble with adherence or 
follow-up.  Recruitment strategies also usually minimize risk of harm.  Run-in periods 
are a further way to reduce variation in the patient population—run-in periods may be 
used to select for those responding to treatment, those who are adherent, or those who 
experience few adverse effects. 

 
• Intervention - Intensity (dose, duration, and co-interventions):  Prescribing behavior 

and cointerventions are major reasons why treatment patterns in actual practice may 
differ from trial protocols.  For example, physicians in practice may use lower than 
recommended doses, especially when prescribing for patients who they believe to be 
more vulnerable to adverse effects than those included in trials. Trials may include co-
therapies, supportive care, and more frequent follow-up than is typical in practice, all of 
which may affect applicability.  Behavioral interventions may include visit duration and 
frequencies that are impractical in most clinical practice settings. Drug trials frequently 
report short-term results even when drugs are typically used for long-term therapy.  

 
• Intervention adherence: As used in the pharmacoepidemiologic literature, adherence 

encompasses whether a patient takes a prescribed drug at all (acceptance), whether they 
take it as prescribed (execution), and how long they take it (persistence).  Because trials 
often recruit motivated patients and may use follow-up techniques (including pill counts) 
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• Intervention – training and expertise:  Therapies that involve technical or other special 

skills depend on the level of training and experience of the operator, whether it is a 
surgeon, a physician performing an invasive procedure, a clinician performing or 
interpreting a diagnostic test, or a nurse delivering a lifestyle intervention.  Expertise in 
trials usually exceeds that in the community, due to the settings involved (e.g., specialty 
centers), strategies for recruiting and training participating physicians or clinical sites, 
and training and monitoring performed as part of the trial.  This higher expertise may 
exaggerate benefits and underestimate harms of the intervention in more representative 
settings.  

 
• Comparator - choice and dosing: The most appropriate comparator for a new 

intervention is usually the best alternative care.  For example, surgery trials should 
compare surgery with best medical care and new drug therapies should be compared with 
the current best alternative.  Use of an inferior comparison treatment, such as an 
inadequate dose of the comparison drug, can exaggerate comparative benefits of the new 
therapy.  

 
• Outcomes:  Outcomes should include the most important clinical benefits and harms.  

Surrogate (or intermediate) outcomes should be viewed with caution unless the link 
between the surrogate and clinical outcomes has been previously validated in an 
intervention trial.  Similarly, composite outcomes should not be relied upon unless the 
components are of equal importance and the intervention effects on each component are 
comparable (Ferreira-Gonzalez, Permanyer-Miralda et al. 2007). 

 
• Timing of outcome measurement:  Follow-up duration should be long enough to detect 

likely adverse effects, examine the persistence of benefits, and assess the sustainability of 
the intervention.  This is true for surgery or invasive interventions, as well as for drug 
therapies where adverse effects may depend on accumulated dose or time and where 
benefits may decline as adherence falls off over time.  Although inadequate follow-up 
may underestimate benefits (where beneficial effects require a longer duration of 
treatment), it more often will exaggerate benefits by overlooking any adverse effects that 
emerge more slowly and by overestimating long-term adherence to chronic therapies. 

 
• Setting: Differences in setting—including country of study, rural vs. urban, or primary 

vs. specialty care—can influence numerous aspects of the population and intervention. 
Geographic differences can influence population characteristics, the intensity and quality 
of the intervention and cointerventions (e.g., available infrastructure or training for an 
invasive procedures), available comparators (e.g., what constitutes usual care), and the 
measurement of outcomes, among other factors.  The clinical setting, such as primary 
versus specialty care, can influence population characteristics (e.g., severity of illness) 
and the intensity of the intervention (e.g., training and experience with a surgical 
procedure).  Setting is often more important for interventions dependent on skill or 
technology and less important for drug interventions.  
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These features relevant to applicability should be abstracted and reported in evidence tables for 
all included studies.  Chapter 6 discusses how these features should be assessed in summarizing 
applicability for a body of evidence.  Chapter 11 discusses the role of applicability in weighing 
the strength of evidence.    
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4. SELECTING EVIDENCE: OBSERVATIONAL STUDIES OF 
BENEFICIAL EFFECTS. 
Box 4-1.  Key points (Selecting Evidence) 
 
Because it is unusual to find sufficient evidence from trials to answer all key questions, the 
default approach for CERs is that the EPC will consider observational studies for inclusion in 
reviews assessing benefits for drugs, procedures, or devices. 
 
The decision and rationale to include or exclude observational studies, of various types, must be 
thoughtfully presented in the methods or results section, as appropriate.   
 
Whether trial data alone will provide a sufficient body of evidence for the CER rests in part on 
whether the trials answer all aspects of the key questions—i.e., all PICOTS (population, 
intervention, comparator, outcome, and setting) characteristics mentioned in Chapters 2 and 3. 
 
Whether observational studies will provide useful information rests on several considerations:  
(1) whether they are biased or confounded, so that they will not provide meaningful data; (2) the 
estimated potential magnitude of benefits compared with the estimated potential magnitude of 
harms; and (3) the estimated potential random variation in outcomes.  These factors may differ 
by type of observational study. 
 
Recommended approach 
 
Clearly define the key review questions with respect to PICOTS.   
 
Perform a preliminary search for relevant trials and consult experts in the field as to the potential 
number of trials that address the review questions.  Focus carefully on all aspects of the review 
questions, e.g., ensure that subgroups of interest have been specifically examined in trials. 
 
Examine well-known or large trials.  If these trials address all important aspects of the review 
questions, then observational studies may not need to be included.  Since this rarely occurs, 
EPCs would need to justify any decision to exclude observational studies. 
 
If data from trials do not appear to be sufficient to answer the review questions, then assess the 
potential for bias or imprecision in observational studies and the magnitude of the effect size in 
relationship to the decision threshold and potential harms.  If the bias and uncertainty among 
observational studies likely outweigh the effect size, observational studies should not be 
included.  The rationale for excluding observational studies should be made explicit. 
 
If observational studies are likely to provide valid data on important outcomes, proceed with a 
search to identify these studies and proceed with their analysis and synthesis.   
 
Systematic reviewers disagree about the role of observational studies to answer questions about 
the benefits or intended effects of interventions.  In contrast, there is wide agreement that 
observational studies, particularly those derived from large clinical and administrative databases, 
should be used routinely to identify and quantify potential harms (Chapter 8).  
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A previous review of the Evidence-based Practice Centers’ work found wide variation in the 
inclusion of observational studies (Moja, Telaro et al. 2005; Norris and Atkins 2005).  It noted 
that no established guidelines address situations in which nonrandomized studies can or should 
be considered for inclusion in a systematic review or what study designs to consider.  It also 
noted that there was also a lack of consensus on how to assess the internal validity of such 
studies. The authors recommended that systematic reviewers assess the strength of the RCTs 
before determining final inclusion criteria, then consider the pros and cons of nonrandomized 
study designs. 
 
The Effective Health Care program endorses this recommendation.  As described above, in 
Chapter 3, evidence from RCTs is often insufficient to answer the key questions convincingly, 
most often because the evidence they provide may not be widely applicable in practice.  It is 
unusual to find sufficient evidence from trials to answer all key questions.  Therefore, the initial 
assumption or default approach for CERs is that the EPC will consider observational studies for 
inclusion in reviews assessing benefits for drugs, procedures, or devices.  
 
Decision Framework 
Including data from observational studies involves a significant increase in time and resources 
required to complete a CER.  Therefore, EPCs should use a step-wise process, whereby 
reviewers first examine trial data to see if they are sufficient before considering various types of 
observational studies.   
 
In considering whether to use observational studies in CERs for addressing beneficial effects, 
EPCs should answer two questions.   
 

1. Are there gaps in the RCT evidence regarding the key questions?  
2. Considering the potential for bias and other factors, will observational studies provide 

valid and useful information to address the review questions? 
 
1.  Are there gaps in the RCT evidence regarding the key questions?   
Identifying gaps in the RCT evidence available to answer the key questions can occur at almost 
any point in the review.  For example, gaps may have been identified by the Coordinating Center 
in the initial scoping exercise, and be included in the RFTO or key questions themselves.  
Existing reviews on related topics or clinical experts may have already identified important gaps 
in the RCT evidence.  Another common point at which gaps are identified is on the initial 
screening of RCTs, where the review team determines that all the RCTs involve short term 
outcomes, or lack a key outcome of interest.  A third common point at which gaps are identified 
occurs after detailed review of the RCTs (that covers the items listed in Table 4-1.).   
 
 
Table 4-1.  Criteria for assessing whether a body of trial data is sufficient 

Criteria Definition Considerations 
Risk of bias 
(Internal 
validity) 

Minimize bias and adjust for 
confounding, so that 
conclusions are valid. 

Serious flaws in study design or execution should 
be considered within and across studies; these 
flaws potentially invalidate the results (e.g., lead to 
a conclusion of benefit when there is none). 
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Consistency  The extent to which effect size 
and direction vary within and 
across study designs.   

This may be due to heterogeneity across PICOTS 
or the etiology may not be apparent.   

Directness Outcomes that are important 
to users of the CER (whether 
patients, clinicians, or 
policymakers). 

These are often health outcomes and not 
surrogate, intermediate, or physiologic outcomes. 

Precision Precision encompasses 
sample size, number of 
studies, and heterogeneity 
within or among studies.   

Greater levels of precision may be needed if the 
sizes of benefits and/or harms are closely 
balanced or if either is near a threshold that 
decision makers might use to make a 
recommendation.   

Magnitude of 
benefit 
compared 
with harms 

The size of the beneficial 
effect compared with the size 
of potential adverse effects 
and their relationship to the 
threshold for decision making. 

Estimates of benefits that are much greater than 
those of harms and that exceed the likely threshold 
for decision making may contribute to sufficient 
trial data. 
 

Reporting 
bias 

Trial authors appear to have 
reported all outcomes 
examined and there is no 
strong evidence for publication 
bias (at the study level) 

 

Applicability The extent to which the trial 
data are likely to be applicable 
to populations, interventions, 
and settings of interest to the 
user. 

The review questions should reflect the PICOTS 
characteristics of interest. 

 
The most compelling situation for using observational studies occurs when all trials can be 
classified as efficacy studies (Chapter 3).  Efficacy trials often recruit selected populations and 
do not adequately examine longer-term, patient-centered outcomes.  When all trials have these 
characteristics, gaps in applicability may be apparent at the outset, and observational studies may 
be useful to answer applicability questions.  For example, in a review of antipsychotic 
medications (McDonagh, Carson et al. 2006), short-term trials evaluated a relatively narrow 
spectrum of patients with schizophrenia; raising the following applicability questions. 
 

• Is the effect size observed in the RCTs similar to that observed in practice?  
• Do groups of patients excluded from the trials respond as frequently and as well as those 

included in the trials?  
• Are long-term outcomes similar to short-term outcomes? 
• For a broad spectrum of patients with schizophrenia initiating treatment with an atypical 

antipsychotic medication, which drug(s) have better persistency and sustained 
effectiveness for 6 months to 2 years? 

 
Well-done observational studies can address these questions if they include more representative 
patient populations, have relevant comparators, and report more meaningful clinical outcomes 
over longer time periods.   Sometimes concerns about applicability can be identified at the 
outset—for example, many drug trials in schizophrenia are relatively short and exclude patients 
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with co-morbidities.  In other cases, stakeholders may raise concerns about whether certain trial 
results are applicable to typical patients (Box 4.2). Lastly, examining features of available trials 
will reveal whether the interventions or patient populations are representative of current practice.  
 
Box 4-2.  Expert Input raise questions about applicability 
 
A review of percutaneous coronary intervention (PCI) vs. coronary artery bypass (CABG) for 
coronary disease identified 23 RCTs conducted from 1987 to 2002.  At the beginning of the 
review, cardiothoracic surgical experts raised concerns that the studies enrolled patients with a 
relatively narrow spectrum of disease (generally single or two-vessel disease) relative to those 
getting the procedures in current practice.  The review also included 96 articles reporting 
findings from 10 large cardiovascular registries.  The registry data confirmed that the choice 
between the two procedures in the community varied substantially with extent of coronary 
disease.  For patients similar to those enrolled in the trials, mortality results in the registries 
reinforced the findings from trials (i.e., no difference in mortality between PCI and CABG).  At 
the same time, the registries reported that the relative mortality benefits of CABG vs. PCI varied 
markedly with extent of disease, raising caution about extending trial conclusions to patients 
with greater or lesser disease than those in the trial population. 
 
Identifying gaps early in the review process may lead the team to perform their initial searches 
very broadly, to identify both RCT and observational study evidence in the same search.  Or, 
EPCs may do these searches sequentially, and search for observational studies only after 
reviewing in detail all the identified RCTs.  The important point is that there is an explicit 
assessment of whether or not there are gaps in the RCT evidence, and if so, an explicit 
consideration of the potential usefulness of observational studies to help fill these gaps.  If trial 
data are sufficient to answer the key questions, EPCs do not need to consider other study designs.   
In the example provided in Box 4-3, reviewers found conclusive trial data, and did not go on to 
assess observational studies of antioxidant supplementation.  It is expected that in most CER 
reviews, gaps will be present, and observational studies will be considered. 
 
Box 4-3.  Trial data are sufficient: antioxidant supplementation to prevent heart disease 
mortality. 
 
This clinical question has been studied in numerous large clinical trials, including among 20,536 
elevated-risk subjects participating in the Heart Protection Study.(Heart Protection Study 
Collaborative 2002)  No beneficial effects were seen in numerous cardiovascular endpoints 
including mortality.  The size of the trial, the rigor of its execution, the broad spectrum of adults 
who were enrolled, and the consistency of the findings across multiple outcomes all support the 
internal validity and applicability of the findings of the Heart Protection Study to most adults with 
an elevated risk of cardiovascular events. 
 
Box 4-4 illustrates a more common scenario that EPCs may face in assessing the sufficiency of 
trial data.  In this example, although a large number of head-to-head efficacy trials were 
available, they provided insufficient evidence to assess two important longer-term outcomes.   In 
another review (Box 4-5), few or no trials were identified, so the authors planned to consider 
including observational studies early in the review process.  This scenario is also common, 
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particularly for reviews of certain surgical procedures, diagnostic procedures, and therapeutic 
devices.    
 
Box 4-4.  Important outcomes are not captured in trials  
 
More than 50 RCTs of triptans focused on the speed and degree of migraine pain relief related 
to a few isolated episodes of headache.  These trials provided no evidence about two outcomes 
important to patients:  the reliability of migraine relief from episode to episode over a long period 
of time, and the overall effect of use of the triptan on work productivity.  The best evidence for 
these outcomes came from a time-series study based on employment records merged with 
prescription records comparing work days lost before and after a triptan became available.  
Although the study did not compare one triptan with another, the study provided assurance that 
a particular triptan improved work productivity—information that was not available for other 
triptans. 
 
Box 4-5.   Paucity of trial data and inadequacy of available evidence 
 
In a recently completed EPC report (AHRQ Report #148) on heparin to treat burn injury 
(Oremus, Hanson et al. 2006), the McMaster EPC determined very early in its process that 
observational data should be included in the report to address effectiveness key questions.  
Based on preliminary, cursory reviews of the literature and input from experts, the authors 
determined that there were few (if any) RCTs on the use of heparin for this indication.  
Therefore, they decided to include all types of studies that included a comparison group before 
running the main literature searches. The major limitation of the included studies (both trials and 
observational studies) was poor methodologic quality (e.g., inadequate randomization, no 
control of confounding), and the observational data added little to the review.  However, the 
review was comprehensive and discussed the extent and limitations of all available evidence.   
 
2. Will observational studies provide valid and useful information to address key 
questions? 
To decide whether including observational studies will add useful information, reviewers need 
to: 
 

• refocus the study questions (including PICOTS characteristics) on gaps in the trial 
evidence; 

• assess the suitability of observational studies to address these questions; 
• assess the potential biases, magnitude of benefits and harms, heterogeneity of effects, and 

random variation that may influence the results of observational studies and determine 
whether the magnitude of effect is such that it cannot be explained by these factors . 

 
Refocus the study questions (including PICOTS characteristics) on gaps in the trial 
evidence.  Specifying the PICOTS for gaps in the trial evidence guides subsequent steps in 
assessing whether observational studies will be helpful.   
 
Even when trial data are insufficient, observational studies will be suitable for filling in the gaps 
only if they provide stronger or more applicable evidence than do available trials.  For example, 
reviewers are commonly asked to evaluate observational studies that focus on intermediate 
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outcome measures such as persistency, adherence, and compliance.   If the questions are clearly 
defined, reviewers who are familiar with the sources, designs, advantages, and limitations of 
observational studies can make a reasonable determination of the suitability of these study 
designs.    
 
Assess the suitability of observational studies to address these comparative effectiveness 
questions.  Consideration of the clinical context, population, natural history of the condition will 
help to determine the suitability of observational studies.  Glasziou and colleagues considered 
various clinical examples to identify patient populations in which observational studies were 
likely to provide valid and meaningful answers to questions about efficacy (Glasziou, Chalmers 
et al. 2007).  They found that conditions that are fluctuating or intermittent are much more 
difficult to assess with observational studies, particularly those without a comparison group.  For 
example, individuals afflicted with acute low back pain often recover spontaneously; hence, a 
cohort study of treatments for acute low back pain cannot establish, with any degree of certainty, 
whether the treatments affected patient outcomes. Uncontrolled studies of interventions for 
diseases with stable or steadily progressing courses, however, may be useful. For example, 
individuals afflicted with amyotrophic lateral sclerosis (ALS) steadily decline in function, and 
spontaneous recovery is virtually unknown. An uncontrolled cohort study of a treatment for 
ALS, and a cohort study that compared treatments, may well be able to demonstrate meaningful 
effects. 
 
Knowledge of the sources and designs of studies used in pharmacoepidemiology and in device 
and procedure registries can help inform judgments about the likelihood that observational 
studies would add useful information.  Sources and types of observational studies used in 
pharmacoepidemiology are described in detail in Chapter 5. 
 
Procedure registries are among the strongest source of data for observational studies—for 
example, results of observational comparison studies based on cardiac procedure registry data 
have been validated against trial results among patients recruited at the same time. (Holloway 
and Schocken 1988)  In a CER comparing coronary stents with coronary artery bypass surgery, 
the reviewers knew that high-quality registry data would be available and used them to address 
gaps in the trial evidence. 
 
Many data sources for observational studies are suited to long-term follow-up but are limited in 
the type of outcomes that can be measured.  For example, databases that combine data from 
claims and laboratory, pharmacy, and clinical records usually can ascertain deaths accurately.  
Outcomes such as exacerbations or relapses of chronic diseases, serious adverse events, or major 
changes in function may be determined from proxy outcomes such as diagnoses, procedures, and 
health services utilization (e.g., emergency room visits, hospital admissions, discontinuation of a 
drug, initiation of a drug associated with treatment of a side effect, or a surgical procedure).  
With few exceptions, however, administrative and clinical databases lack data on quality of life, 
severity of symptoms, and function. 
 
Knowledge of the sources of pharmacoepidemiologic studies can inform decisions about whether 
observational studies are likely to answer questions about patient populations inadequately 
evaluated in trials.  For example, many observational studies of antipsychotic medications are 
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open-label extensions of clinical trials, in which participants continue to be followed for a period 
of time after the blinded intervention phase ended.  A potential advantage of this type of study is 
that longer-term harms and tolerability can be evaluated.  An important disadvantage is that 
participants followed during the extension phase are even more highly selected than participants 
originally enrolled in the trial.  Such subjects, who tolerated and responded to a particular drug 
for 6 weeks, have much lower rates of discontinuation for lack of efficacy or side effects 
thereafter than the broader population specified in the key question.  
 
Assess how potential biases, magnitude of benefit and harm, heterogeneity of effects, and 
random variation may influence the results.  To decide whether observational data will 
provide valid and useful information, the review team should carefully consider potential biases 
in observational studies, the anticipated effect size for important outcomes in relationship to 
harms, and potential random variation in the effect size.  EPCs should explicitly state their 
decisions on inclusion and exclusion of observational studies and carefully describe the rationale 
for those decisions. 
 
Table 4-2.  Determining whether observational studies can provide valid and useful 
information when trial data are insufficient. 

Criteria Definition Considerations 
Potential biases Systematic error or deviation 

of the results from the true 
effect 

Includes selection, detection, 
performance, and attrition bias 

Magnitude of benefit and 
harms 

The size of the beneficial 
effect compared with the 
size of potential adverse 
effects, and their relationship 
to the threshold for decision 
making 

If anticipated benefits from the 
intervention are much greater than 
anticipated harms, and benefits 
exceed the likely threshold for 
decision making, observational 
studies may provide useful data  

Heterogeneity  Variation in populations, 
interventions, study 
methods, and outcome 
measures 

Includes known sources of variation 
(PICOTS characteristics) as well as 
sources that can’t be proven or 
quantified 

Random Variation Random variation in effect 
size 

 

 
Reviewers should assess the potential biases in the observational studies in relation to the 
magnitude of benefits and harms, heterogeneity, and random variation in effect size (Table 4-2).  
If the anticipated effect size is expected to be much larger than potential biases, heterogeneity, or 
random variation might explain, then observational studies may provide strong evidence about 
effectiveness (Box 4-6).  Conversely, if the anticipated effect size is very small, then bias, 
heterogeneity, and random variation may render observational studies useless, particularly if the 
anticipated effect size is near the threshold likely to be used by decision makers.   
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Box 4-6.  Including observational studies when potential biases are unlikely to explain a 
large effect size 
 
In a recent review of bariatric surgery (Shekelle PG, Morton SC et al. 2004), one of the included 
studies was the Swedish Obese Subjects study (SOS) (Sjostrom, Lissner et al. 1999), a 
matched, cohort study.  Weight loss at 1 year was about 10 times greater than the weight loss 
reflected in the pooled estimates of pharmaceutical therapies.  This large difference was judged 
unlikely to be entirely due to any of the possible biases, and the authors concluded, based on 
this study, that bariatric surgery promotes greater weight loss than diet, exercise, and 
pharmacotherapy.  Additionally, although no direct comparative data were available (e.g., 
surgery compared with diet) and various types of bias may have affected results (e.g., attrition 
or cointerventions), this study provided real-world information on the potential benefits of this 
surgery. 
 
The four main biases are selection bias, detection bias, performance bias, and attrition bias. 
(Higgins 2006)  These biases may arise in trials that have methodologic flaws, and, conversely, 
they may be prevented in observational studies that take appropriate precautions against bias.  
The likelihood of serious bias, and its potential impact on the results, can be assessed only by a 
careful analysis of each study.   
 
Selection bias. Selection bias refers to systematic differences among the groups being compared 
that arise from self-selection of treatments, physician-directed selection of treatments, or 
association of treatment assignments with social characteristics such as income, education, race, 
age, access to health care, social support, or literacy.  The result of selection bias is that the 
differences among the compared groups in prognosis, likelihood of compliance, responsiveness 
to treatment, susceptibility to adverse effects, and the use of other interventions can distort or 
overwhelm the attempt to compare the effects of different interventions (Higgins 2006). 
 
When different diagnoses, severity of illness, or comorbid conditions are important reasons that 
physicians assign different treatments, selection bias is called “confounding by indication” (Box 
4-7). Confounding by indication is a common problem in pharmacoepidemiologic studies 
comparing beneficial effects of interventions because physicians often assign treatment based on 
their expectations of beneficial effects (Vandenbroucke 2004). 
 
One important source of selection bias in CERs of pharmaceutical agents is the fact that new 
users may differ from established or prior users in treatment response.  In trials, investigators 
know when patients started the study drug, and all benefits should be captured during follow-up.  
Moreover, the control group will be followed from a meaningful point in the natural history of 
patients’ disease, facilitating interpretation of comparative benefits of a drug with respect to 
duration of therapy.  Investigators who conduct observational studies can approximate that 
methodologic rigor by excluding established users of the drug and following only patients with 
new drug use (Ray 2003), although determining who is a ‘new user’ from administrative claims 
data can be challenging.   
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Systematic reviewers should look carefully for how investigators defined new use.  Most 
investigators who conduct observational studies require a 6-month period in which a patient had 
no record of using the cohort-defining drug (e.g., no prescription fills in an insurance database), 
although briefer periods may suffice, especially for prospective cohort studies and registries.  
Longer periods without evidence that the patient used the cohort-defining drug probably reduce 
the potential for selection bias because longer periods would make it unlikely that apparent new 
users are actually former users returned from an extended drug holiday.   
 
Also useful is determining whether the study authors required patients to be new users of the 
specific cohort-defining drug or new users of the entire class of drugs.  For example, 
comparative cohort studies can still suffer bias when patients who fail one drug in a class switch 
to a newer (or different) drug in the same class.  Although the patients who switched drugs 
appear to be new users for one of the comparative cohorts, they are not new to the entire class 
and the investigators may not know why they switched (e.g., insufficient biochemical response 
with first-line therapy).  The least biased observational studies will require all patients in the 
cohort to be new users of the entire class of drugs related to the key question. 
 
Box 4-7.  Confounding by Indication 
 
Carvedilol is an expensive, proprietary beta-blocker proven to reduce mortality in moderate-to-
severe heart failure.  A retrospective analysis of a clinical administrative database sought to 
compare the outcomes of heart failure patients taking carvedilol with those of patients taking 
atenolol, an inexpensive, generic beta blocker.  However, in some health systems, carvedilol is 
restricted to patients who meet symptomatic and echocardiographic or angiographic criteria for 
moderate or severe chronic heart failure, usually requiring consultation with a prescribing 
cardiologist.  For example, nearly all patients waiting for a heart transplant take carvedilol.  
Atenolol is usually prescribed by primary care physicians and its use is unrestricted.  At 
baseline, then, the patients in the carvedilol group are more likely to have severe, chronic 
symptomatic heart failure and have a worse prognosis than are those taking atenolol. 
 
Detection bias.  This refers to systematic differences among the comparison groups in outcome 
assessment (Higgins 2006).  This bias is important in cohort studies in which comparison groups 
may be assessed at different time points and by different and nonblinded assessors.  It is 
particularly important in case-control studies, where subjects are entered into studies based on 
the measured outcome, although these study designs are less commonly encountered in CERs. 
 
Potential sources of detection bias in observational studies used in CERs include: 
 

• the comparison of data across different sources (e.g., different databases), 
• the use of different measurement techniques or assessors across study groups, 
• the use of different outcomes measures (e.g., different definitions of outcomes), 
• variation in record quality across sources, 
• variation in payment incentives or disincentives across study groups or assessors, 
• differences in the timing of outcome measures (e.g., dating from discharge versus 

treatment onset), 
• use of open-ended versus closed response options, 
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• outcomes assessors were not blinded to treatment, and 
• the a priori delineation of outcomes and how they will be measured versus post hoc 

delineation. 
 
Performance bias.  Performance bias refers to systematic differences in the care other than the 
intervention under investigation provided to participants in the comparison groups (Higgins 
2006).  Because retrospective observational studies are virtually never double-blinded, treatment 
groups may differ in the expectations, information, and enthusiasm that providers and patients 
bring to treatment.  These differences can influence behaviors, such as adherence or health 
practices such as diet and exercise, which can affect the outcomes of interest.  Contamination 
(provision of the intervention to the comparison group) and cointervention (provision of 
unintended additional care to either comparison group) (Higgins 2006) occur more often in 
observational studies and are much more likely to go undetected than in trials.   
 
Potential sources of performance bias in nonblinded observational studies in CERs include: 
 

• comparison group participants are aware of the potential effects of the study drug; 
• providers (who are not blinded to treatment groups) provide care to both treatment and 

comparison groups, resulting in contamination; 
• other treatments are given in conjunction with the drug or device (cointerventions); 
• different health care providers among study groups (e.g., specialists vs. generalists); and  
• exposure was measured or determined in a different way in the groups being compared. 

 
Attrition bias.  Finally, attrition bias refers to systematic differences among the comparison 
groups in the loss of participants from the study and how they were accounted for in the results 
(Higgins 2006).  The issues here are similar to those in trials.   
 
Potential sources of attrition bias in the use of observational studies in CERs include: 
 

• subjects who know they are taking a drug that they view as less beneficial may be more 
likely to drop out; 

• providers who know treatment assignment could influence dropout rates; and  
• providers may selectively exclude subjects from the study after allocation, based on 

treatment group. 
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5. FINDING EVIDENCE 
This chapter suggests various resources for locating studies and evidence for CERs. The focus is 
on methods for finding clinical trials, with some information provided on observational studies.   
Experience suggests that searching multiple 
sources is necessary to avoid bias in 
identifying relevant studies (Crumley and 
Wiebe 2005).  These resources may include: 
 

• previously published systematic 
reviews, 

• bibliographic databases, 
• other Web sites and databases, 
• Scientific Information Packets, and 
• miscellaneous resources. 

 
Previously Published 
Systematic Reviews 
Conducting a comprehensive, de novo 
literature search may be unnecessary if 
other organizations have recently published 
a review of the topic.  This review can be 
accepted with some degree of confidence if 
its methodology is documented and meets 
appropriate criteria for judging the quality 
of the review and if it has used a similar (or 
at least relevant) evidence model.  
 
Several strategies for identifying systematic 
reviews in MEDLINE® are available (see 
http://www.nlm.nih.gov/bsd/pubmed_subsets/sysreviews_sources.html).  In addition to 
MEDLINE®, several databases of systematic reviews are available from the Cochrane Library 
(http://www.thecochranelibrary.com), including the Cochrane Database of Systematic Reviews 
(CDSR), the Database of Abstracts of Reviews of Effects (DARE), The Health Technology 
Assessment (HTA) Database, and the National Institute for Health and Clinical Excellence 
(NICE).  Subject-relevant Cochrane Groups may be contacted for additional trials they may have 
accrued since their last update, and completed and in-progress AHRQ reports may also be 
helpful.  Several reports in the literature provide guidance for optimal methods of searching for 
systematic reviews (Shojania and Bero 2001; Montori, Wilczynski et al. 2005). 

Box 5-1 Key Points (Finding Evidence) 
 
Searches for primary studies should be 
extensive, otherwise reviews risk producing 
biased and/or imprecise estimates of 
effects. 
 
To develop a thorough search strategy, 
reviewers and librarians should work 
together to identify search terms and 
resources to be searched. 
 
Thorough searching can be achieved only 
by using a variety of search methods (both 
computerized and manual) and searching 
multiple, possibly overlapping, sources of 
studies. 
 
Although the majority of searching will be 
undertaken at the beginning of the review, a 
series of updating searches may need to be 
scheduled to take place near the end of the 
project. 
 
The search should be well documented and 
search results should be saved and 
retained for future potential reanalysis. 

 
Search filters 
Another strategy in locating systematic reviews is the use of search filters, or “hedges,” which 
are pre-tested, widely available search strategies for use with bibliographic databases. Besides 
systematic reviews, there are filters available for randomized controlled trials, observational 
studies, diagnostic studies, economic studies, etc. These filters are designed for specific 
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databases, such as MEDLINE, EMBASE, CINAHL, etc. They have been rigorously tested for 
specificity and sensitivity and can save time in the development of search strategies for CERs. 
The PubMed Clinical Queries database is a good example of a filter for systematic reviews. 
Other filters are available from the Cochrane Collaboration at 
http://www.cochrane.dk/cochrane/handbook/appendices/appendix_5c_example_of_a_search_str
ategy_for_electronic_databases.htm.  The NHS Centre for Reviews and Dissemination also lists 
several filters at http://www.york.ac.uk/inst/crd/revs.htm.  In addition there are several 
researchers who have published work on search strategies (Haynes 2005; Wong 2006).  The 
Scottish Intercollegiate Guidelines Network (SIGN) at 
http://www.sign.ac.uk/methodology/filters.html has developed a filter for observational studies.  
 
Bibliographic Databases 
Major Databases 
Historically, literature searches for randomized controlled trials (RCTs) have relied heavily on 
the following databases: 
 

• MEDLINE®, EMBASE, and Cochrane CENTRAL (although Cochrane CENTRAL is 
the best single source for published RCTs, searching all three of these databases improves 
the yield of eligible trials for systematic reviews) (Royle and Milne 2003); 

• other databases pertinent to specific subjects, for example, AIDSLINE, PsycInfo, and 
Cinahl; and 

• citation tracking databases such as Web of Science or Scopus. 
 
EPCs have considerable expertise and are familiar with recent advances (Glanville, Lefebvre et 
al. 2006; Sampson, Zhang et al. 2006; Wilczynski and Haynes 2006; Zhang, Ajiferuke et al. 
2006) in identifying relevant studies from the above databases focusing on benefits. However, 
identifying relevant studies of harms in bibliographic databases can be challenging.  Broad 
search strategies that are not restricted by terms for adverse 
events can be very inefficient, but they may be the best 
approach when the overall size of the literature for an 
intervention is relatively small. More restrictive search 
strategies based on general terms for adverse events can miss 
relevant citations, because about one-quarter of relevant 
studies do not include adverse events indexing terms or text 
words in the title or abstract (Derry, Kong Loke et al. 2001).  
Searches that include terms for specific adverse events can be 
useful if the adverse events are known beforehand, but this 
tactic can also be problematic because the same adverse event 
is often described using a wide range of terms (e.g., fatigue, 
somnolence, weakness, lethargy, or central nervous system 
effects). 

Box 5-2.  Harms subheadings 
 
For MEDLINE: 

/adverse effects 
/poisoning 
/toxicity 
/chemically induced 
/contraindications 
/complications 

 
For EMBASE: 

/side effect 
/adverse drug reaction 
/drug toxicity 
/complication 

 
Development of efficient methods for identifying studies of harms is an ongoing area of research 
(Golder, McIntosh et al. 2006).  Strategies based on a combination of approaches—including 
using terms for specific adverse events, “floating” subheadings for adverse events (searched 
without being attached to an indexing term), and text words for adverse events—appear to be 
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highly sensitive (> 97 percent), but are inefficient (< 3 percent specificity) (Golder, McIntosh et 
al. 2006).  The Cochrane Handbook suggests some subheadings (see Box 5.2) that may be useful 
for identifying studies reporting adverse events. (Loke, Price et al. 2007)  Specific 
recommendations for sensitive but more efficient search strategies are not currently available. 
 
Online repositories of full-text articles. 
While MEDLINE is continuously updated, lag time between publication and indexing is a major 
limitation, and indexing time varies among journals. Some versions of MEDLINE (e.g., Ovid) 
also experience a lag between the time a citation is indexed and the time it is added to the 
database.  In Ovid, these references can be accessed in the database “Ovid MEDLINE(R) Daily 
Update.”  The National Library of Medicine (NLM) temporarily halts indexing of all journals in 
November and December. During that time, searching in-process citations in MEDLINE is 
essential using text words that appear in the title and abstract. 
 
The value of searching other bibliographic repositories of articles such as Google Scholar 
(http://scholar.google.com/), Highwire Press (http://highwire.stanford.edu/lists/freeart.dtl) and 
Journals@OVID has not been assessed formally.  The potential advantages of these databases 
over in-process MEDLINE citations is the ability to search the full-text of the article and to link 
to other articles of interest, particularly references.  
 
Open Access Journals. 
Open access sites such as the Public Library of Science (PloS at http://www.plos.org/) and 
Biomed Central (http://www.biomedcentral.com/) are indexed in MEDLINE and elsewhere, but 
may provide full-text not available elsewhere. In addition, PLoS has just launched its “PLoS Hub 
for Clinical Trials,” which will gather clinical trials published in all PLoS publications.  Other 
open-access sites (though not strictly healthcare subject matter) such as the University of 
Michigan-based OISter (http://www.oaister.org/), offer “freely available, previously difficult-to-
access, academically-oriented digital materials.”  The Directory of Open-access Journals (DOAJ) 
(http://www.doaj.org/) currently has over 800 open-access journals listed.  
 
Other Web Sites and Databases 
CER review teams need to consider sources that may not be used routinely in other types of 
systematic reviews.  These may include proprietary trial registries (Song, Fry-Smith et al. 2004; 
Crumley and Wiebe 2005); regulatory sites, such as the FDA; and pharmacoepidemiologic 
information.  
 
Several sources have been identified that provide information on unpublished trials or 
unpublished data from published trials.  These are:  
 

• clinical trial results databases;   
• government regulatory sites, such as the FDA; 
• pharmacoepidemiologic databases; and 
• other sites. 

 

 Page 37 of 127 

http://scholar.google.com/
http://highwire.stanford.edu/lists/freeart.dtl
http://www.plos.org/
http://www.biomedcentral.com/
http://www.oaister.org/
http://www.doaj.org/


    

Clinical trial results databases 
Online trial registries may include results of completed but unpublished clinical trials, although 
the focus has been on early registration of proposed or in-progress trials. An early evaluation of 
broad search strategies found trial registries to be useful in identifying studies eligible for 
inclusion in systematic reviews (Savoie, Helmer et al. 2003).  In 2004, Song and colleagues 
provided a detailed description of six online clinical trial registries and assessed their usefulness 
in identifying unpublished results (Song, Fry-Smith et al. 2004).  Since 2004, the number of 
registration and results databases has increased.  These resources can be helpful in identifying 
otherwise unreachable trials and in providing additional details of trials that have been published 
(Crumley and Wiebe 2005). 
 
ClinicalTrials.gov (http://clinicaltrials.gov), the U.S. Government’s data bank of clinical trials, 
contains records for more than 9,800 completed trials and 9,350 studies that are no longer 
recruiting.  At present, ClinicalTrials.gov does not publish study results, but some completed 
trials do list citations of trial results. Published results from registered trials may be identified by 
searching the phrase “ClinicalTrials.gov number” in the abstract field. It is also possible to 
search ‘ClinicalTrials.gov’ in the secondary source ID field in PubMed and combine it with topic 
statements.  
 
The Food and Drug Administration Amendments Act of 2007, enacted in September, 2007, 
mandates expansion of ClinicalTrials.gov to include results of completed trials of  approved 
drugs and devices.  This expansion will probably not be complete until 2008 or 2009.   
   
Current Controlled Trials (http://www.controlled-trials.com/) was established to promote the 
exchange of information worldwide, and allows searching across multiple clinical trial registers, 
including the National Health Services (NHS) in England, ClinicalTrials.gov, and direct access 
to BioMedCentral. In addition, PubMed can now be configured to automatically link published 
reports of clinical trials to the study protocol in the Current Controlled Trials database using the 
“LinkOut” utility (http://www.controlled-trials.com/news/linkout.asp).  
 
At Clinicalstudyresults.org (http://www.clinicalstudyresults.org) individual drug manufacturers 
contribute trial information on selected drugs; this Web site is sponsored by the pharmaceutical 
industry.  Records indicate whether the study has been indexed in MEDLINE® and provides 
citations.  Some unpublished study results are provided full-text.  Many individual drug 
companies have posted trial registries on their Web sites, however they are not standardized and 
the quality can vary.   
 
Government regulatory sites 
Center for Drug Evaluation and Research (CDER), run by the FDA, is an important site for 
CER research (http://www.fda.gov/cder/). Several different sections of the site provide potential 
access to published and unpublished trials.  
 
As required under the Freedom of Information Act, the FDA provides detailed information about 
the trials submitted in support of a new drug approval application on Drugs@FDA 
(http://www.accessdata.fda.gov/scripts/cder/drugsatfda/). The site may be searched by drug name 
or active ingredient.  If available, approval documents include internal clinical and statistical 
reviews submitted by a manufacturer in support of its product, including results of completed but 
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unpublished trials.  These documents help identify publication bias even when complete 
methodological details of unpublished trials are not available (Bennett and Jull 2003).  
Unfortunately, this information is not accessible prior to drug approval and is often unavailable 
even at the time the drug is approved. And, when the reviews are provided, some may be heavily 
redacted for proprietary reasons. When they are available, however, the documents enable 
reviewers to compare results of published and unpublished trials, and to compare the material 
published in journals with the material submitted to the FDA. The labeling information on the 
Web site might also provide information about the number of unpublished trials. 
 
Dockets for FDA advisory panel meetings at http://www.fda.gov/ohrms/dockets/default.htm can 
also provide relevant data. There are usually PowerPoint presentations and backgrounders on the 
clinical trials. Transcripts may include discussion of unpublished trial data that was presented 
during the hearings. 
 
The CDER site also lists any post-marketing study commitments 
(http://www.fda.gov/cder/pmc/default.htm) that are conducted after the FDA has approved a 
product for marketing (e.g., studies requiring the sponsor to demonstrate clinical benefit of a 
product following accelerated approval).  Unfortunately, the studies are not available on the site, 
but the commitments are listed and noted if they are in process or completed.  
 
For FDA information about devices, pre-marketing approval documents 
(http://www.fda.gov/cdrh/pmapage.html#search) including an “Approval Letter and Summary of 
Safety and Effectiveness” are available from 1995-present, and include a summary of clinical 
trials.  
 
European Medicines Agency (EMEA) is another potential source for unpublished trials is the 
European Medicines Agency (http://www.emea.europa.eu/htms/human/epar/a.htm). The 
Scientific Discussion section for approved drugs provides summaries of clinical trials performed 
worldwide. 
 
Pharmacoepidemiologic Databases 
A working knowledge of the sources and designs of studies used in pharmacoepidemiology is 
essential to make judgments about the likelihood that observational studies add useful 
information to a CER.  Pharmacoepidemiologic studies examine the use and effects of drugs in 
large numbers of people (Strom 2005).  Data sources for such studies include: large 
administrative datasets; registries based on a particular diagnosis or on exposure to a specific 
procedure or drug; prospectively designed safety monitoring systems; and clinical trials. 
Examples of the uses for pharmacoepidemiologic studies include: exploratory analysis of large 
administrative databases to identify unsuspected adverse effects, rates of discontinuation or 
treatment failure, and longer-term observational follow-up of patients who had been enrolled in 
an RCT (Strom 2005). 
 
Pharmacoepidemiologic studies use a variety of observational study designs: cohort studies, 
case-control studies, nested case-control studies, case-crossover studies, and case-time-control 
studies (Etminan 2004; Etminan and Samii 2004).  Advantages of pharmacoepidemiologic 
research are that analyses of large, representative populations can be available at relatively low 
cost and with little delay.  Databases used in pharmacoepidemiologic research, however, often 
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lack information on important clinical factors and may be more prone to confounders and 
misclassification of exposures (Schneeweiss and Avorn 2005).  By contrast, traditional 
observational studies such as the Framingham Study or the Nurses’ Health Study, obtain 
information directly from patients.  Such data have the capacity to be much more detailed than 
information from administrative databases, although cohort studies may be more subject to recall 
or other biases. 
 
Practice networks, particularly in primary care, are an important source for 
pharmacoepidemiologic studies (Santaguida, Helfand et al. 2005).  Data collected by practice-
based research networks in community settings provide information about benefits and harms of 
health care interventions that is more applicable to everyday clinical practice than “traditional” 
research based in academic centers (Lindbloom, Ewigman et al. 2004).  Practice-based research 
data sets are often richer in clinical detail than are large administrative databases, making it 
possible to identify and measure exposures, outcomes, and likely confounders with more 
confidence (Jollis, Ancukiewicz et al. 1993). 
 
One large, well-known example of a practice network is the U.K.-based General Practice 
Research Database (GPRD) (Wood and Martine 2004).  A recently published study of suicide 
risk associated with selective serotonin reuptake inhibitors based on GPRD data reported no 
clear association with increased risk in adults (Martinez, Rietbrock et al. 2005).  Although this 
finding is similar to those of meta-analyses of RCTs (Fergusson, Doucette et al. 2005; Gunnell, 
Saperia et al. 2005), additional implications from the GPRD analysis are that the risks of suicide 
are not significantly higher in clinical practice, where patients may not be as closely monitored 
or be as highly selected as in clinical trials. 
 
How to identify pharmacoepidemiologic studies efficiently while avoiding bias is a subject of 
intense research (Lemeshow, Blum et al. 2005; Fraser, Murray et al. 2006; Furlan, Irvin et al. 
2006; Kuper, Nicholson et al. 2006).  Searching for specific drug names and classes, along with 
the names of specific adverse effects, can be effective but it can also be inefficient.  Using such a 
strategy to search for large observational studies of 66 adverse effects, Papanikolaou and 
colleagues had to examine 18,198 abstracts to find 15 eligible studies (Papanikolaou, Christidi et 
al. 2006).  Even though a large number of abstracts were identified, there is no way to evaluate 
the sensitivity or specificity of such a search. 
 
Another approach is to search citation abstracts, full-text online repositories, or selected Web 
sites using terms for the large databases and practice networks most commonly used for 
pharmacoepidemiologic research. Examples of search terms include “The Health Improvement 
Network” (THIN), “GPRD” (for the UK General Practice Research Database), TennCare for 
“Tennessee Medicaid,” “Integrated Primary Care Information Project,” and “Pharmaco-
morbiditeitskoppeling” (Lewis, Schinnar et al. 2006) (Stricker and Psaty 2004). 
 
In addition to the sources listed above, Chou and Helfand (Chou and Helfand 2005) recommend 
including pharmacokinetic and pharmacodynamic data and case reports, while Bennett et al. 
recommend postmarketing surveillance databases (Bennett, Nebeker et al. 2005). 
 

 Page 40 of 127 



    

Other sites 
The National Guidelines Clearinghouse (http://www.ngc.gov) may link to documents used in the 
development of the guideline.  Conference databases, such as OCLC's ProccedingsFirst and 
PapersFirst, CSA's Conference Papers Index, or BIOSIS Previews may mention clinical trials, as 
well as conference abstracts cited in bibliographic databases. Various databases for theses and 
dissertations may also be useful. A search engine based in France—Exalead 
(http://www.exalead.com/search) pulls together a wide variety of resources for each search.  
 
Scientific Information Packets 
AHRQ is interested in identifying as many studies as possible that are relevant to the questions 
for each of its CERs. When a list of drugs or devices to be included in a CER is put into final 
form, AHRQ invites pharmaceutical companies and device manufacturers to submit Scientific 
Information Packets (SIPs), or scientific information about their product. Manufacturers are 
specifically invited to submit a list of all known, completed RCTs of their product. Guidelines 
for submission of such material from stakeholders are available on the Effective Health Care 
Web site (http://effectivehealthcare.ahrq.gov/submitData.cfm?submittype=submit).   
 
Packets vary with each company, but usually include information on studies submitted to the 
FDA for approval (with updates), summaries of observational studies, and full text of selected 
studies. They often include a bibliography of potentially relevant articles. 
 
SIPs submitted to the Effective Health Care program (through the EHC Web site or any other 
means) are considered to be public.  The program does not solicit confidential information from 
manufacturers because the public must be able to scrutinize all evidence that is included in a 
CER. 
 
Miscellaneous Resources 
EPC review teams routinely supplement bibliographic database searches by reviewing reference 
lists and soliciting experts for additional citations.  Identifying topic-specific databases and 
specific citations is a major role of the technical expert groups convened for each topic (see 
Chapter 2).   
 
Patent information, press releases from pharmaceutical companies, and other product 
information can also be helpful, since they often publicize the progress or completion of their 
clinical trials. This information is searchable on proprietary aggregators such as Lexis, PRN 
Newswire, and Scopus, and on on pharmaceutical company web sites.  EPCs have made use of 
grey literature, particularly in reviews of therapeutic devices and surgical interventions (Hartling, 
McAlister et al. 2005).  EPCs are not required to search these sources routinely, but may find 
them helpful in specific instances. 
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6. ASSESSING THE QUALITY AND APPLICABILITY OF 
INCLUDED STUDIES 
The purpose of assessing the quality of individual studies is to inform a judgment about the 

validity of a study’s results.  Assessing the 
quality of studies is a critical element of making 
judgments about the overall strength of a body 
of evidence about a given key question (Chapter 
11).   
 
Quality can be defined as “the extent to which 
all aspects of a study’s design and conduct can 
be shown to protect against systematic bias, 
nonsystematic bias, and inferential error” (Lohr 
2004).  Thus, assessing the quality of a study 
can be thought of as assessing the risk that the 
results reflect bias in study design or execution 
rather than the true effect of the interventions 
under study.   
 
We use the term applicability to describe a 
separate set of concerns that have been 
variously referred to as external validity, 
relevance, or generalizability (Shadish, Cook et 
al. 2002).  Although some systems include 
issues of applicability (i.e., “external validity”) 
as a component of quality, we recommend 
keeping these considerations separate when 
assessing individual studies.  In part, this is 
because the importance of applicability depends 
on the context in which the evidence is being 
used.  A study may have very limited 

applicability for answering a broad policy question but be very applicable for answering a 
specific clinical question relating to patients similar to those enrolled in the study.  

Box 6-1.  Key points (Assessing Quality 
and Applicability) 
 
Quality rating is part of assessing the risk 
that a study is biased. 
 
Applicability and quality should both be 
evaluated. 
 
To assess quality, use predefined criteria 
and apply them thoughtfully. 
 
Use 3 levels (good, fair, and poor) to rate 
the overall quality of individual studies. 
 
Trials meeting criteria for effectiveness 
trials should be identified and highlighted. 
 
Features that may limit applicability of 
individual efficacy studies should be noted 
in evidence tables.  Formal rating of 
applicability of individual studies is not 
required. 
 
For key outcomes or comparisons in 
CERs, important features limiting 
applicability of a body of studies should be 
summarized in a table. 

 
This chapter describes general procedures for assessing quality and applicability.  Considerations 
for assessing the quality of studies of harms and quality issues related to quantitative synthesis of 
results are described in more detail in Chapters 8 and 9, respectively. 
 
Stages in Rating Quality of Studies 
Rating the quality of individual studies takes place in a series of stages: 
 
Stage 1. Classify the study design by answering the following questions: 
 

1. Is the study a synthesis of several individual studies?  If not:  
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2. Is the study comparative? 
3. Did investigators assign the exposure? 

a. If so, was the intervention allocated randomly?  Was randomization done at the 
individual level? 

b. If not, was more than one group of subjects studied?  Were exposure and outcome 
assigned at the same time?  Were groups assigned by exposure or by outcome? 

 
Based on the answers to these questions, most studies can be classified as: 
 

• review, systematic review, or meta-analysis; 
• trials—RCT or other controlled clinical trial; 
• observational, comparative studies—cohort study, case-control study, cross-sectional 

study; 
• before-after or interrupted time series; or 
• noncomparative study. 

 
Stage 2. Apply predefined criteria for quality and critical appraisal.  Rating systems can be 
categorized as scales, checklists, or checklists with a summary judgment (Sanderson, 2007).  
Some systems, such as that of the US Preventive Services Task Force, are designed to be used 
with more than one type of study (Downs & Black, 1998; Harris, Helfand et al, 2001).  Systems 
for rating the quality of observational studies may use different criteria for cohort studies, case-
control studies, and other specific study designs.  They may also distinguish between studies of 
prognosis or risk factors and studies of causal relationships. 
 
A wide variety of tools to assess methodologic quality are in use (Bhandari, Devereaux et al. 
2002; Moja, Telaro et al. 2005; Mallen, Peat et al. 2006).  The wide variation indicates the lack 
of empirical evidence demonstrating the superiority of any one system.  Despite this variation, 
however, there is more agreement than disagreement on the most important, or “core” criteria for 
each type of study (West, King et al. 2002; Lohr 2004).  For example, in a recent inventory, 92 
percent of tools to assess the quality of observational studies assessed methods for selecting 
study participants, 86 percent assessed methods for measuring study variable and design-specific 
sources of bias, and 78 percent assessed the appropriate use of statistics and methods to control 
for confounding (Sanderson, Tatt et al. 2007). 
 
The most efficient strategy for CERs is to use a generic system, applying criteria to trials as well 
as to observational studies as applicable.  Several core elements apply to trials as well as 
observational studies: 
 

• similarity of groups at baseline in terms of baseline characteristics and prognostic factors, 
• extent to which valid primary outcomes were described, 
• blinding of subjects and providers, 
• blinded assessment of the outcome, 
• intention-to-treat analysis, 
• differential loss to follow-up between the compared groups or overall high loss to follow-

up, and 
• conflict of interest. 
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For trials, two additional elements are important: 
 

• methods used for randomization and 
• allocation concealment. 

 
For observational studies, yet another set of elements should be considered: 
 

• sample size; 
• methods for selecting participants (inception cohort, methods to avoid selection bias); 
• methods for measuring exposure variables; 
• methods to deal with any design-specific issues such as recall bias, interviewer bias, etc.; 

and  
• analytical methods to control confounding. 

 
Stage 3.  Arrive at a summary judgment of the study’s quality.  CERs should use three categories 
to indicate the summary judgment of the quality of individual studies (Box 6-2).  In the methods 
section, CERs should refer to Box 6-2 to clarify the definitions of good, fair, and poor. The “fair” 
category is broad, and the majority of studies will likely receive this rating.  For that reason, 

reviewers may wish to point out important 
distinctions among individual studies in 
this category.  At present, however, no 
empirical justification exists for creating 
additional categories.   

Box 6-2.  Three Summary Ratings of Quality 
of Individual Studies 
 
Good (low risk of bias).  These studies have 
the least bias and results are considered valid. 
A study that adheres mostly to the commonly 
held concepts of high quality including the 
following: a formal randomized controlled study; 
clear description of the population, setting, 
interventions, and comparison groups; 
appropriate measurement of outcomes; 
appropriate statistical and analytic methods and 
reporting; no reporting errors; low dropout rate; 
and clear reporting of dropouts. 
 
Fair.  These studies are susceptible to some 
bias, but it is not sufficient to invalidate the 
results. They do not meet all the criteria 
required for a rating of good quality because 
they have some deficiencies, but no flaw is 
likely to cause major bias. The study may be 
missing information, making it difficult to assess 
limitations and potential problems. 
 
Poor (high risk of bias).  These studies have 
significant flaws that imply biases of various 
types that may invalidate the results. They have 
serious errors in design, analysis, or reporting; 
large amounts of missing information; or 
discrepancies in reporting.   

 
The summary quality rating may differ for 
different outcomes within the same study.  
For example, some trials use a blinded 
assessment of final status for some 
outcomes, but not for others.    
 
Critical appraisal—applying the principles 
of clinical epidemiology—is a key 
component of assessing the validity of a 
study.  Many systematic reviews make the 
mistake of failing to report adequately or 
use quality assessments in the analysis and 
interpretation of results (Moja, Telaro et 
al. 2005; Norris and Atkins 2005).  
Especially when the rating is “poor” or 
“fair,” reporting a rating without 
explanation can confuse or even 
antagonize readers, and CER authors 
should avoid this by providing a brief 
rationale for, at least, any poor rating. 
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Rating a study as “poor” simply because it did not nominally meet every criterion for quality is 
not acceptable.  Instead, identifying a flaw in the design or execution of a study should prompt 
an assessment of the potential consequences of that flaw.  During the data extraction process, 
investigators should record comments relating to potential sources of bias and other study 
limitations.  Such comments should be included in the evidence tables or in the text of the report. 
 
Studies rated poor may be included or excluded from the main synthesis (qualitative or 
quantitative) but authors should examine and report whether results are altered by excluding or 
including poor studies.  One reason to include poor studies is if they provide some specific 
valuable information not available from higher quality studies. Examples include key questions 
about subgroups for which no good or fair studies are available or studies that give the only 
information about a clinically important comparison.  Authors should make clear, however, the 
reason for including a given poor study if they have excluded others. 
 
Rating Applicability 
Because applicability depends on the specific review question being addressed and the users’ 
needs, it is difficult to devise a uniform scale for rating applicability of individual studies.  
Several investigators have outlined series of questions or checklists for assessing applicability.  
Rothwell delineated 39 factors that may lead to ungeneralizable RCT results (Rothwell, Slattery 
et al. 1996).  Bornhoft and others  described a checklist for considering internal validity, external 
validity and “model validity” (Bornhoft, Maxion-Bergemann et al. 2006).  Glasgow and Green 
have developed a checklist for potential reviewers and journal editors to assess the reporting of 
characteristics critical to external validity (Glasgow, Green et al. 2006).  We found no empiric 
data validating any scorings system for assessing applicability across a range of studies.  We do 
not, therefore, recommend the use of a scale to rate applicability of either an individual study or 
a body of evidence. 
 
The factors affecting applicability will differ for different types of interventions (for example, 
drugs vs. devices) and for different outcomes (for example, benefits vs. harms). The most 
common factors affecting applicability of drug studies are overly restricted study populations 
(including restrictions to promote adherence), inappropriate comparison therapies, or insufficient 
duration of follow-up. Common factors affecting applicability of studies of surgery and invasive 
devices include restriction to clinical settings with high levels of expertise and exclusion of a 
high proportion of prospective patients due to age, comorbidities, or other factors.  
 
We recommend assessing potential threats to applicability following the PICOTS format used to 
summarize study characteristics.  Table 6-1 below summarizes specific issues that may limit 
applicability for trials.  Although many of these issues relate to enrolment criteria and are more 
relevant to trials, they also apply to non-randomized studies where the study populations or 
interventions may not always reflect typical practice.  These features should routinely be 
abstracted into evidence tables and highlighted when they appear likely to affect applicability.      
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Table 6-1  Features of Individual Studies that Affect Applicability 

 Features that should always be 
abstracted 

Conditions That May 
Limit Applicability  

Population  
 

Eligibility criteria and proportion of 
screened patients enrolled 

Narrow eligibility criteria 
and high exclusion rate  
 

 Demographic characteristics (range and 
mean): Age, gender, race and ethnicity 

Large differences 
between demographics of 
study population and that 
of patients in the 
community 
 

 Severity or stage of illness Narrow or 
unrepresentative severity 
or stage of illness 

 Run in period (for drugs); if reported, 
include attrition before randomization and 
reasons (non-adherence, side-effects, 
non- response) (Charlson and Horwitz 
1984; Davis, Applegate et al. 1995) 
 

Run in period with high-
exclusion rate for non-
adherence or side effects 

 Event rates in treatment and control 
groups 

Event rates much higher 
or lower than observed in 
population-based studies 

 Prevalence of disease (for diagnostic 
studies) 

Disease prevalence is 
study population higher 
than expected for target 
population for diagnostic 
test 

Intervention  
 

Dose, duration, and cointerventions  Doses or schedules not 
reflected in current 
practice 
Intensity of behavioral 
interventions that is not 
likely to be feasible for 
routine use 
Co-interventions that are 
likely to modify 
effectiveness of therapy 

 Adherence (e.g., monitoring, frequent 
contact) 

Monitoring practices or 
visit frequency not used in 
typical practice  
 

 Training and expertise -- selection 
process, training and skill of intervention 
team (for surgery/ technical interventions/ 
diagnostics). 

Highly selected 
intervention team or level 
of training/proficiency not 
widely available 

Comparator Dose and schedule of comparator, if 
applicable 

Inadequate dose of 
comparison therapy  
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Whether comparator is the best available 
alternative to the treatment under study 

Use of sub-standard 
alternative therapy 

Outcomes Clinical benefits on relative and absolute 
scale 
 

Surrogate rather than 
clinical outcomes; failure 
to measure most 
important outcomes 

 Individual harms and how defined, on 
relative and absolute scale 

Failure to distinguish 
minor from serious 
adverse effects 

Timing of 
outcomes 
measurement 

Timing of follow-up 
 

Follow-up too short to 
detect important benefits 
or harms; lack of long-
term follow-up for 
interventions requiring 
long-term interventions 

Setting Geographic setting 
 

Settings where standards 
of care differ markedly 
from setting of interest 

 Clinical setting (specialty vs. primary care 
setting) 

Specialty population or 
level of care that differs 
importantly from that seen 
in primary care 

 
No study can perfectly replicate all the conditions of interest to decision makers. A thoughtful 
systematic review must do more than summarize how the populations, interventions, or 
outcomes in the available studies may differ from the questions of interest. Considering 
applicability also requires making judgments about whether the differences between the 
available evidence and the “ideal” evidence are likely to alter the observed effectiveness or 
safety of the intervention, and in which direction.  Subgroup analysis may help reveal factors that 
influence effect size for benefits or harms.  For example, evidence that effect sizes vary with age 
or disease severity calls into question the applicability of evidence that comes largely from 
younger, healthier subjects.   
 
Whether differences between the features of the available studies and current practice are large 
enough to threaten applicability is in many cases a judgment, and the input of experts and 
stakeholders can be useful. Clinical experts can provide insight into whether changes in the 
dosing or timing of a drug or modifications to a medical device are likely to alter benefits or 
safety. Stakeholders such as a professional society or a health plan medical director may be able 
to judge whether an intervention employed in a study is feasible and relevant to their members.  
 
Applicability depends heavily on context—studies that are highly applicable for one stakeholder 
such as a Medicaid director may not be relevant to another, for example a health plan enrolling 
Medicare beneficiaries. Thus, we do not recommend assigning an overall summary grade for 
applicability.  Table 6-2 illustrates how a review might summarize the evidence and implications 
for applicability, to help inform different stakeholders about the limitations of the evidence and 
to assist in rating the strength of evidence. Because many comparative effectiveness reviews 

 Page 47 of 127 



    

involve numerous interventions, comparisons, and outcomes, the aim of such a table is not to 
characterize all of the evidence but to highlight the most important areas where applicability is a 
concern.  
  
Table 6-2 Summary Applicability Table 

 Describe Available Evidence Describe Implications for 
Applicability 

Population  
 

Describe general characteristics of 
enrolled populations. Where 
possible, describe the proportion with 
important characteristics (e.g., % 
over age 65) rather than the range.   

Describe how enrolled 
populations differ from target 
population and how this 
might affect risk of benefits 
or harms 

Intensity or quality of 
treatment  
 

Describe the general characteristics 
of interventions 

Describe how studied 
interventions compare to 
those in routine use and how 
this might affect risk of 
benefits or harms 

Choice of, and dosing 
of, the comparator 

Describe the comparators used Describe whether 
comparators reflect best 
alternative treatment and 
how this may influence 
treatment effect size 

Outcomes Describe what outcomes are most 
frequently reported 

Describe whether measured 
outcomes are known to  
reflect most important clinical 
benefits and harms 

Timing of follow-up Describe range of follow-up Describe whether follow-up 
is sufficient to detect 
clinically important benefits 
and harms 
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7. ASSESSING DIAGNOSTIC TECHNOLOGIES 
This chapter is deliberately omitted. 
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8. HARMS   
To be useful to decision makers and to generate balanced results and conclusions, comparative 
effectiveness reviews should address both benefits and harms (Ernst and Pittler 2001; Atkins, 
Best et al. 2004; GRADE Working Group; Loke, Price et al. 2007).  CERs should assess harms 

that are important to decision makers and 
users of the intervention under 
consideration.  Technical Expert Groups 
(TEGs) are a valuable resource for 
helping to set the priorities in evaluating 
harms in CERs.  

Box 8.1.  Key Points (Harms) 
 
• Assess all important harms, whenever 

possible. 
• Use multiple sources of information to 

identify harms. 
• Gather evidence on harms from a broad 

range of sources, including observational 
studies, particularly when clinical trials are 
lacking; when generalizability is uncertain; or 
when investigating rare, long-term, or 
unexpected harms. 

• Do not assume studies adequately assess 
harms because methods used to assess and 
report benefits are appropriate; rather, 
evaluate how well studies identify and 
analyze harms. 

• Avoid inappropriate combining of data of 
harms, and thoroughly investigate 
inconsistent results. 

• Be cautious about drawing conclusions on 
harms when events are rare and estimates of 
risk are imprecise.  When describing 
evidence on harms, avoid using terms 
implying causality when causality is 
uncertain.  

• Do not draw conclusions about equivalence 
and non-inferiority for harms unless there is 
appropriate data justifying such statements. 

• Avoid assuming that class effects on harms 
are present for two or more interventions 
unless there is a strong pathophysiologic 
rationale as well as supporting clinical 
outcomes data (such as similar estimates of 
risk).  Include analyses of inconsistency 
when combining data on harms from two or 
more interventions. 

• Avoid implicit indirect comparisons when 
judging comparative risk of adverse events.  
Rather, evaluate whether different sets of 
trials meet assumptions for similarity of 
treatment effects, and if so, perform “formal” 
indirect comparisons if possible. 

 
High-priority harms should routinely 
include the most serious adverse events, 
but they may also include common 
adverse events or other specific adverse 
events salient to clinicians or patients.  In 
many cases, evidence on rare but 
important harms may be unavailable or 
available only from sources of evidence 
highly susceptible to bias (Loke, Price et 
al. 2007).  In these situations, CERs 
should clearly present and critically 
discuss the limitations or gaps in the 
evidence 
 
Assessing harms in CERs can be 
challenging for several reasons.  Most 
clinical trials focus on assessing benefits; 
measuring or reporting harms is typically 
a lesser or secondary consideration.  In 
addition, reviewing evidence for all 
possible harms may not be feasible, as 
interventions may be associated with 
dozens of potentially important adverse 
events.  EPCs may often face a major 
tradeoff between increasing 
comprehensiveness and decreasing 
quality of harms data (McIntosh, 
Woolacott et al. 2004; Loke, Price et al. 
2007).   
 
Adequately assessing harms requires 
EPCs to consider a broad range of data 
sources; for that reason, they need to deal 
with other challenges such as  choosing 
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which types of evidence to include, identifying relevant studies of harms, assessing their quality, 
and summarizing and synthesizing data from different types of evidence. 
 
Terminology 
Terminology related to reporting of harms is poorly standardized (Ioannidis, Evans et al. 2004).  
This can cause confusion or misleading conclusions.  EPCs should strive for consistent and 
precise usage of terminology when reporting data on harms in their CERs.   
 
For example, the term “harms” is generally preferred over the term “safety” because the latter 
sounds more reassuring and may obscure important concerns.  “Harms” is also preferable to the 
term “unintended effects,” which could refer to either beneficial or harmful outcomes.  Terms 
that do not imply causality (such as “adverse events”) should be the default term to describe 
harmful events, unless causality is reasonably certain.   
 
Definitions for commonly used terms for harms reporting are summarized here, along with 
suggested usage.  They are adapted from definitions published by the Cochrane Collaboration, 
the CONSORT Group, and the World Health Organization Uppsala Monitoring Centre (Edwards 
and Aronson 2000; Ioannidis, Evans et al. 2004; Loke, Price et al. 2007). 
 

• Adverse effect:  A harmful or undesirable outcome that occurs during or after the use of a 
drug or intervention for which there is at least a reasonable possibility of a causal 
relation. 

• Adverse event:  A harmful or undesirable outcome that occurs during or after the use of a 
drug or intervention but is not necessarily caused by it.  When causality is uncertain or 
establishing causality is the purpose of the CER, it should generally by the default term 
over “adverse effect” or “adverse reaction/adverse drug reaction.” 

• Adverse reaction/adverse drug reaction (ADR):  An adverse effect specifically 
associated with a drug. 

• Complications:  A term often used to describe adverse events following surgery or other 
invasive interventions. 

• Harms:  The totality of all possible adverse consequences of an intervention. 
• Passive surveillance of harms:  Recorded adverse events are those that study participants 

spontaneously report on their own initiative.  In active surveillance of harms, 
participants are asked about the occurrence of specific adverse events in structured 
questionnaires or interviews, or predefined laboratory or other diagnostic tests are 
performed at prespecified time intervals. 

• Risk-benefit ratio:  A common expression for the comparison of overall harms and 
benefits.  However, because benefits and harms of an intervention are usually very 
different in character and are measured on different scales, a true ‘risk-benefit ratio’ is 
rarely calculable.  In addition, there may be several distinct benefits and harms.  A 
preferred term is balance of benefits and harms. 

• Safety:  Substantive evidence of an absence of harm.  The term is often misused when 
evidence on harms is simply absent or insufficient. 
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•  “Serious” adverse events:  Any adverse event with serious medical consequences, 
including death, hospital admission, prolonged hospitalization, and persistent or 
significant disability or incapacity. 

•  “Severe” adverse events:  The intensity of an adverse event (including “nonserious” 
adverse events). For example, a rash could be “severe” but not “serious” (i.e., not 
resulting in death, hospital admission, prolonged hospitalization, or persistent or 
significant disability). 

• Side effects:  Unintended drug effects (beneficial or harmful) that occur with doses 
normally used for therapeutic effects.  Use of this term may tend to understate the 
important of harms because the word “side” may be perceived to suggest secondary 
importance. 

• Tolerability:  This term is often used imprecisely but should be used to refer to a patient’s 
or subject’s ability or willingness to tolerate or accept unpleasant drug-related adverse 
events without serious or permanent sequelae. 

• Toxicity:  A general term used to refer to drug-related harms.  This term may be most 
appropriate for describing laboratory-determined abnormalities, although it is also used to 
describe clinical adverse events.  The disadvantage of the term “toxicity” is that is 
implies causality.  When causality is uncertain, the terms “abnormal laboratory 
measurements” or “laboratory abnormalities” may be more appropriate. 

 
Sources of Evidence on Harms  
Randomized Controlled Trials 
Published Trials.  As noted in previous chapters, properly designed and executed randomized 
controlled trials (RCTs) are considered the “gold standard” for evaluating efficacy because they 
minimize potential bias.  However, relying solely on published randomized trials to evaluate 
harms in CERs is problematic for several reasons.  First, most randomized trials lack 
prespecified hypotheses for harms (Ioannidis, Evans et al. 2004).  Rather, hypotheses are usually 
designed to evaluate beneficial effects, with assessment of harms a secondary consideration.  As 
such, the quality and quantity of harms reporting in clinical trials has consistently been found to 
be inadequate (Edwards, McQuay et al. 1999; Ioannidis and Lau 2001; Loke and Derry 2001; 
Papanikolaou, Churchill et al. 2004). 
 
Second, because randomized trials can be expensive to carry out, few have large enough sample 
sizes or are long enough in duration to assess uncommon or long-term harms adequately (Ray 
2003; Dieppe, Bartlett et al. 2004; Vandenbroucke 2004).  Further, most randomized trials are 
explanatory, rather than pragmatic, in design—i.e., they assess benefits and harms in ideal, 
homogeneous populations and settings (Rothwell 2005).  Even when harms are appropriately 
assessed and reported, such “efficacy trials” have limited ability to assess harms in individuals 
encountered in everyday practice. 
 
Third, few randomized trials directly compare alternative treatment strategies.  Although CER 
authors can indirectly compare the efficacy of two treatment strategies based on trials in which 
they are compared with a common third treatment (usually placebo), the results of indirect 
comparisons do not always agree with direct comparisons (Bucher, Guyatt et al. 1997; Song, 
Altman et al. 2003; Chou, Fu et al. 2006). 
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Fourth, publication and selective outcomes reporting bias can lead to distorted conclusions about 
harms when data are unpublished, partially reported, downplayed, or omitted (Easterbrook, 
Berlin et al. 1991; Sterne, Egger et al. 2001; Chan, Hrobjartsson et al. 2004; Whittington, 
Kendall et al. 2004; Ridker and Torres 2006). 
 
Fifth, in some cases, relying on randomized trials for information about harms is impossible.  For 
example, surgical procedures and medical devices often become widely disseminated with few 
or no randomized trial data.  The same can be true for older therapeutic devices, such as 
hyperbaric oxygen chambers (McDonagh, Helfand et al. 2004). 
 
Despite their limitations, RCTs are the basis for regulatory approval and advertising and other 
claims made on behalf of drugs and other interventions.  For this reason, CERs must address 
them in detail when they are available.  Head-to-head RCTs provide the most direct evidence on 
comparative harms.  However, placebo-controlled RCTs are often more plentiful than head-to-
head trials and may provide important information on absolute risks as well as the most robust 
estimates of risk.  For example, in a systematic review evaluating myocardial infarction risk 
associated with celecoxib, 60 percent of the myocardial infarctions occurred in two placebo-
controlled trials (Kearney, Baigent et al. 2006).  In addition, risks associated with celecoxib were 
not apparent in head-to-head trials against most other nonsteroidal anti-inflammatory drugs 
(NSAIDS), which were also associated with increased risk.  CERs should generally routinely 
include placebo-controlled trials for assessment of harms, particularly for rare or uncommon 
adverse events.  
 
Unpublished Supplemental Data.  In addition to evaluating results of published RCTs, CERs 
should also consider supplementing published results with unpublished ones as well as 
unpublished data from published trials.  Such information has several potentially valuable uses: 
 

1. to assess the number of unpublished trials or outcomes, which can help in evaluating risk 
for publication or outcomes reporting bias, 

2. to evaluate whether conclusions based on unpublished data are qualitatively different 
than those based on published RCTs, and 

3. to conduct formal quantitative meta-analysis including published and unpublished RCTs 
or outcomes. 

 
Unpublished Trials.  Unpublished clinical trials tend to report lower estimates of treatment 
benefit than do published trials (i.e., stronger intervention effects) (McAuley, Pham et al. 2000; 
Egger, Juni et al. 2003).  The impact of unpublished trials on assessments of harms has not been 
extensively studied, but a recent systematic review of antidepressants in children found that 
addition of data from unpublished trials changed the balance of risks and benefits from favorable 
to unfavorable for several drugs (Whittington, Kendall et al. 2004).  In a systematic review of 
cardiovascular risk associated with rosiglitazone, 27 of 42 included trials were unpublished 
(Nissen and Wolski 2007).  Excluding unpublished trials would have decreased the precision in 
estimates of increased myocardial risk (relative risk = 1.43; 95% CI, 1.03 to 1.98), possibly 
resulting in loss of statistical significance.  
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Two main drawbacks of using data from unpublished trials, assuming they are available, should 
be considered.  One is that, frequently, evidence is insufficient to assess fully the risk of bias.  
Another is that results and conclusions of trials may change between initial presentation of data 
and publication in a peer-reviewed journal (Rosmarakis, Soteriades et al. 2005; Toma, McAlister 
et al. 2006). 
 
Unpublished data from published trials.  Journal publications may omit important information 
because of space limitations or other reasons (Sterne, Egger et al. 2001; Ridker and Torres 2006).  
Drug approval information—especially the clinical and statistical reviews prepared by staff of 
the US Food and Drug Administration (FDA)—frequently provides details about harms not 
included in journal publications. 
 
For example, the Celecoxib Long-term Arthritis Safety Study (CLASS), a major trial of 
celecoxib, was published in JAMA as a 6-month study and reported finding fewer gastrointestinal 
adverse events for celecoxib than for two nonselective NSAID comparators (diclofenac and 
ibuprofen) (Silverstein, Faich et al. 2000).  The JAMA article did not mention that some patients 
in the trial had been observed for longer than 6 months (Hrachovec and Mora 2001).  In contrast, 
the FDA review reported all the outcomes data, including no difference in gastrointestinal 
adverse events at the end of follow-up (Witter 2000). 
 
As another example, for a major trial of rofecoxib (Vioxx Gastrointestinal Outcomes Research 
Study, or VIGOR), an FDA statistical review made available to the public in 2001 has six pages 
of analysis on the issue of cardiovascular risk (Lee); the New England Journal of Medicine 
publication had three lines (Bombardier, Laine et al. 2000).  In fact, before publication of 
VIGOR, myocardial infarctions were omitted from most published reports of trials evaluating 
selective or nonselective NSAIDs because an association with cardiovascular events was not 
suspected.  A recent systematic review obtained unpublished myocardial infarction data from 
sponsoring pharmaceutical companies; it found an increased risk with high doses of all evaluated 
NSAIDs (selective or nonselective) other than naproxen (Kearney, Baigent et al. 2006).  An 
analysis of myocardial infarction risk based on only published data would be seriously 
compromised by incomplete data.   
 
Limited evidence suggests an inverse relationship between the proportion of included trials 
reporting outcomes and the estimates of benefit (Furukawa, Watanabe et al. 2007).  How the 
proportion of included trials reporting outcomes affects estimates of harms is not clear, 
particularly when pooled estimates are not statistically significant.  Nonetheless, when a 
significant proportion of trials included in a CER fail to report an important or critical adverse 
event, investigators should consider efforts to obtain unpublished data (e.g., by querying study 
authors, funding sources, clinical trials registries, or FDA documents).  
 
Observational Studies 
Observational studies are almost always necessary to assess harms adequately.  Including such 
studies in evidence reports has long been the standard of practice for the EPCs.  Although 
observational studies are more susceptible to bias than well-conducted clinical trials, they can be 
particularly useful when sufficient effectiveness, head-to-head, long-term, or sufficiently large 
randomized trials (for uncommon adverse events) do not exist (Vandenbroucke 2004).  
Observational studies may also provide the best (or only) evidence for evaluating harms in 
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minority or vulnerable populations (such as pregnant women, children, or elderly patients with 
multiple comorbidities) who are underrepresented in clinical trials. 
 
The term “observational studies” refers to a broad range of study designs.  These include  case 
reports; retrospective analyses of large claims or practice-based databases; population-based, 
longitudinal cohort studies; uncontrolled series of patients receiving surgery or other invasive 
interventions; and others (Kleinbaum, Kupper et al. 1982).  All can yield useful information.  
 
The types of observational studies in a CER will vary depending on the type or frequency of 
adverse events being evaluated.  The choice of study designs to examine harms also depends on 
whether investigators are seeking to test a hypothesis or to generate new ones.  Different types of 
observational studies might be included or rendered irrelevant by availability of data from 
stronger study types.   
 
Cohort and Case-Control Studies.  Investigators should routinely consider including well-
designed observational studies, such as case-control and population-based cohort studies.  Such 
studies are well suited for testing hypotheses on whether one intervention is associated with a 
greater risk for an adverse event than is another and for quantifying the risk.  Although they are 
also subject to confounding and biases that are encountered less commonly in RCTs, they take 
stronger precautions against bias than do other observational designs, and their strengths and 
weaknesses are better understood.  For unexpected adverse events, for example, confounding by 
indication may not be as important an issue as when evaluating beneficial or intended effects 
because they are usually not associated with the reasons for choosing a particular treatment 
(Psaty, Koepsell et al. 1999; Stricker and Psaty 2004; Vandenbroucke 2004).  
 
A recent report found that large observational studies usually report smaller absolute risks of 
harm than do large randomized trials (Papanikolaou, Christidi et al. 2006).  There was no clear 
predilection for randomized trials or observational studies to estimate greater relative risks.  In 
more than one-half of the comparisons assessed, estimates of relative or absolute risk varied 
more than twofold.  Discrepancies between randomized trials and observational studies may 
occur because of differences in populations, settings, or interventions; differences in study 
design; differential effects of biases; or some combination of these factors. 
 
Observational Studies Based on Analyses of Large Databases.  Pharmacoepidemiologic 
studies using large databases are increasingly common, and they may be very valuable for 
comparing the risk of uncommon adverse events.  Nonetheless, additional empirical research is 
needed to identify features of pharmacoepidemiologic studies that are associated with valid 
findings.  In some cases, data from large administrative databases may be supplemented or 
verified by more detailed clinical information.  Regardless of how data are collected, all 
observational studies should employ appropriate methods for minimizing bias and 
misclassification of data.   
 
Case Reports and Postmarketing Surveillance.  About 30 percent of the primary published 
literature on adverse drug events is in the form of case reports (Aronson, Derry et al. 2002).  
Case reports can be useful for identifying uncommon, unexpected, or long-term adverse events, 
particularly for new drugs or other interventions (Stricker and Psaty 2004).  The adverse events 
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identified by case reports often differ from those detected in clinical trials (Loke, Derry et al. 
2004).  However, case reports are generally considered hypothesis-generating because 
calculating information from them about the frequency or comparative risk of adverse events is 
difficult. 
 
The FDA receives about 280,000 reports of postmarketing adverse events annually and collects 
them into a database (Strom 2004), and issues information about adverse drug events on its 
MedWatch website (http://www.fda.gov/medwatch/.  Although pharmaceutical companies and 
other investigators may also perform high-quality analyses on postmarketing data, such analyses 
are not always made public in a timely fashion, as in the case of the withdrawn lipid-lowering 
drug cerivastatin (Psaty, Furberg et al. 2004).  Active, hypothesis-driven postmarketing 
surveillance systems have also recently been developed for identifying and evaluating serious 
adverse drug events (Bennett, Nebeker et al. 2005). 
 
Case reports and other hypothesis-generating studies are probably most useful for CERs 
evaluating new drugs suspected of being associated with serious but uncommon adverse events.  
For other CERs, investigators may consider their inclusion on a case-by-case basis. 
 
Other Observational Studies.  Several other types of observational studies may also report data 
on harms.  However, they are likely to be more prone to bias than are RCTs, and their use needs 
to be considered cautiously.  For example, studies reporting harms from surgical or other 
invasive interventions often consist of a series of patients who received the procedure.  Data are 
often insufficient to assess the methods used to select participants (Oleson 1999).  In addition, 
because such studies lack control groups, evaluating effects of confounding or selective outcome 
reporting bias on outcomes is impossible, as is comparing risks of adverse events across 
interventions.   
 
Other nonrandomized study designs may not evaluate populations more applicable to routine 
practice than the ones enrolled in randomized trials.  Open-label extensions of clinical trials are 
one example.  Although they are designed to follow patients for an extended period of time, they 
also usually evaluate a more highly selected population (patients who completed the randomized 
trial, tolerated the medication, and agreed to participate in the extension), are open-label and 
often lack a comparison arm.  Because such studies generally offer few advantages over 
randomized trials, they usually can be excluded from CERs if more reliable long-term, 
comparative data are available.  If they are included in CERs, their limitations should be 
described clearly.   
 
Criteria to Select Observational Studies for Inclusion.  In general, many more observational 
studies than randomized trials will be available for nearly all health care interventions.  
Evaluating a large number of observational studies can be unmanageable when conducting a 
CER, especially when a significant proportion either do not add useful information or carry a 
high risk of reporting biased results. 
 
Several criteria have commonly been used in systematic reviews and CERs to screen 
observational studies of harms for inclusion.  Empirical data are lacking on how use of different 
selection criteria affects estimates of harms.  However, CERs should clearly describe any 
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selection criteria they use along with the rationale for choosing the criteria (e.g., to assess long-
term harms or populations not covered well in trials).  Commonly used inclusion criteria for 
observational studies include: 
 

1. studies meeting certain study design definitions, 
2. studies not exceeding a certain risk of bias threshold, 
3. studies meeting a certain threshold for duration of follow-up, 
4. studies meeting a sample size threshold, and  
5. studies evaluating a specific population of interest. 

 
Pharmacokinetic, Pharmacodynamic, and Pharmacogenomic Studies 
When evaluating harms in CERs of adverse events, EPCs should consider whether specific 
interventions are more likely to be harmful for specific populations than for other populations.  
CERs should focus on studies that deliberately look at the risks and benefits of specific drugs in 
subgroups.  In many situations, however, the risks in different populations can be difficult to 
address systematically because clinical trials and observational studies exclude certain groups of 
vulnerable patients or do not adequately analyze harmful effects in subgroups. 
 
When clinical data on subpopulations are lacking, systematic reviewers may consider including 
pharmacodynamic, pharmacokinetic, or pharmacogenomic studies, even though such data do not 
always correlate with clinical outcomes.  In the case of the lipid-lowering agent rosuvastatin, for 
example, the FDA required labeling indicating that drug levels are higher in Asians and could 
potentially lead to more adverse events in this population, even though a recently published 
meta-analysis of trials submitted to the FDA found no differences in clinical adverse events 
according to ethnicity, sex, or age (Shepherd, Hunninghake et al. 2004).  Pharmacokinetic 
studies may also provide useful information on drug-drug interactions.  One role of systematic 
reviews, however, is to help distinguish concerns based on clinical data from what is based on 
pharmacologic properties or on other considerations.  In this way, CERs can highlight important 
areas for future clinical research.  If included in CERs, pharmacokinetic, pharmacodynamic, and 
pharmacogenomic studies are likely best considered hypothesis-generating.  
 
Assessing Risk of Bias (Quality) of Harms Reporting 
Randomized Trials   
Features distinguishing higher-quality randomized trials are similar regardless of whether 
benefits or harms are being assessed.  These include use of adequate randomization sequence 
generation and allocation concealment techniques; blinding of participants, providers, and 
outcomes assessors; and analysis according to intention-to-treat principles (Juni, Altman et al. 
2001).  However, because evaluating harms is often a secondary consideration in randomized 
trials, quality of harms assessment and reporting can be inadequate even when assessment of the 
primary (beneficial) outcome is appropriate. 
 
Systematic reviewers should pay particular attention to how withdrawals and dropouts are 
handled in any analyses of adverse event rates (Wood, White et al. 2004).  Dropouts are exposed 
to the intervention or assessed for a shorter period of time than are persons who completed the 
trial.  However, when calculating rates of adverse events, they are usually analyzed as if they 
remained in the study for the whole duration (e.g., “We analyzed all patients receiving at least 
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one dose of the drug”).  If dropout rates are small, this may have only minimal effects on 
estimates of adverse events.  However, when dropout rates are higher, this could lead to 
underestimates of risk of harms, though such concerns may be alleviated if analyses are 
performed to assess potential effects of dropouts. 
 
Similarly, the timeframe and relationship to drug exposure may be critical for evaluating harms 
data.  In a recent FDA report on suicide risk associated with SSRIs, adverse events were counted 
only if they occurred while the patient was on active medication (FDA 2006).  If a patient 
discontinued treatment for any reason and an event occurred more than 1 day later, it was not 
counted.  Given the high discontinuation rates with antidepressants, this analytic approach could 
lead to serious underreporting of suicidal events, particularly if significant carryover effects from 
the drugs are present, or if suicidal thoughts are associated with discontinuation of therapy.  On 
the other hand, patients are usually unblinded following discontinuation of treatment, making 
interpretation of subsequent adverse events challenging. 
 
When evaluating the quality of harms assessment, EPCs should also consider whether adverse 
events are prespecified and defined.  Accurate and complete assessment of common or expected 
adverse events is more likely when the outcomes are clearly defined a priori.  Although this 
criterion will not be met for unanticipated adverse events, studies reporting such outcomes can 
be very valuable for identifying previously unrecognized harms.  Data on specific defined 
adverse events are also likely to be more accurate and informative than are generic statements, 
such as “no adverse events were noted” or “the interventions were well tolerated.”  If a specific 
adverse event is not reported, it is generally safer for systematic reviewers to assume that they 
were not ascertained or not recorded than to assume that the prevalence or incidence was zero 
(Loke, Price et al. 2007).  Trials should also predefine the qualifiers “serious” and “severe” to 
describe adverse events.  Otherwise, it is impossible for readers to determine whether these 
labels were applied consistently within and across trials.   
 
Standardized criteria for grading severity of adverse events are available for certain conditions 
(NCI 1999; NIAID 2004; NCI 2006).  CERs should note when grading severity or seriousness of 
adverse events is based on nonstandardized or poorly defined criteria, as such classifications may 
not be comparable across studies and may be less reproducible than classifications based on 
standardized definitions. 
 
“Withdrawals due to adverse events” is commonly reported in trials and often used in systematic 
reviews as a marker for intolerable or severe adverse events.  However, the Cochrane Handbook 
(version 4.2.5) suggests caution in interpreting withdrawals attributed to adverse events in this 
manner, for the following reasons (Loke, Price et al. 2007).  
 

1. Attribution of reasons for discontinuation is likely to be imprecise and to vary across 
trials.  Reasons for discontinuation include mild but irritating side effects, lack of 
efficacy, nonmedical reasons, severe or serious adverse events, or any combination of 
these factors. 

2. Pressure to keep dropouts low in trials may result in rates that do not reflect real-world 
practice. 
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3. Unblinding often takes place before the decision to withdraw, which can lead to 
distortion of estimates of an intervention’s effect on withdrawal (e.g., symptoms are less 
likely to lead to withdrawal if the patient is found to be on placebo). 

 
Nonetheless, withdrawals due to adverse events are often reported even when serious or severe 
adverse events are not reported or are poorly defined, and they may provide some useful 
information. 
 
Reviewers should also consider what methods were used to ascertain adverse events.  Several 
studies have shown that active methods for identifying adverse events (such as querying patients 
using a checklist or standardized laboratory tests) are more likely to identify adverse events than 
passive methods such as relying on patient self-report (Olsen, Klemetsrud et al. 1999; Bent, 
Padula et al. 2006).  In drug trials, use of an independent external endpoint committee may 
provide less biased estimates of harms than are outcomes assessment performed by investigators 
connected to the study (Juni, Nartey et al. 2004; Sydes, Spiegelhalter et al. 2004).  
 
Observational Studies   
Because observational studies lack randomization, they should adhere to higher methodological 
standards to be considered valid (Egger, Schneider et al. 1998; Lawlor, Davey Smith et al. 2004).  
Randomized controlled trials are expected to have outcomes recorded by blinded personnel and 
to include all participants who were randomized in the analysis of results.  Use of blinded 
outcome assessors and an inception cohort (e.g., “new users”) is at least as important when 
assessing observational studies. 
 
Instruments for assessing risk of bias in observational studies vary greatly in scope, in the 
number and types of items used, and in developmental rigor (Deeks, Dinnes et al. 2003).  Further 
study is needed to determine which methodological shortcomings are consistently associated 
with bias in assessment and reporting of harms.  In addition, none was specifically designed to 
assess quality of harms assessment and reporting.   
 
Some consensus exists on the major domains that should be considered when evaluating the 
overall validity of an observational study.  For cohort studies, for example, important factors 
include assembly of an inception cohort, complete follow-up, appropriate assessment of potential 
confounders, accurate determination of exposures and outcomes, and blinded assessment of 
outcomes (West, King et al. 2002; Deeks, Dinnes et al. 2003).  
 
Several systematic reviews have empirically evaluated effects of specific methodological 
characteristics on estimates of harms from observational studies.  They found that prospective or 
retrospective design (Rothwell, Slattery et al. 1996; Dalziel, Round et al. 2005), case-control 
compared with cohort studies (Ofman, MacLean et al. 2002; Juni, Nartey et al. 2004), and 
smaller compared with larger case series (Dalziel, Round et al. 2005) had no clear effects on 
estimates of harms.  Two studies found that industry-funded studies tended to report more 
favorable outcomes than did nonindustry-funded studies (Juni, Nartey et al. 2004; Shah, Albert et 
al. 2005).  Because all of these studies generally evaluated fairly limited samples of studies, 
wider applicability of their findings to other datasets and interventions is uncertain. 
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Observational studies based on evaluations of large administrative databases should follow the 
same general principles to reduce bias as observational studies that directly collect data from 
patients.  In these cases,  reviewers should pay particular attention to the methods used for 
ascertaining exposures and outcomes and for measuring and analyzing potential confounders, as 
these issues are more likely to be problematic in studies relying on administrative claims 
(although not unique to them) (Schneeweiss and Avorn 2005). 
 
For all observational studies, estimates of harms are less likely to be confounded when 
evaluating unintended or unknown adverse events than when evaluating known or intended 
effects.  NSAIDS are a case in point.  Before publication of VIGOR, prescribing of cyclo-
oxygenase-2-selective versus nonselective NSAIDs was unlikely to be influenced by 
considerations about patients’ risk for myocardial infarction.  Clinicians were more likely to 
prescribe selective NSAIDs in patients at higher risk for gastrointestinal bleeding, as this was a 
well-known risk of nonselective NSAIDs.  Because such patients are at higher risk of developing 
gastrointestinal bleeding independent of drug use, this led to the appearance of an apparent 
association between selective NSAID use and bleeding in epidemiologic studies (Laporte, Ibanez 
et al. 2004).  In some cases, such spurious associations may remain despite adjustment for known 
confounders (“residual confounding”). 
 
Uncontrolled Studies   
Studies of surgery, devices, and noninvasive interventions are often uncontrolled series of 
patients who received the therapy and then were followed prospectively over a period of time.  
Such studies can provide information about rates of adverse events in clinical practice, and they 
may be most informative when the background rate of such events in untreated patients is low.  
Unfortunately, such studies frequently do not meet standards for accurate and comprehensive 
reporting of complications (Martin, Brennan et al. 2002).  In addition, as in other types of clinical 
research, authors are more likely to submit for publication studies showing the best outcomes. 
 
For some interventions, reviewers must consider including uncontrolled studies for assessment of 
adverse events, as little or no other evidence may be available.  Adapting risk of bias criteria for 
other types of observational studies from West et al. (West, King et al. 2002), Carey and Boden 
have proposed several criteria for evaluating risk of bias in case series (Carey and Boden 2003): 
 

• clearly defined question, 
• well-described study population, 
• well-described intervention, 
• use of validated outcome measures, 
• appropriate statistical analyses, 
• well-described results, 
• discussion/conclusions supported by data, and  
• funding source acknowledged. 

 
In addition, the Cochrane Non-Randomised Studies Methods Group suggests that the initial, 
critical risk-of-bias criterion that reviewers can (or should) apply to any nonrandomized study is 
whether the study sample was systematically selected (i.e., enrollment or attempted enrollment 
of all patients meeting prespecified inclusion criteria) (Oleson 1999).  Without unbiased 
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selection of subjects, determining how representative even well-described results may be is 
impossible.  
 
Instruments for Assessing Risk of Bias (Quality) in Studies on Harms  
Development of instruments for assessing risk of bias specifically in studies of harms is still in 
an early stage of development.  Two points remain unclear at present:  whether to use a specific 
rating instrument to evaluate harms assessment and reporting, or whether using instruments for 
rating the overall risk of bias of a study is sufficient (as long as particular attention is paid to how 
well adverse events are defined, ascertained, and reported).  
 
Chou et al. empirically developed and tested a quality-rating instrument for assessing quality of 
harms assessment and reporting in randomized trials and observational studies (cohort studies 
and uncontrolled surgical series) of carotid endarterectomy for symptomatic carotid artery 
stenosis (Chou, Fu et al. 2006).  This approach involved four criteria:  nonbiased selection, low 
loss to follow-up, adverse events prespecified and defined, and adequate duration of follow-up.  
Studies meeting at least three of the four criteria reported a rate of postsurgical complications of 
5.7 percent (95% CI,  4.8 percent to 6.6 percent) compared with 3.7 percent (95% CI, 3.1 percent 
to 4.3 percent) for studies meeting fewer than three such criteria:  The generalizability of this 
instrument to other interventions is unclear, as it did not predict differences in estimates of risk 
of myocardial infarction associated with rofecoxib (Chou, Fu et al. 2006). 
 
Santaguida et al. have also developed a quality-rating instrument (McHarm) for evaluating 
studies reporting harms (Santaguida and Raina May 2005).  The tool was developed from items 
generated by a review of the literature on harms and previous quality assessment instruments.  A 
formal Delphi consensus exercise was used to reduce the number of items.  The subsequent list 
of quality criteria specific to harms was tested for reliability and face, construct, and criterion 
validity.  This quality-assessment tool is intended for use in conjunction with another 
standardized quality-assessment tool that captures design-specific internal validity issues.  
However, the association between quality scores on the McHarm and differences in summary 
estimates from meta-analyses has not yet been evaluated. 
 
Case reports may provide valuable information about the possibility of rare or previously 
unrecognized adverse events.  Of 47 case reports published in 1963 in four major general 
medical journals, one study 25 years ago judged that 35 of them were subsequently proved to be 
“clearly” correct (Venning 1982).  However, the methods used to determine reliability of case 
reports in this study were subjective, and results have not been replicated.  A recent study, in 
fact, found that only 18 percent of case reports of suspected adverse drug reactions have been 
subjected to rigorous evaluation in subsequent studies (Loke, Price et al. 2006).  A statistical 
modeling study suggested that the likelihood of more than one to three spontaneously reported 
cases is very unlikely to be coincidental when the adverse event is rare or uncommon (Begaud, 
Moride et al. 1994).  
 
Several disease-specific (Danan and Benichou 1993; Maria and Victorino 1997) and nondisease-
specific (Naranjo, Busto et al. 1981; Michel and Knodel 1986) methods for assessing the 
probability of causality from case reports of adverse events have been proposed.  These methods 
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represent expert opinion and have not been validated empirically.   Factors believed to increase 
the likelihood of causality include:  
 

• temporal relationship (exposure preceding adverse event and adverse event appearing at 
an appropriate time interval after exposure); 

• lack of alternative causes; 
• drug levels in body fluids or tissues; 
• resolution or improvement after discontinuation; 
• dose-response relationship; 
• recurrence following rechallenge (that is, restarting the drug to see whether the adverse 

reaction recurs) (Benichou, Danan et al. 1993); and  
• confirmation of adverse event by objective information. 

 
Guidelines for improving the reporting of suspected adverse drug events in case reports (similar 
to CONSORT guidelines for reporting harms in randomized trials) have recently been proposed 
(Aronson 2003).  In 35 reports of 48 patients published in BMJ, the median number of 
recommended items that were reported was nine (range 5-12) of 19, although effects of missing 
information on the validity of case reports have not been studied. 
 
Synthesizing Evidence on Harms 
The following issues (also discussed in Chapter 9) are especially relevant for analysis of adverse 
events: 
 
Meta-analysis for uncommon or rare adverse events 
A common problem in randomized trials and systematic reviews is interpreting a nonsignificant 
probability value, for testing a “superiority” hypothesis, as indicating no difference in risk for 
rare adverse events, particularly when the confidence intervals are wide and encompass the 
possibility of clinically important risks (Goodman and Berlin 1994; Jonville-Bera, Giraudeau et 
al. 2006).  For example, one trial concluded that, in patients with meningitis, “treatment with 
dexamethasone did not result in an increased risk of adverse events” compared with placebo for 
treatment of hyperglycemia, herpes zoster, or fungal infection because P values for all three 
outcomes were > 0.20 (de Gans and van de Beek 2002).  However, the 95% confidence intervals 
for estimates of relative risks for these three conditions encompassed clinically significant 
increases in risk (-13.5 percent to 77.6 percent, -60.4 percent to 377.7 percent, and -43.6 percent 
to 496.2 percent, respectively).  A more meaningful analysis would perhaps acknowledge the 
lack of statistical power to assess risk adequately and include an interpretation of confidence 
intervals, including the possibility or probability of excess harm. 
 
Pooling data on harms from different populations or interventions 
In the case of drugs, class effects (similar benefits or harms across different drugs or 
interventions) are often assumed because of similar chemical structures or mechanisms of action, 
but such pathophysiologic rationales can be misleading. (McAlister, Laupacis et al. 1999)  
Clinical trials directly evaluating comparative risks are the most useful source of evidence for 
determining whether a class effect is present and whether data from interventions can be 
appropriately pooled. If systematic reviewers choose to pool results for two or more 
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interventions, they should clearly state their basis for assuming a class effect.  Statistical tests for 
heterogeneity can be helpful for evaluating situations when assumptions about a class effect 
should be rejected, though lack of statistical heterogeneity does not necessarily mean that class 
effects are present. 
 
In some cases, EPCs may consider including evidence on harms from populations other than 
those evaluated for benefits (Loke, Price et al. 2007).  An advantage of including studies of other 
populations for harms is that this approach increases power to evaluate uncommon adverse 
events.  A disadvantage is that it can complicate assessments of the balance of the risk and 
benefit because risk may vary across different populations.   
 
The decision to include studies of harms from other populations should depend on whether they 
are known, or are likely, to differ systematically from the population included for assessment of 
benefits in risk for adverse events.  Another factor to consider is whether relative estimates of the 
harms being evaluated are likely to differ depending on the indication for initiating the therapy of 
interest.    In such cases, data on harms from different populations should not be combined.  
Reviewers should clearly indicate when data are from mixed or disparate populations and, at a 
minimum, include an analysis for heterogeneity to test assumptions about similarity of risk for 
harms across the populations. 
 
Equivalence and noninferiority 
Systematic reviewers should draw conclusions about “equivalence” or “noninferiority” of 
competing interventions with regard to harms only when appropriate data justify such statements 
(Piaggio, Elbourne et al. 2006).  In fact, few reviews will have the statistical power to assess 
adequately the noninferiority of competing interventions when the risk of an adverse event is on 
the order of 1 percent or lower.  For example, Ware and Antman showed that about 100,000 
patients would have been needed in the COBALT or GUSTOIII trials to rule out an excess 
relative death rate of five percent with 80 percent power (Ware and Antman 1997).  Smaller 
event rates would require even greater sample sizes. 
 
Combining data from different types of studies 
Most CERs will include data on harms from different types of studies.  Although methods for 
combining data from different types of studies are being developed (Wald and Morris 2003), 
statistical combination of data from observational studies is often inappropriate and should be 
avoided unless there is clear rationale to do so, which should be reported if such analyses are 
undertaken (Egger, Schneider et al. 1998). 
 
Discrepancies between randomized trials and observational studies 
A separate challenging situation is when results from randomized trials and observational studies 
are discordant.  Potential reasons for discrepancies between randomized trials and observational 
studies include the following: 
 

• differences in study risk of bias; 
• differences in applicability (study populations, interventions, or settings); 
• differences in methods used to define or measure outcomes; 
• differential effects of publication or selective outcomes reporting bias; and  

 Page 63 of 127 



    

• differential effects related to funding source (observational studies less likely to be 
funded by industry) (Papanikolaou, Christidi et al. 2006).  

 
A reasoned analysis of potential sources of discrepancy is more helpful than simply presenting 
the different results.   
 
Reporting Evidence on Harms 
As when reporting evidence on benefits, CERs should emphasize the most reliable information 
for the most important adverse events.  Summary tables should generally present data for the 
most important harms first, with more reliable evidence preceding less reliable evidence.  
Evidence on harms from each type of study should be clearly summarized in summary tables, 
narrative format, or both (GRADE Working Group 2004).   
 
Elements to focus on include the following: 
 

• descriptions of important factors related to risk of bias (quality) assessment (study design, 
number of studies, study quality, consistency of evidence, directness of evidence, and 
other modifying factors); 

• issues related to applicability (population characteristics, interventions, comparisons, and 
outcomes); 

• results (number of patients and absolute and relative estimates of risks); 
• assessments regarding the likelihood of publication bias or incomplete outcomes data 

(e.g., when an adverse event is only assessed in a small subgroup of studies); because 
many observational studies evaluate patients from the same database, possible effects of 
“double counting” should also be assessed (McGettigan and Henry 2006); and  

• additional analyses, if performed (e.g., sensitivity analyses, subgroup analysis, meta-
regression). 

 
CERs should emphasize the most reliable information for the most important adverse events.  
Another critical role of CERs is to report clearly on the limitations of the evidence on harms and 
to analyze thoughtfully how these limitations may affect estimates of the balance of benefit and 
harm. 
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9. QUANTITATIVE SYNTHESIS  
Meta-analysis is the most commonly used statistical method for quantitative synthesis in 
comparative effectiveness reviews (CERs).  It combines the results from two or more studies and 
if used appropriately, is a powerful tool to summarize results from multiple studies, provides 
insights into heterogeneous studies, and assists in deriving meaningful conclusions.  The 
purposes of a meta-analysis include: 
 

• improving the power to detect a small difference if the individual studies are small, 
• improving the precision of the effect measure, 
• comparing the efficacy of multiple drugs within a drug class or evaluating the 

consistency and differences in effect measures across study characteristics,  
• helping to settle controversy arising from conflicting studies or generating new 

hypotheses to explain these conflicts, and 
• gaining insights into statistical heterogeneity in effect sizes. 

 
Some potential disadvantages of meta-analysis arise from combining dissimilar studies or 
unrepresentative studies.  Other pitfalls arise from an incorrect choice of a statistical model and 
from biases that can be introduced by statistical procedures for pooling, particularly when there 
are few studies or few events.   In this chapter, we describe approaches to avoid or mitigate 
potential problems.  We address meta-analyses conducted by using aggregated or summary data 
at the study level. Patient-level meta-analyses and meta-analyses for diagnostic tests will not be 
considered here. 
 
A plan for meta-analysis should start when key questions are formulated.  There should be a 
compelling reason to pool studies.  In the methods section of a CER, the authors should state 
explicitly the purpose of the meta-analysis, demonstrate that they considered the potential 
disadvantages, and outline the plan for exploring heterogeneity. 
 
This next section of this chapter discusses when to combine studies, focusing on common 
situations in which the decision can be difficult.  Whenever investigators decide to combine 
studies, they must choose an effect measure and a statistical model, and choose a method to 
explore heterogeneity; the second, third, and fourth sections, respectively, discuss these 
decisions. These steps are summarized in Appendix 9-1.  The remaining sections address 
combining studies of mixed designs, sensitivity analysis, and interpreting and presenting a meta-
analysis. 
 
When to Combine Individual Studies  
Box 9-1.  Key Points (When to Combine Studies) 
 
Variability should be categorized into three types: clinical diversity, methodological diversity and 
statistical heterogeneity.  
 
Clinical and methodological diversity should not be ignored. Conclusions should not be drawn 
based on inconsistent results across studies.  
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When statistical tests indicate there is statistically significant heterogeneity, studies can still be 
combined unless there are systematic differences among studies or the studies are too 
heterogeneous to produce a meaningful combined estimate. 
 
A common criticism of meta-analysis is that studies that are too heterogeneous are combined.  
Even if a group of studies meets the criteria for a carefully formulated research question, 
substantial variability among studies is often observed.  In deciding whether to combine studies, 
the most important considerations are whether the studies asked similar questions and whether 
the study populations are similar enough to yield a meaningful result when they are combined. 
 
Unfortunately, no commonly accepted standard exists for “similar enough.”  Judgment of the 
similarity among studies depends on the scope of the research question.  A more general question 
may allow more variation among studies than a more focused question.  For example, it 
sometimes makes sense to combine studies from a class of drugs instead of a particular drug --  if 
the drug class in general is of interest, where the included studies were conducted in similar 
populations in a similar manner, and the drugs in the class affect the outcome in question through 
similar mechanisms.  
 
Decisions to combine studies should also be based on thorough investigation of variability 
among studies, which can be categorized into three types (Higgins and Thompson 2002):  
 

1. Variability in study population characteristics, interventions and outcomes is considered 
clinical diversity.  

2. Variability in study design and quality, such as blinding and concealment of allocation, is 
considered methodological diversity.   

3. Variability in the observed treatment effects being evaluated in different trials is 
considered statistical heterogeneity. 

 
Clinical and methodological diversity across studies is common.   A wide variety of factors, such 
as evolving disease, evolving diagnostic criteria, change in standard care, time-dependent care, 
difference in baseline risk, and dose-dependent effects may cause seemingly similar studies to be 
different.   Diversity in clinical characteristics will cause statistical heterogeneity if the true 
treatment effect varies depending on those characteristics.  Methodological diversity can also 
cause statistical heterogeneity in the observed treatment effects. In this case, statistical 
heterogeneity suggests that the studies are not all estimating the same effect, but it does not 
necessarily mean that the true treatment effect varies. In particular, heterogeneity associated 
solely with methodological diversity would indicate that the studies suffer from different degrees 
of bias.  
 
Statistical tests of heterogeneity help analysts to identify variation among effect estimates (see 
Exploring Heterogeneity below). However, basing the decision to combine or not on statistical 
tests alone is ill-advised.  Cochran’s Q is the standard test for statistical heterogeneity among 
studies. This test has low power to detect heterogeneity when the number of studies is relatively 
low  or when individual studies are small; it is sensitive for detecting  unimportant heterogeneity 
when the number of studies is high (Hardy and Thompson 1998). Because of its low power, a P-
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value of 0.10 instead of 0.05 is routinely used to determine statistical significance (Higgins and 
Thompson 2002).  
 
In addition to the test for heterogeneity, measures have been developed to quantify the 
magnitude of heterogeneity. The most easily interpretable one is I2, which expresses the 
percentage of between-study variability attributable to heterogeneity rather than sampling error 
(chance). I2 ranges between 0 and 100 percent;  a value greater than 50 percent may be 
considered substantial heterogeneity (Higgins and Thompson 2002; Higgins, Thompson et al. 
2003). 
 
Even when these statistical measures do not suggest significant heterogeneity, combining studies 
with very diverse outcomes produces results that are difficult to interpret.  For example, the 
outcome of mood symptoms may include depression, negative mood, anxiety, feelings of panic, 
tearfulness, or irritability; moreover, mood symptoms can be measured using various 
instruments.  Because these outcomes do not measure the same aspects of mood, combining the 
studies wouldn’t make sense.  
 
Because tests for heterogeneity are insufficient to determine similarity among studies, ultimately 
the decision to combine study results or not may be subjective and qualitative.  Investigators can 
minimize the potential for bias in these decisions by recognizing certain situations that arise 
frequently in conducting CERs and making consistent decisions in those situations.  The 
remainder of this section describes approaches to some common situations.   
 
Combining a small number of studies 
No general rule exists to decide the minimum number of studies for a meta-analysis. The main 
issue lies in the interpretation of the results.  Few will argue with the reliability of a meta-
analysis of two mega-trials (10,000 patients or more).  However, a meta-analysis of two RCTs 
with a total of 37 patients will not produce a reliable estimate.  Even if the combined estimate is 
statistically significant, the confidence interval is likely to be very wide and could change 
dramatically with the addition of more studies.  Thus, the results of meta-analyses of a small 
number of studies should be interpreted cautiously or meta-analysis should be deferred until 
more studies are available. 
 
Combining studies to examine an idiosyncratic adverse event 
If an adverse event is idiosyncratic and unrelated to patient characteristics, combining studies 
across different diseases or dissimilar populations may make sense.  For example, if the outcome 
of interest is allergic skin rash secondary to penicillin use, trials may be combined irrespective of 
the type or severity of disease in patients receiving penicillin.  In this example, the assumption is 
that there is no relationship between allergic rash and disease.  This would not be true, of course, 
for all skin reactions and all diseases (e.g., a Jarisch-Herxheimer reaction is specific to syphilis).  
 
This approach is most credible when there is prior reason to believe that the adverse effect is not 
related to underlying patient characteristics and where pooling clinically diverse studies would 
provide power to detect and quantify a relatively uncommon effect than cannot be detected in 
individual studies.  In another example, Bohlius and colleagues conducted a meta-analysis to 
compare the effect of erythropoietin and darbepoetin on hematologic responses, red blood cell 
transfusions, thromboembolic events, and overall survival by combining patients with various 
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types of cancer (Bohlius, Langensiepen et al. 2005).  Combining studies enrolling different 
cancer patients for hematologic outcomes and red blood cell transfusions is reasonable as long as 
the hematologic response is not related to cancer type—this may apply to different solid tumors 
but not to combining solid tumors and hematologic malignancies.  Combining various cancer 
patients for thromboembolic event and overall survival isn’t appropriate, however, because of the 
association between both mortality and thrombotic risk vary substantially with different cancer 
types. 
 
Combining studies when selective reporting is suspected 
Sometimes, the outcome of interest is reported in only a minority of otherwise eligible studies 
and is incompletely reported, or not reported at all, in the remaining studies. Providing a 
summary of a highly biased sample of studies may be misleading 
 
In particular, adverse events are usually not as systematically reported as efficacy and 
effectiveness measures.  (Gotzsche 1989; Hayashi and Walker 1996; Ioannidis and Lau 2001; 
Ioannidis and Lau 2002).  Empirical evidence suggests that such nonreporting (and incomplete 
reporting) may be selective and guided by the nature of the findings for the pertinent outcomes 
(Chan, Hrobjartsson et al. 2004; Chan and Altman 2005; Chan, Krleza-Jerić et al. 2005).  
Secondary outcomes are more likely to be inconsistently or incompletely reported.  Although 
primary outcomes are almost always reported, some studies may report only favorable outcomes 
at a selected time point. 
 
Reviewers have two options in dealing with this problem. They can refrain from presenting a 
summary estimate that is likely to be misleading and qualitatively summarize the available 
evidence.  Even without a pooled estimate, however, users may try to get an overall estimate 
using a crude calculation, which may be as misleading as a meta-analysis summary estimate. 
Alternatively, reviewers may perform a meta-analysis of the available data and provide a 
summary estimate, along with appropriate cautions that this result may have  limited 
applicability.  If analysts suspect selective nonreporting, they may use a sensitivity analysis to 
assess how biased the summary estimate may be.  Such calculations may be done by modeling 
the process of selective nonreporting (Williamson and Gamble 2007) and are similar to 
sensitivity analyses for the impact of publication bias and other selection biases.(Copas and 
Jackson 2004)  However, Williamson’s method has not been validated with real (nonsimulated) 
data. 
 
As noted above, the Food and Drug Administration Amendments Act of 2007 mandates 
inclusion of results of trials of approved drugs and devices in the U.S. government’s clinical trial 
registry, http://www.clinicaltrials.gov.  The legislation gives the National Institutes of Health 
until September, 2008, to implement this requirement.  When it is implemented, routine 
searching of Clinicaltrials.gov will improve our ability to compare published results with the 
protocol of the study as originally planned.  This will provide a more objective way to determine 
if trials selectively reported only some of their intended outcomes.    
 
Combining studies that use composite outcomes 
Composite outcomes need to be viewed carefully in meta-analysis.  Composite outcomes bring 
together two or more events to be considered as a single outcome.  The events could be from the 
same domain—for instance, cardiovascular events such as cardiovascular mortality, non-fatal 
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myocardial infarction, and revascularization.  They also can be from different domains with a 
common cause—for example, a composite endpoint of adverse drug events may include 
gastrointestinal effects and headache.  Finally, they may reflect a common endpoint caused by 
competing factors—for example, all-cause mortality following coronary artery bypass includes 
perioperative deaths as well late cardiac deaths (which may be reduced by surgery). 
 
Two situations need to be distinguished here:   (1) meta-analysis of composite outcomes reported 
by the primary studies and (2) meta-analysts creating composite outcomes out of individual 
outcomes reported by primary studies. In a meta-analysis, one should consider only composite 
outcomes that are generally agreed upon and in wide usage by the primary studies. Here, creating 
de novo composite outcomes should be avoided. 
 
A composite outcome has the advantage of better statistical power, but it has to make clinical 
sense.  Analysts evaluating the appropriateness of using a composite outcome must take the 
research question into consideration.  A composite outcome with events from the same domain 
may be justifiable in certain cases, as when included studies reported rare but related adverse 
events.  By contrast, a composite outcome with events from different domains is generally 
avoided.  A statement that an intervention reduces a composite outcome of cardiovascular 
mortality, myocardial infarction, and revascularization is appropriate if the intervention has 
similar effect on each of these events.  Conversely,  it is misleading if revascularization 
procedures were more common outcomes than were death or infarction, or if the intervention had 
a large apparent treatment effect on revascularization but not on death or infarction (Freemantle 
and Calvert 2007). 
 
Combining studies with different comparators 
Even when populations and the intervention under study are homogeneous, comparators may not 
be.  For example, trials might use a “usual care” comparator, a specified comparison therapy, or 
a placebo group comparator.  Not only are these distinct kinds of control groups, but “usual care” 
may differ across settings and countries or over time.  The assumption that all comparators are 
similar enough to combine needs to be carefully considered.  
 
In another situation, a co-intervention is added in all comparison arms of some studies but no co-
interventions (or different co-interventions) are added in other studies.  For example, 
anticoagulation might be added to both arms in a trial that compares drug-eluting stents with bare 
metal stents.  More generally, the group of trials comparing A vs. B could be described as one 
group of studies of A + X vs. B + X; others with A+Y vs. B+Y, and so on.  Summarizing studies 
with different comparisons makes the implicit assumption that no interactions occur between the 
common added components X or Y and any of the interventions of interest.  This assumption 
needs to be evaluated before quantitative synthesis.  This type of interaction applies to evaluation 
of harms as well. 
 
A special, common case is when the comparators are different drugs in the same class. This 
situation is discussed briefly in the context of pooling studies of adverse effects (Chapter 8).  
Analysts need to consider both the similarity of the comparator drugs and their dosing before 
deciding to pool different trials.    
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Choice of Effect Measures 
 
Box 9.2 Key Points (Choice of Effect Measures)  
 
For dichotomous outcomes, relative effects metrics (i.e., relative risk, odds ratio) are generally 
more appropriate for meta-analyses than the risk difference.  The risk difference may be 
considered when the control rates are reasonably similar. 
 
When using a relative measure, the risk or rate differences should be calculated using the 
combined relative effect measure and control (comparison) event rate. 
 
Use hazard ratios for meta-analysis of time to event data. 
 
Effect measures quantify differences in outcomes between treatments in trials or exposure groups 
in observational studies.  Effect measures can be broadly classified in two ways: (1)   absolute, 
e.g., risk difference, rate difference, or mean difference; or (2) relative, e.g., odds ratio (OR), 
relative risk, or relative hazard ratio.  The number needed to treat (NNT) and number needed to 
harm (NNH), which are the inverse of the risk difference, may also be considered an effect 
measure.  Estimating and interpreting the NNT or NNH in a meta-analysis may not be 
straightforward, however (Altman and Deeks 2002; Cates 2002). 
 
The choice of effect measure in meta-analysis is often prescribed by two factors: 
 

1. the type of outcome data used, e.g., continuous, dichotomous, ordinal, interval, counts, or 
time to event 

2. the corresponding measure reported, e.g., mean difference or standardized mean 
difference, relative risk, rate ratio, odds ratio, risk difference, or hazard ratio.  The NNT 
(or NNH)  can be derived from the risk difference from each study but is usually not 
combined in meta-analysis because its standard error is rarely calculated or reported.  

 
Dichotomous Outcomes 
A dichotomous outcome (e.g., death, stroke, or loss of vision) is the most common type of 
outcome reported. It offers straightforward interpretation—an event has occurred or not.  The 
corresponding proportions of study participants are reported, and relative and absolute 
differences in proportions or event rates have well-defined meanings.   
 
Both absolute and relative effect measures convey important aspects of evidence.  Commonly 
used relative effect measures for dichotomous outcomes include the relative risk, incidence rate 
ratio, and odds ratio. The distinction between relative risk and incidence rate ratio is subtle and 
for practical purposes the two are similar.  Odds ratios are the only effect measure directly 
calculable from a case-control study.  The relative risk has a clear clinical interpretation as the 
ratio of two probabilities, but the odds ratio has more tractable statistical properties.  Odds ratios 
overestimate relative risks as events in the referent or control group become common (e.g., more 
than 10 percent) (Zhang and Yu 1998). 
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Absolute measures for dichotomous outcomes, such as the risk difference, are easier for patients 
and clinicians to interpret than are relative measures (Covey 2007).  The risk difference, or 
absolute difference in risk or event rates between groups, is the basis for calculating NNT or 
NNH.   
 
Because they are easy to interpret, absolute measures such as the risk differences would be 
preferred, but some empirical evidence suggests that an absolute effect measure is usually less 
consistent than a relative measure across studies (Deeks 2002).  Relative measures (relative risk, 
odds ratio) are more likely to be homogeneous across studies, particularly when variation among 
control group rates is large.  When the control event rates are similar among trials, combining 
risk differences may be used.  When rates among control groups vary widely among studies, the 
investigators can use the relative measure, or calculate pooled estimates of both measures to see 
whether pooling the risk differences introduces bias.  When meta-analysis of the risk difference 
is not appropriate, investigators can use the summary relative effect size and an applicable 
control group rate to estimate the predicted absolute difference for a specific population. 
 
Continuous outcomes 
For studies reporting outcomes on a continuous scale (e.g., blood pressure, quality of life  
measurements), measurements are typically available at baseline and one or more follow-up 
times.  The mean difference between groups at follow-up or the difference in change from 
baseline can be combined—standardized or not.  The distinction between a mean difference at 
follow-up and the difference in change from baseline is important, but it may be overlooked 
because in trials with similar baseline values their magnitudes are generally similar.   
 
The choice of effect measure to combine for continuous outcomes is determined primarily by the 
form of data available.  If multiple trials report results using the same or similar scale, mean 
differences or differences in change between groups can be combined.  Standardized effect sizes 
expressed as differences, or differences in change over time, divided by standard deviations are 
sometimes combined.  This method is typically used when outcome measures are reported in 
different scales. Although this measure can incorporate multiple scales, the results can be 
difficult to interpret.    
 
For some continuous outcomes, a small change can be judged clinically meaningful on an 
individual level; someone achieving that minimal change can be considered a responder 
(Tubach, Dougados et al. 2006). Under these circumstances, a fundamental limitation of 
continuous effect measures is that they fail to identify the proportion of patients experiencing a 
meaningful clinical response (Senn 1997).  Analysts should avoid inferring individual responses 
from a summary weighted mean difference for a continuous outcome measure.  However, when 
a meaningful clinically important improvement has been defined, it is reasonable to estimate the 
proportion of patients responding with a meaningful difference in a continuous outcome 
measure. 
 
In the QOL literature, simulation studies suggest that a relationship can be found between the 
standardized effect size, minimally important difference, and NNT (Norman, Sridhar et al. 2001; 
Schunemann, Jaeschke et al. 2006). The relationship is based on normality assumptions and does 
not consider whether response varies with different baseline values.  Furukawa developed a table 
converting standardized effect size to NNT when a response rate is known for one arm of a trial 
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(Furukawa 1999).  The conversion assumes normally distributed data with equal variances in 
each arm.  Furukawa and colleagues also suggest an imputation method (Furukawa, Cipriani et 
al. 2005).  Still, our understanding of the relationship between continuous effect measures and 
clinical response is not complete and requires analysts to make certain assumptions. That is, 
inferring clinical response from differences in combined continuous outcomes may be explored, 
but the methods have not been well scrutinized and should therefore be applied carefully.   
 
Table 9.1 illustrates considerations involved in choosing an effect measure.  The investigators 
included eight trials examining the efficacy of an intervention for treating knee osteoarthritis.  
Pain was measured on a 100mm visual analogue scale (VAS) (0 for no pain and 100 for the 
worst imaginable pain) at baseline and following treatment.  Although the trials reported only 
mean changes, using simulated data they were able to explore relative and absolute effects with 
response defined by a 20mm or greater decrease in VAS pain—a magnitude representing a 
minimum clinically important improvement (Tubach, Ravaud et al. 2005). All combined results 
were estimated from random effects models. 
 
Table 9.1 Different effect measures and magnitudes combined from simulated data based 
on eight trials assessing treatment efficacy for knee osteoarthritis on a 100 mm visual 
analog scale; response for relative and absolute effects defined by > 20 mm 
improvement.    

Relative and Absolute Effects Effect 
Magnitude 95% CI P-value 

Weighted Mean Differences (mm)    
Post-test difference -11.8 -22.2 to -1.3 0.03 
Difference in change -11.6 -21.5 to -1.7 0.02 
     
Standardized Mean Differences    
Post-treatment difference -0.57 -1.21 to 0.08 0.09 
Difference in change -0.57 -1.16 to 0.02 0.06 
    
Relative Effect Measures    
Odds Ratio 1.78 0.73 to 4.31 0.20 
Relative Risk 1.27 0.90 to 1.78 0.17 
    
Absolute Effect    
Risk Difference* 0.13 -0.07 to 0.32 0.20 
*For illustration only.  Generally the risk difference should not be combined. 
 
The various effect measures differ in magnitude and levels of statistical significance, and they 
may convey different meanings.  For example, the combined mean difference in change of 
11.6mm is statistically significant but accompanied by a wide confidence interval.  The 
corresponding standardized effect size (-0.57) is modest in magnitude and did not reach 
statistical significance at the 0.05 level.  Neither relative risk nor risk difference was statistically 
significant and the odds ratio overestimated the relative risk substantially.  Conclusions and 
clinical interpretations could vary based on the choice of effect measure.   
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Time to events 
The effect measure for analyzing time-to-event or survival data is the hazard ratio (HR). The 
hazard ratio, an estimate of the relative risk, is also referred to as the relative hazard (RH).  
 
Probably the most common survival analysis yielding a HR is the Cox proportional hazards 
model.  The model assumes that the HR is constant over time, yielding a single value for a given 
study.  Studies reporting a HR from the model should state explicitly whether or not the 
proportional hazard assumption was satisfied.  However, a HR may not always be available or 
explicitly reported.  Commonly, event rates are reported at various times during follow-up.  
Under such circumstances, the HR and its variance can be calculated if observed and expected 
events can be extracted (Parmar, Torri et al. 1998).  
 
Choice of Model for Combining Studies 

Box 9-3 Key points (Choice of Model for Combining Studies)  
 
Broadly speaking, two types of model are available to combine studies:  fixed effects model 
and random effects model. Both types of models can be used to combine effect measures for 
dichotomous data, continuous data or time -to -event data.  
 
A  fixed effects model assumes a single treatment effect across studies, and provides the best 
estimate of the treatment effect, if there were a single common treatment effect. 
 
A random effects model assumes that the treatment effects across studies follows some 
distribution and the combined estimate is the center and most likely estimate of the distribution 
of treatment effects.  
 
Choice of a model should not be solely based on tests of heterogeneity.  
 
A random effects model is generally preferred  since clinical and methodological diversity are 
inevitable among included studies.  
 
For rare dichotomous outcomes, a  fixed effects model, such as Peto odds ratio, or the 
Mantel-Haenszel method, is preferable to inverse variance syntheses and to some random 
effects models. 
 
For rare or zero events, use relative measures and include studies with zero events in one 
arm in the meta-analysis. The relative measure can be estimated with the addition of 0.5 or 
alternative values as a correction factor.    
 
Studies with 0 events in both arms should be excluded from the main analyses but should be 
summarized quantitatively. 
 
Sensitivity analyses using both  fixed effects and random effects model may be conducted to 
examine how model choice affects the combined estimates and conclusions.  

Meta-analysis can be performed using either a fixed or a random effects model. A fixed effects 
model assumes a single treatment effect across studies, whereas the random effects model 
assumes that the treatment effects across studies are not identical but rather follow some 
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distribution. A common assumption is that the distribution is normal. The combined effect 
estimate from a fixed effects model is usually interpreted as being the best estimate of the 
treatment effect, if in fact a single common treatment effect exists.  From random effects 
analysis, the combined estimate represents the center of the distribution of treatment effects, the 
most likely estimate from within the distribution of treatment effects.  
 
Generally, a fixed effects model should not be used in the presence of significant heterogeneity. 
Moreover, some argue that clinical and methodological diversity is always present across studies 
and that variation among studies is inevitable whether or not the test of heterogeneity detects it. 
Therefore, random effects models are often suggested as preferable to fixed effects models.   
When heterogeneity is present, a random effects model gives more weight to smaller studies, and 
it incorporates the unexplained heterogeneity across studies in estimating the confidence interval 
of the combined estimate to produce a wider confidence interval than a fixed effects model will 
produce.  When no statistical heterogeneity is present among studies, the random and fixed 
effects models yield identical or near-identical results.  
 
A common criticism of the random effects model is that it is difficult to validate the assumption 
that treatment effects are normally distributed, especially when the number of studies is small 
(although there is no commonly accepted rule as what number is too small).  When the results of 
small studies are systematically different from the results of the large ones, which can happen 
because of publication bias or differences in study quality between small and large studies, a 
random effects model will accentuate bias (Poole and Greenland 1999; Kjaergard, Villumsen et 
al. 2001).  In this case, where the normality assumption is not justified, a fixed effects model 
would provide a less biased effect estimate, but it is not entirely appropriate either. In this 
situation, as suggested by the Cochrane handbook (Higgins and Green 2005), it may be wise not 
to present any summary estimate; alternatively, one can perform a sensitivity analysis excluding 
small studies or studies with poor quality. For dichotomous outcomes, when the events are rare, a 
random effects model would provide a biased estimate of between-study variance. The Mantel-
Haenszel method will provide a more robust estimate of combined effect, at the cost of 
disregarding the observed heterogeneity.  
 
Both fixed and random effects models can be used to combine dichotomous measures. A 
marginal analysis to estimate a summary effect size—that is, summing all events in each 
intervention across all studies and treating all studies as a single mega-study, or not including  
the study strata in a logistic regression—is generally not correct.  The marginal approach 
neglects the differences among studies and the possible confounding effect by the study strata.  
 
Fixed effects model 
Several fixed effects methods are commonly used to combine effect measures for dichotomous 
outcomes:  the Mantel-Haenszel method, the inverse variance method, the Peto method, and 
logistic regression. The latter two methods apply only to combining odds ratios.  
 
Both the Mantel-Haenszel and the inverse variance methods can be used to combine odds ratios, 
relative risks, and risk differences. When studies report only few events, the Mantel-Haenszel 
method works better than inverse variance and has better statistical properties. In other situations 
the two methods give similar estimates. Logistic regression also works similarly to the Mantel-
Haenszel method. The Peto method can be used only to combine ORs.  It works well when 
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treatment effects are small (i.e., odds ratios are close to 1), events are not particularly common, 
and the trials have similar numbers in experimental and control groups.  
 
In short, the Mantel-Haenszel method is a better choice than the other approaches in most cases. 
EPCs should keep in mind that for the inverse variance method, odds ratios and relative risks 
need to be log-transformed before they are combined, and combined odds ratios and relative 
risks are obtained by transforming the combined estimate back to its original scale.  
 
Random effects models 
Random effects models incorporate variation among studies into the estimate of the combined 
effect measure, and the combined estimate has a wider confidence interval. The most commonly 
used method was proposed by DerSimonian and Laird (DerSimonian and Laird 1986).  The 
DerSimonian and Laird approach is a variation of the inverse variance method;  it adjusts the 
weight to incorporate heterogeneity across studies.  
 
Alternative estimates are derived by using simple or profile likelihood methods. The 
DerSimonian and Laird method does not adequately reflect the error associated with parameter 
estimation, especially when the number of studies is small. The profile likelihood method usually 
provides an estimate with better coverage probability and should be used when possible 
(Brockwell and Gordon 2001).  
 
For odds ratios, a logistic random effects model could be used to combine results, although it 
may underestimate the uncertainty (Smith, Spiegelhalter et al. 1995). 
 
Combining continuous outcomes 
For a fixed effects approach to combine continuous outcomes, analysts should generally use the 
inverse variance method. For random effects models, a DerSimonian and Laird approach or 
likelihood approaches can be used.  
 
Combining counts, rates, or time to event outcomes 
These outcome measures are often expressed as risk ratio (count data), rate ratio (rate data) or 
hazard ratio (time to event). These measures are comparable in most cases. Both fixed effects 
(inverse variance method) and random effects models (DerSimonian and Laird, likelihood 
methods) could be used.  
 
Bayesian models 
Both fixed and random effects models have been developed within a Bayesian framework for 
dichotomous and continuous outcomes. The Bayesian fixed effects model provides good 
estimates when events are rare for dichotomous data (Sweeting, Sutton et al. 2004).  A full 
Bayesian random effects model takes account of uncertainty in all parameters. For complex 
meta-analyses, the Bayesian methods can provide a flexible modeling framework.  
 
The main criticism of Bayesian meta-analysis is that the specification of prior distributions is 
subjective.  When the prior distributions are noninformative, Bayesian estimates are usually 
comparable to estimates using conventional methods.   
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Choice of model for sparse data (rare dichotomous outcomes). 
When the outcome of interest is relatively rare, few or zero events may occur in one or both arms 
in several studies. Examples include an important but uncommon adverse event or mortality in 
populations with low baseline risk. In these cases,  the normal approximation to the binomial 
distribution does not hold, and commonly used meta-analysis methods may not yield correct 
confidence intervals (Sweeting, Sutton et al. 2004; Bradburn, Deeks et al. 2007).   
 
This situation occurs frequently when trials designed to test efficacy are pooled to estimate the 
rate of rare adverse events.  Although such trials usually have smaller sample sizes, systematic 
reviewers should recognize that the presence of a large number of such trials could result in a 
distorted estimate of harms because a substantial number of patients experiencing no events have 
been excluded from the analyses (Nissen and Wolski 2007).  Unless individual patient data are 
available for analysis, such trials are often excluded from pooled estimates of harms because a 
relative risk or odds ratio cannot be calculated (Table 9.2.  Meta-analysis methods that utilize the 
effect sizes of each study—such as the fixed effects inverse variance method or the DerSimonian 
and Laird random effects method—necessitate the use of correction factors. The Mantel-
Haentszel method, the Peto method, and Bayesian approaches do not explicitly need the addition 
of a correction factor in studies with zero events.  
 
Table 9.2  Effect sizes that become inestimable if there are zero events and no correction 
factors are used. 

Situation Effect size Standard error 
logOR LogRR RD logOR LogRR RD 

Zero 
events in 
one arm 

Not 
estimable 

May be not 
estimable* 

Estimable Not 
estimable 

Not 
estimable 

Estimable** 

Zero 
events in 2 
arms 

Not 
estimable 

Not 
estimable 

Estimable 
(0) 

Not 
estimable 

Not 
estimable 

(0)** 

RD=risk difference, OR, odds ratio, RR, relative risk 
* depending on whether the 0 gets in the denominator of the RR 
** Normal approximation does not apply in this situation.  Therefore, one cannot use this 
standard error estimate to calculate 95% CI based on a normal distribution. 
 
Rare events.  For nonzero rare events (event rate < 1 percent), the Peto odds ratio method 
provides combined estimates that are least biased and have best confidence interval coverage.  
This is true provided that no substantial imbalance exists between treatment and control group 
sizes within trials and that treatment effects are not exceptionally large. The bias in the Peto 
method is evident in extreme imbalances (e.g., 8:1) and for large effects (e.g., OR <=0.2 or 
OR>=5) (Greenland and Salvan 1990 ). These circumstances are not likely to be observed in 
most medical meta-analyses of medical interventions.  
 
For more frequent events (rates ~5 percent), the Mantel-Haenszel OR method and logistic 
regression perform similarly, and they are less biased than the Peto method.  For the risk 
difference, both Mantel-Haenszel method and the inverse variance method provide biased 
combined estimates, with conservative confidence interval coverage and low statistical power;  
for that reason, these methods are unsuitable for meta-analysis of rare events (Bradburn, Deeks et 
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al. 2007). This advice also applies to studies with zero events in either one arm or both arms. 
Other measures are better choices for rare events, based on current evidence.  
 
Zero events in both arms.  When both arms have no (zero) events, the relative measures (OR 
and RR) cannot be defined.  Some experts consider these studies to be noninformative and 
propose excluding them from the calculations (Sweeting, Sutton et al. 2004; Bradburn, Deeks et 
al. 2007).  However, others consider including such “zero” studies in the analyses to be 
important (Sankey, LA et al. 1996; Friedrich, Adhikari et al. 2007) because excluding them 
biases the results in the direction of a higher event rate. This approach accords with the general 
preference that all available data be used. 
 
If the sample sizes are small, including or excluding such studies does not change the summary 
effect size (OR or RR) appreciably because they receive very small weight in the synthesis.  
Nonetheless, inferential changes may be observed (Friedrich et al. BMC Med Res Methodology 
2007).  When EPCs use relative measures in a CER, they should exclude studies without any 
events from the main analyses. The excluded studies could be qualitatively summarized, as in the 
hypothetical example below (Table 9-3), to provide information on the confidence interval for 
the proportion of events in each arm. In addition, in sensitivity analysis reviewers can add these 
studies and look for any changes in the magnitude or the variance of the summary effect or in 
heterogeneity estimates and testing.  
 
Table 9-3 Qualitative summary of studies with no events in both groups 

 Intervention A Intervention B 
Studies with zero 
events in both 
arms 

Counts 95% exact confidence 
interval for the proportion 
of events   

Counts 95% exact confidence 
interval for the proportion of 
events   

Study 1 0/10 (0, 0.31) 0/20 (0, 0.168) 
Study 2  0/100 (0, 0.036) 0/500 (0, 0.007) 
Study 3 0/1000 (0, 0.004) 0/1000 (0, 0.004) 
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Explore Heterogeneity 
Subgroup Analyses 
Subgroup analyses are encouraged to explore causes of heterogeneity.  Unfortunately, subgroup 

analyses are often misused leading to 
inferential leaps and 
overinterpretation that may result in 
erroneous conclusions (Yusuf, Wittes 
et al. 1991; Oxman and Guyatt 1992; 
Assmann, Pocock et al. 2000; 
Pocock, Assmann et al. 2002; 
Rothwell 2005; Hernandez, Boersma 
et al. 2006). 
 
The qualitative difference between 
subgroups defined a priori or  a 
posteriori in a clinical trial or an 
observational study is substantial.  To 
a certain extent this distinction 
pertains to other research designs as 
well. For CERs, a priori (ad hoc) 
specified subgroup analyses are those 
that are decided on during the 
planning of the systematic review 
and before data analysis has 
occurred.  Factors that are expected 
to account for clinical or 
methodological heterogeneity are 
typically included in such analyses 
(e.g., differences in populations, 
differences in the interventions or 
their comparators, or variability in 
the study design). Good knowledge 
of the clinical and biological 
background of the topic and key 
questions is important in delineating 
a succinct set of useful and 
informative subgroup analyses. 
Ideally, the most important subgroup 

analyses are laid out in the key questions of the systematic review or CER  after careful 
consideration of the topic and taking into account information from  outside experts and previous 
reviews. Common examples of factors that are considered in subgroup analyses are age 
categories, sex, and other topic-specific factors such as device type, site of lesion, or disease 
severity. 

Box 9-4.1.  Key Points (Heterogeneity and 
Subgroup Analysis) 
 
Explore heterogeneity using one or more of the 
following methods: subgroup analysis and meta-
regression with sensitivity analyses. 
 
Consider excluding studies. This is a useful approach 
when heterogeneity is caused by one or two “outlier” 
studies.  A clear and defensible rationale should be 
provided for identifying “outlier” studies.  
 
Distinguish between pre-specified and post hoc 
subgroup analyses. When possible, use pre-specified 
subgroup analyses based on the key questions to 
explore heterogeneity.  
 
Be as rigorous in the subgroup analyses as in the 
primary analyses. One should become familiar with 
the data, assess them for systematic differences in 
the effects at different control rate and assess the 
impact of additional factors on outcomes. 
 
Be conservative in the interpretation of subgroup 
differences. Between-subgroup differences may be 
due to chance (data-dredging) and biases (e.g., 
ecological fallacy, outcome reporting bias).   
 
If the results of subgroup analysis are to be 
considered valid, they should be clinically plausible 
and supported by other external or indirect evidence. 
 
The use of random effects meta-regression is 
preferred to check for subgroup differences. 
Alternatively, a z-score can be used to compare 
between-subgroup effects. 

 
Analyses of subgroups defined a posteriori (post hoc) are those that are guided by the data.  
Typically, they are those suggested only after preliminary analysis. Such analyses are potentially 
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a form of data dredging (Yusuf, Wittes et al. 1991; Oxman and Guyatt 1992), and they may 
result in uncontrolled type I error, i.e., false-positive associations (Yusuf, Wittes et al. 1991; 
Oxman and Guyatt 1992; Rothwell 2005). 
 
However, meta-analysis is usually a retrospective design. In contrast to a randomized study,  the 
actual data are often known to a greater or lesser extent when the analyses are being planned.  
Indeed, for some topics, the reviewers may be more or less familiar with the individual studies. 
Therefore, the distinction between pre- and post-specified subgroup analyses may not be that 
clear. For example, someone who is very familiar with a set of studies may be in a position to 
recognize a strong pattern between studies with different characteristics before performing the 
actual meta-analysis. Two teams that perform essentially the same effectiveness review might, 
therefore, consider the same subgroup analysis differently: it may be specified a priori  by one 
team and post hoc by the other team. Similarly, a post hoc subgroup analysis in an early meta-
analysis may be specified as an a priori analysis in its update; unless the update is extensive and 
substantial, the qualitative distinction between the two kinds of subgroup analysis is less clear.  
 
Therefore, these distinctions may not be that clear for CERs.  As a general rule, differences 
among subgroups (specified either a priori or a posteriori) should be clinically plausible and 
supported by other external or indirect evidence, if they are to be convincing.  
 
Subgroup analyses may be performed with various strategies. First, reviewers may derive the 
summary effect measures in each subgroup and then compare the subgroups pair-wise using z-
scores, calculated as the difference in the effect size divided by its standard error. For more than 
two subgroups, an ANOVA (analysis of variance) could be used.  
 
Subgroup analyses should follow a process that is as rigorous as that in the primary analysis. The 
analyst should begin with graphical assessments of the data and evaluate systematic differences 
in the effect size across different control rates. Alternatively, one may perform the subgroup 
analyses in the context of meta-regression where the subgroup variable is coded as an indicator 
variable. In meta-regression (discussed below), more than two subgroups can be assessed in the 
same analysis.  
 
Meta-regression 
As noted in the section on heterogeneity, meta-regression is a valuable tool to investigate the 
contribution of specific factors to between-study heterogeneity.  In a meta-regression, the effect 
size, for example the (log) odds ratio, is regressed against study characteristics such as dosages, 
durations of treatment, proper blinding, and patients’ characteristics such as demographic factors 
or severity of illness. 
Without the benefit of 
individual patient data, 
these meta-regression 
models must rely on the 
summary results of 
published studies. These 
summary results describe 
only between-study, not 

Box 9.4-2.  Key Points (Meta-regression) 
 
Use pre-specified factors (see Box 9.5-1). 
 
Meta-regressions on summarized patient-level covariates such 
as mean age, proportion of males, may provide useful insight. 
Interpretation of the findings should be conservative, because 
of the potential ecological fallacy.  
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between-patient, variation in the risk factors.  For that reason, they are most useful for 
characteristics that differ across studies and that are shared by all participants in the same study.  
 
Study-level versus patient-level predictors in meta-regressions.  Meta-regression models describe 
associations between the summary effects of a study and study-level data. There are two distinct 
types of study-level data: (1) study-level factors that apply equally to all patients in a study, and 
(2) study-level summary statistics representing the aggregate of individual patient-level data 
(Lau, Ioannidis et al. 1998; Schmid, Lau et al. 1998; Schmid, Cappelleri et al. 2004). Examples 
of the former are study design, timing of measurement of variables (e.g., time of measurement of 
serum creatinine), and definition of outcomes. Examples of the latter are mean age, the mean 
baseline serum creatinine value for all patients, and the percentage of diabetic patients.  
 
Meta-regression on a study-level factor that has the same value for all patients in a study is 
mathematically equivalent to one based on individual patient data. On the contrary, this is not 
true for a meta-regression on summaries of patient-level factors (Schmid, Cappelleri et al. 2004).  
 
Ecological fallacy.  A meta-regression on summarized patient-level factors may be subject to 
ecological fallacy, a phenomenon in which associations present at the patient level are not 
necessarily true at the study level.  This problem arises because the summary statistic does not 
necessarily adequately describe the individual values of each patient (Lau, Ioannidis et al. 1998). 
First, group averages among studies may vary only by a little even though the range within each 
study is wide.  For example, in many studies the average age of patients is very similar even 
though the age range in some studies is wide. When a study-level variable has a small range, a 
regression analysis has trouble picking up an association. Second, the group average may not 
account for within-study variation. Two studies may have the same average but very different 
distributions of values with different implications for the outcome.  
 
In summary, meta-regressions on study-level covariates may provide useful insight and help 
formulate hypotheses.  They should be interpreted with caution, however, taking into account the 
aforementioned caveats.  
 
A note on selecting factors in meta-regression analyses.  Ideally, factors included in meta-
regressions should be prespecified.  Prespecifying characteristics reduces the likelihood of 
spurious findings by limiting the number of factors to analyze and preventing knowledge of the 
trials’ results from influencing the choice of factors analyzed.  True prespecification ideally 
occurs when the key questions are formulated. However, in doing the qualitative synthesis of 
studies, reviewers may identify factors that they did not think of prior to starting the study.  Such 
factors can be included in a meta-regression, but investigators should state clearly that they were 
not prespecified. 
 
How many studies are needed for a meta-regression?  There is no single correct answer to 
this question. Meta-regressions are weighted linear models, not ordinary least squares 
regressions. Empirical research studies have employed a minimum of six studies for a meta-
regression (Schmid, Lau et al. 1998), although there was no definitive methodological reason 
behind that choice (i.e., the authors opted for at least 4 degrees of freedom in their meta-
regressions).   
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Caveats on the use of meta-regression for subgroup analyses.  Many characteristics that 
might have important effects on the outcome may not be able to investigated with meta-
regression due to inadequate data. Certain important risk factors may be reported in only a subset 
of studies. Analysis of this subset alone reduces the ability to find associations because of the 
loss of statistical power, but it can lead to bias if studies were more likely to report risk factors 
when an association with an outcome was found.  
 
Meta-regression also cannot handle factors that vary by patient within studies. These patient-
level factors, such as age or diabetes status, can be included in meta-regression only using study-
level summaries, such as mean age or percentage of subjects who are diabetic. Associations 
present at the patient level will not necessarily be seen with study-level data.   
 
Most random effects meta-regression models assume that between-study heterogeneity (τ2) is 
common across all “subgroups” defined by the explanatory variables. If this is not true, then the 
power to detect significant associations may diminish; this situation is analogous to the t-test 
with equal vs. unequal variances. In such cases, results obtained with the simple z-score method 
and results obtained from a meta-regression may differ.   
 
Appropriate interpretation of subgroup analyses and meta-regressions requires caution. Subgroup 
analyses and meta-regressions are entirely observational in nature. These analyses investigate 
differences among trials, and although individuals are randomized to one group or other within a 
trial, they are not randomized to go in one trial or another. Hence, subgroup analyses suffer the 
limitations of any observational investigation, including possible bias through confounding by 
other trial-level characteristics. Further, even a genuine difference among subgroups is not 
necessarily a result of the classification of the subgroups. 
 
Control Rate Meta-regressions 
Patients at different baseline risks may experience different benefits and harms (Glasziou and 
Irwig 1995). For studies with dichotomous outcomes, the event rate in the control group 
(“control rate”) is affected by disease severity, concomitant treatments, follow-up duration, and 
other factors that may differ across studies (Lau, Ioannidis et al. 1998; Schmid, Lau et al. 1998).  
In an empirical evaluation,  control rate effects were seen in 14 percent, 13 percent, and  31 
percent  of 115 meta-analyses of dichotomous outcomes when the measure of choice was the 
odds ratio, the risk ratio, or the risk difference, respectively (Schmid, Lau et al. 1998).  The 
differences in the proportions between the relative measures (odds ratio, risk ratio) and the 
absolute measures (risk difference) are not surprising: a risk ratio of 1.5 corresponds to very 
different risk differences at various levels of baseline risk (0.5 percent at a 1 percent control rate, 
and 5 percent at a 10 percent control rate).   
 
Box 9-4.3.  Key concepts (Control Rate) 
 
• Always examine the relation of effect size to control rate differences, which may reflect the 

difference in patient characteristics. 
• Results are measure-specific, so assess control rate effects with the effect size measure 

you plan to use.  
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• Use graphical methods to assess how control rates influence the treatment effects.  forest 
plots ordered by increasing control rate, L’Abbe plots, or scatter plots of the point estimates 
of the effect size versus the control rate (a smoothed line may offer additional insights) 

 In forest plots and scatter plots, search for a systematic change in the effect size at 
  different control rates. 
 In L’Abbe plots, note whether the line that connects the points of the estimates does 
  not pass through (or near) the origin.  
• For formal inference, use a simple weighted regression of the effect size on the control rate.  
 If the slope is not significantly different than 0, it is most likely that the formal methods 
  would agree.   
 If the slope is significantly different than 0, advanced methods must be used to obtain 
  the correct level of statistical significance (see text).  
 
Technical issues arise in the assessment of control rate effects because of the regression-to-the-
mean phenomenon (Schmid, Lau et al. 1998; Sharp and Thompson 2000; Thompson and Higgins 
2002).  The control rate is correlated with the effect size, because effect size is calculated using 
information on control rate (McIntosh 1996; Thompson, Smith et al. 1997).  For this reason, 
simple weighted regressions tend to identify significant control rate effects twice as often as 
more suitable approaches (Schmid, Lau et al. 1998).  Formal approaches to this problem include 
hierarchical meta-regression models (Schmid, Lau et al. 1998) and Bayesian meta-regressions 
(Thompson, Smith et al. 1997). 
 
Graphs are valuable to assess the presence of control rate effects. L’Abbe plots, cumulative 
meta-analyses that order studies by their control rate, or even scatter plots with smoothed 
interpolation lines may be used. A quick way to assess the presence of control rate effects uses 
simple regressions of the effect size on the control rate. A negative finding with a simple 
regression would be most likely replicated by the more complicated methods; a positive finding 
would need to be verified by a more comprehensive method.  As always, EPCs should not rely 
automatically on the formal significance levels; rather, they should critically evaluate all 
findings.  
 
Indirect Comparisons 
Placebo-controlled trials can be helpful for evaluating absolute rates of benefits and harms 
associated with an intervention.  However, evidence from head-to-head comparisons is always 
preferable to adjusted indirect analyses from placebo or active-controlled trials for evaluating 
comparative efficacy and harms.  
 
For indirect analyses to be reliable, studies should be similar in terms of quality, factors related 
to applicability (population, interventions, settings), measurement of outcomes, and incidence of 
adverse events (Bucher, Guyatt et al. 1997; Song, Altman et al. 2003; Glenny, Altman et al. 
2005; Chou, Fu et al. 2006). 
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In addition, formal methods for adjusted indirect comparisons incorporate additional variance to 
account for increased uncertainty when combining different sets of data, which frequently render 
apparent differences in estimates nonsignificant (Bucher, Guyatt et al. 1997; Glenny, Altman et 
al. 2005).  A more informative approach would be to explore reasons for the discrepancies in 

rates of arrhythmias in 
the control arms and how 
they may have affected 
results. 
 
Qualitative and 
informal indirect 
comparisons  
Informal indirect 
comparisons (e.g., 
concluding that 
intervention A is safer 
than intervention B 
because confidence 
intervals relative to 
placebo do not overlap) 
should be avoided, as 
they assume that 
conditions for reliable 
indirect comparisons are 
met.  A naïve 
comparison—studying A 
vs. B by obtaining the 
summary event rates in A 
from one set of RCTs 
and comparing them with 
the summary event rates 
in B from another set of 
RCTs—is generally 
wrong. This naïve 

method ignores the randomized nature of the data, and it is subject to a variety of confounding 
factors. The confounders will bias the naïve estimate for the indirect comparison in an 
unpredictable direction and with uncertain magnitude (Song, Altman et al. 2003).  For example, 
a meta-analysis of COX-2 selective NSAIDs found rofecoxib associated with an increased risk 
of arrhythmia compared with control treatments; celecoxib was not (Zhang, Ding et al. 2006).  
However, the rate of arrhythmia in the control arms was 10-fold higher (0.27 percent or 18 of 
6,568 subjects) with celecoxib than with rofecoxib (0.02 percent or 2 of 10,174 subjects).  An 
implicit or naive indirect comparison about relative safety of celecoxib compared with rofecoxib 
is likely, therefore, to be problematic.  

Box 9-5.  Key points (Indirect Comparisons) 
 

• In the absence of sufficient direct head-to-head evidence, 
indirect comparisons can be considered as an additional 
analytic tool. How reliable results are, however, is 
uncertain and interpretations of findings must be made 
carefully with the limitation of indirect comparison in mind. 

• Indirect comparisons have limitations under real world 
conditions.  The validity of adjusted indirect comparison 
method depends on the consistency of treatment effects 
across a set of studies. 

• Simple methods (such as Bucher) for making adjusted 
indirect comparisons have been validated with extensive 
simulations and can be easily implemented in commonly 
used statistical packages such as R, S-plus, Stata or SAS. 
These are the methods of first choice. 

• Do not use unadjusted indirect comparisons of outcomes, 
which are subject to confounding effects from factors that 
differ between compared groups (e.g. severity of disease, 
control event rates). 

• Avoid overstating findings based on qualitative indirect 
comparisons.  A qualitative indirect comparison may be 
useful when there is a large degree of overlap in 
confidence intervals.  

• Decisions regarding the number of studies needed should 
be made on a case-by-case basis, depending on sample 
sizes and event rates.  

• If results from direct and indirect evidence conflict, 
evaluate the studies’ similarities and dissimilarities.  

 
Investigators often make judgments on the indirect comparison between A and B by observing 
the effects of A vs. C and B vs. C, respectively.  They may then use the degree of overlap in the 
confidence intervals of A vs. C and B vs. C to claim “similar” effects for A and B against a 
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“common” comparator and therefore “equivalence” of A and B.  This approach utilizes the 
summary effect sizes of A vs. C and B vs. C comparisons, but in a nonquantitative way.  The 
extent of overlap of the confidence intervals is not, however, a very reliable substitute for formal 
testing. If the overlap in confidence intervals is large, formal testing is likely to provide results 
consistent with qualitative indirect comparison. However, when confidence intervals have a 
small degree of overlap, the formal testing may show significant differences. The reverse can 
also be true.   
 
Quantitative methods for indirect comparison  
Researchers who conduct CERs often have to decide whether to employ statistical methods to 
compare competing interventions indirectly when head-to-head RCT data are sparse or 
unavailable. (Ioannidis 2006; Lumley 2002).  
 
To illustrate the situation, we consider the simple case of three interventions A, B, and C, in 
which RCTs compare A vs. C and B vs. C, but not A vs. B. Figure 9-1 depicts this situation.  
 
Figure 9-1.  A simple network of three interventions. 

  A  B 

C 

 
 
 
 
 
Solid arrows: direct (head-to-head) comparisons; dashed arrow: implied indirect comparison 
 
An acceptable way to get estimates for the indirect comparison of A vs. B is through an adjusted 
indirect comparison. The rationale behind the adjusted indirect comparisons as described by 
Bucher (Bucher, Guyatt et al. 1997) is simple and can be approached by the following thought 
experiment:  
 

• Assume that the effects of A vs. C (e.g., the RRAC of A vs. C) are invariable across all 
possible event rates in C.  

• Similarly, assume that the effects of B vs. C (RRBC) are invariable across all possible 
event rates in C. 

• The RRAB is RRAC / RRBC. 
• The variance for the indirect effect is the sum of the variances of the log direct effects 

because RRAC and RR BC are independent: 
 var(log(RRAB) = var(log(RRAC) + var(log(RRBC) 

 
This approach is a special case of multi-treatment meta-analysis (MTM) models (Gleser and 
Olkin 1994; Berkey, Anderson et al. 1996; Lumley 2002; Lu and Ades 2004).  The adjusted 
indirect comparison method relies on the invariance of the treatment effects across study 
populations and retains the benefits of randomization in the original RCTs (Bucher, Guyatt et al. 
1997; Song, Glenny et al. 2000).  Figure 9-2 outlines the principle of an adjusted indirect 
comparison. 
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Figure 9.2. Adjusted indirect comparisons  
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In one special case, the point estimate from the naïve method and the point estimate from the 
indirect method will be very similar. This would be expected when: 
 
the effects for all A vs. C studies are consistent and so are the studies of  B vs. C, and  
all studies in both comparisons have the same (or very similar) proportion of events in the C arm. 
 
Even in this case, however, the confidence interval of the “A vs. B” indirect comparison with the 
naïve method will be too narrow.  In the event EPCs ever use such an approach, this problem 
with interpretation must be addressed. 
 
Validity of indirect comparison  
Studies over the past decade have evaluated the validity and reliability of various statistical 
methods to conduct indirect comparisons (Bucher, Guyatt et al. 1997; Baker and Kramer 2002; 
Lumley 2002; Song, Altman et al. 2003; Caldwell, Ades et al. 2005; Glenny, Altman et al. 
2005).  A Health Technology Assessment, conducted by Glenny and colleagues (Glenny, Altman 
et al. 2005) for the National Health System Review and Dissemination Health Technology 
Program is the largest, and most thorough, empirical evaluation of a simple “networks” method 
(Glenny, Altman et al. 2005). 
 
The validity of the result from an indirect comparison depends greatly on the consistency of the 
treatment effect across the two different sets of trials. In practice, trials can vary in numerous 
ways including population characteristics, interventions and cointerventions, length of follow-up, 
loss to follow-up, and study quality. Although some of these factors can easily be assessed and 
controlled for, others require assumptions that may not be verifiable.  
 
Because indirect comparisons essentially constitute an observational study, residual confounding 
can always be present.  Differences in factors between the two sets of trials that could influence 
the prognosis will bias indirect comparison results. In addition, all caveats that have to be 
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considered for meta-analyses, such as heterogeneity, publication bias, or differing control event 
rates, also apply for indirect comparisons.  
 
In general, indirect comparisons have low power and often lead to indeterminate results. Four 
times as many equally sized studies are necessary for an adjusted indirect approach to have the 
same power as a direct comparison (Bucher, Guyatt et al. 1997; Glenny, Altman et al. 2005). 
Reviewers that consider indirect comparisons for CERs need to keep the limitations of indirect 
comparisons under “real world” conditions in mind.  First, given the limited information in many 
publications, the validity of indirect comparisons often has to be based on an unverifiable 
assumption of similarity. Second, indirect comparisons are underpowered, frequently leading to 
indeterminate results with wide confidence intervals. Inferences based on such findings may be 
limited. Third, no consensus exists on how to interpret results that differ substantially from direct 
evidence or on how to weigh findings of indirect comparisons against those results from 
nonrandomized direct evidence. 
 
Incorporation of mixed study designs in a meta-analysis 
The most common design seen in randomized trials is the parallel trial. Other designs—such as 
crossover, factorial, or cluster-randomized design—are also common choices. In principle, trials 
from different designs may be combined in a single meta-analysis.  Whether to combine them 
depends on the features of the studies in a CER.   

Generally, producing a combined estimate for crossover trials and parallel trials separately is 
advisable, when such estimates are appropriate, whether or not crossover trials and parallel trials 
are combined. 

Box 9-6.  Key Points (Combining Studies of Mixed Design)  
 

• If crossover trials are appropriate for the intervention and medical condition in question, 
and there are no systematic differences between the two types of design, crossover 
designs can be combined with parallel trials. 

• For meta-analysis of crossover trials, use estimates from within-individual comparisons 
when available.  When estimates from within-individual comparisons are not reported, or 
when there is a carryover effect, use between-group estimates or data from the first 
treatment period. 

• Cluster randomization trials can be combined with individual randomized trials. 
• When available, effect measures from an analysis that appropriately accounts for the 

cluster design should be used for meta-analysis. 
• When the best estimate is not available, analyses using effective sample size or corrected 

standard error are also an option.  
• Investigators should explicitly state what kind of data are available in the paper, how they 

have dealt with data from crossover trials or cluster randomization trials, and how the 
decision of combining or not combining crossover trials has been made.  

• In general, randomized trials and non-randomized studies should not be combined.  

 
 
Incorporation of crossover trials in a meta-analysis 
In a crossover trial, each participant receives two or more interventions in random order and 
serves as his or her own control. The design is most appropriate to compare interventions with a 
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reversible, temporary effect on symptoms in patients with a stable, chronic disease, such as 
multiple sclerosis or rheumatoid arthritis. It is not appropriate for a disease with rapid 
progression or for interventions with long-lasting effects such that, upon entry to subsequent 
phases, patients systematically differ from their initial state owing to the treatment effects of 
interventions. For example, if the primary outcome is irreversible such as death, or pregnancy in 
a fertility study, a crossover design is generally inappropriate.  
 
In addition, some secondary outcomes may not be properly evaluated from crossover trials. One 
such example is the withdrawal rate in the assessment of adverse events. If one patient drops out 
in the first period, this patient cannot be evaluated for withdrawal in the later periods.  
 
The strength of the crossover design is that it allows comparison of interventions at the 
individual rather than group level.  The major concern with the crossover design is the risk of a 
carryover effect, when the effect of an intervention in the first period persists and influences the 
patient's response in the subsequent intervention period. For this reason, a “washout” period 
between treatment periods is often included to reduce the risk of a carryover effect.  
 
In considering whether to include crossover trials in a meta-analysis, investigators should first 
evaluate whether a crossover trial is appropriate for the intervention and medical condition in 
question and whether it may provide useful information to answer the research question.  The 
risk of carryover and the adequacy of the washout period should be fully evaluated. Combining 
crossover and parallel trials is reasonable if these trials are estimating the same intervention 
effect and if the choice of trial design has not been dictated by any differences in therapeutic 
indication or clinical conditions that could potentially influence the observed treatment effect 
(Elbourne, Altman et al. 2002).  
 
Approaches to include crossover trials into meta-analyses.  The most frequently used 
crossover design has two interventions with two periods. The ideal estimates for meta-analyses 
are those from within-individual comparisons for which the standard errors are estimated 
appropriately.  EPCs may sometimes be able to calculate these estimates if the article does not 
report them (Elbourne, Altman et al. 2002).  Estimates from within-individual comparisons from 
a crossover trial could be combined with results from parallel trials.   
 
Methods of combining have been developed for continuous data (Curtin, Altman et al. 2002; 
Curtin, Elbourne et al. 2002), dichotomous data  (Curtin, Elbourne et al. 2002), and even when 
carryover occurs, although carryover effects may exist but not be detected (Curtin, Elbourne et 
al. 2002). Elbourne and colleagues provided examples on how to apply some of these methods 
(Elbourne, Altman et al. 2002).  Unfortunately, the reporting of estimates from crossover is often 
very variable and incomplete, and the ideal estimate for meta-analysis is not reported. 
Frequently, extracting suitable data is difficult or impossible, even if the appropriate analysis was 
performed.  
 
When results are reported only for each intervention, a simple approach is to ignore the crossover 
design and use reported estimates as if they came from a parallel trial. This approach, which 
ignores the within-patient correlation, is a conservative approach that is likely to produce a 
confidence interval wider than it should be. It also reduces the weight given each crossover trial, 
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with the possible consequence of disguising clinically important heterogeneity. If this approach 
is used, sensitivity analysis may be done assuming a range of within-patient correlations to check 
the robustness of the results and whether the results may approximate those from a paired 
analysis.  
 
Another approach is to include only the data from the first period, on the grounds that the first 
period of a randomized crossover trial is, in effect, a parallel group trial. This method is often 
recommended when either a carryover effect is a problem or the crossover design is considered 
inappropriate for the condition or outcome being investigated. However, available data from the 
first period is a biased subset of all first-period data as first-period data are often reported only 
when there is evidence of carryover effect. In addition, excluding later periods loses some of the 
information collected. 
 
In all cases, investigators should explicitly state what kind of data are available, how they have 
dealt with data from crossover trials, and how the decision whether to combine crossover trials 
has been made. Use sensitivity analysis to investigate the robustness of conclusions. 
 
Incorporation of cluster randomized trials in a meta-analysis 
In cluster randomized trials (also known as group-randomized trials), a group of individuals in 
intact social units (rather than a single individual) is randomized to different interventions. The 
unit of allocation is the cluster; the clusters may be, for example, schools, communities, families, 
or practice settings.  Cluster randomization trials involve several additional potential sources of 
heterogeneity such as choice of cluster randomization schemes (e.g., matched pair vs. complete 
randomization), the nature of the randomization unit (e.g., households vs. worksites), and the 
sizes of clusters.  Analysis of cluster randomized trials must take the correlation of results within 
groups; if it does not, false significance may be claimed and the study may receive more weight 
than is appropriate in a meta-analysis.  
 
A CER may include cluster randomized trials and individual randomized trials that address the 
same scientific question. To decide whether combining the results from both cluster randomized 
trials and individual randomized trials is appropriate, EPCs should assess whether the type of 
randomization unit affects the intervention and outcome. The presence of such interaction is less 
likely when the intervention is a pharmacological agent with biological effects than when the 
intervention is intended to shape attitudes or behaviors (Donner and Klar 2002).  One approach is 
to begin by performing separate meta-analyses.  If the results of separate meta-analysis agree, the 
investigators should have more confidence that the findings are robust.  If the results do not 
agree, investigators should note the lack of consistent findings. 
 
Important differences and characteristics between different types of trials should be fully 
considered.  
 
The best estimate from a cluster randomized trial appropriately accounts for the cluster design. 
Such estimates could be obtained from a mixed effects model, or a model using generalized 
estimating equations (GEEs), among other techniques.  
 
Unfortunately, many cluster randomized trials have not performed or reported appropriate 
analyses. For example, the analysis may have been done as if the randomization were on the 
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individual-patient level. In this case, approximately correct analyses may be performed if data on 
cluster size, summarized outcome results (ignoring cluster design), and an estimate of the intra-
cluster correlation coefficient (ICC) are all available (Donner and Klar 2002). The idea is to 
calculate an “effective sample size.” A corrected standard error based on estimates of ICC and 
cluster size can be used in the meta-analysis. However, ICC is seldom available in published 
reports.  A common approach then is to use external estimates obtained from similar studies 
(Ukoumunne, Gulliford et al. 1999), supplemented by sensitivity analysis assuming plausible 
values of ICC.  
 
Donner and colleagues provide a detailed discussion of incorporating cluster-randomized trials in 
a meta-analysis (Donner and Klar 2002) and a more technical treatment of the problem (Donner, 
Piaggio et al. 2001). White and Thomas examine special considerations for analysis of 
standardized mean differences from cluster-randomized trials (White and Thomas 2005).  
 
Synthesis of information from randomized and nonrandomized studies  
Observational studies and randomized trials are complementary sources of evidence.  
Randomized and nonrandomized evidence often agree in their results (Concato, Shah et al. 2000; 
Benson and Hartz 2000; Ioannidis, Haidich et al. 2001).  However, discrepancies are not 
infrequent (Ioannidis 2005).  Examples where findings from observational studies were not 
replicated by large clinical trials are numerous (Ioannidis 2005).  Conversely, knowledge based 
on a few small randomized trials may be refuted by subsequent large, well-designed and well-
conducted observational trials.  For example, a meta-analysis of small RCTs of aprotinin in 
cardiac surgery failed to find an increase risk for renal failure (Carless, Moxey et al. 2005), 
whereas such a risk was discovered in a large observational study (Mangano, Tudor et al. 2006).   
 
Currently, we recommend against combining randomized and nonrandomized studies including 
observational data.  Statistical methods concerning how to incorporate observational data have 
not been well developed. Further research is needed to investigate whether combining 
nonrandomized and randomized trials is appropriate and, if so, under what conditions.  Other 
issues still needing examination include how to assess systematically the consistency between 
nonrandomized and randomized trials.  Finally, further development of statistical methods to 
combine observational and trial data is needed (see Chapter 8). 
 
Sensitivity Analyses  
Completing a CER is a structured process. Decisions and assumptions are made in the process of 
conducting the review 
and meta-analysis; 
these decision and 
assumptions may 
affect the main 
findings.  

Box 9-7.  Key points 
 

• Sensitivity analysis is an approach to examine the 
robustness of the combined estimates to decisions and 
assumptions made in the process of review.  

• A CER with a meta-analysis should include a sensitivity 
analyses.  

• Planning of sensitivity analysis should start at the early stage 
of a CER. 

• Investigators should describe key decisions and 
assumptions for sensitivity analysis. 

 
Sensitivity analysis is 
an approach to 
investigate how the 
decisions and 
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assumptions influence the main findings and how robust the results are to these decisions and 
assumptions.  Various experts have argued that sensitivity analysis should be performed to 
reflect the decision made at all stages of a meta-analysis (Olkin 1994) and always be performed 
to assess the robustness of combined estimates (Egger and Smith 2001).  
 
Sensitivity analysis is a necessary step for a meta-analysis in CERs.  Planning of sensitivity 
analysis should start at the early stage of a CER and should include tracking decisions made 
along the way.  Investigators should identify key decisions and assumptions for sensitivity 
analysis, such as: 
 

• the effect of including certain types of excluded trials;  
• whether the combined estimates are consistent across the subgroups of study population; 
• whether the combined estimates are consistent across intervention types and settings; 

studies that have been stopped early and studies that have run their planned course; and 
studies with different lengths of follow-up time; 

• how inclusion or exclusion of studies rated as “poor quality” (i.e., having a high risk of 
bias) affects the combined estimates, and how the combined estimates are affected by 
individual factors contributing to risk of bias, such as use of blinding, concealment of 
allocation, objective ascertainment of outcomes;  

• whether results derived from different effect measures (e.g., relative risk and risk 
difference) agree; 

• whether results from a  fixed effects model vs. a random effects model, or different 
formulations of a fixed or random effects model, agree; 

• how different approaches for handling missing data, zero cells, and incomplete data 
reporting affect the results.  [One example is the calculation of standard deviation (SD) 
for pre-post mean difference for a group based on reported means and SDs at baseline 
(pre) and endpoints (post). Estimating the correlation coefficient between baseline and 
endpoints is required for calculating SD but often is not reported. Then a reasonable 
range of values for the correlation coefficient could be assumed with influence on the 
results assessed.]; and 

• whether the combined estimates are consistent with the sample size of the study.  
 
Robust estimates provide more confidence in the findings in the review.  In a meta-analysis on 
the effect of beta-blockers on mortality after myocardial infarction, Egger and Smith presented a 
good example of how sensitivity analysis can increase confidence in the results (Egger and Smith 
2001).  The sensitivity analysis examined the robustness of the combined estimate to choice of 
statistical model (fixed effects vs. random effects), concealment of allocation, double-blinded vs. 
other blinding method, trial size, length of follow-up, and exclusion of trials stopped early.  
These factors had little influence on the combined estimate.   
 
When the results are not robust, it indicates the need to interpret results cautiously or employ 
alternative approaches for presenting a grand combined estimate. For example, if the results are 
sensitive to length of follow-up, then combined estimates based on different length of follow-up 
should be reported. 
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Statistical methods for sensitivity analysis are readily available. A new analysis could be done by 
including or excluding certain studies.  EPCs can study the influence of each study by excluding 
one study at a time, but investigating the influence of key decisions and assumptions is more 
important.  Subgroup analysis is often used for sensitivity analysis, and the cautions for subgroup 
analysis should also be applied here (see above). 
 
Interpretation and Translation of Results of Meta-analyses 
CERs should present summary effects in a way that makes it easy for readers to interpret and 
apply these findings appropriately. This section discusses different ways of presenting and 
interpreting various effect measures. 
 
The most commonly used effect measures for dichotomous outcomes in meta-analyses are 
relative risks (RR) and odds ratios (OR). They provide the most stable estimates over various 
populations and differing study durations. The interpretation of RR is fairly straightforward as 
the ratio of probabilities of an event (risk or benefit) between two intervention groups. An RR of 
2 can be interpreted as a twofold risk of an event in patients on a treatment compared with those 
not receiving the treatment. For example, in a study examining the adherence to prescribed 
inhalers for patients with chronic obstructive pulmonary disease, authors stated that patients on 
tiotropium were twice as compliant as patients using ipratropium (RR: 2.0; 95% CI,1.8-2.3) 
(Breekveldt-Postma, Koerselman et al. 2007). Likewise, authors of a meta-analysis reported that  
subjects exposed to crystalline silica had a twofold incidence of lung cancer compared with those 
not exposed to crystalline sylika (RR: 2.0, 95% CI, 1.8-2.3) (Smith, Lopipero et al. 1995). 
 
Alternatively, presentating results as a relative risk reduction or relative risk increase may be 
more intuitive for readers, especially when the RR is below 2. For example, a CER on second-
generation antidepressants compared nausea and vomiting between venlafaxine and the class of 
selective serotonin reuptake inhibitors (SSRIs) (Gartlehner, Hansen et al. 2007); the pooled RR 
was 1.50 (95% CI, 1.21-1.84). The authors expressed this finding as a relative risk increase and 
stated that venlafaxine had a 50 percent higher risk of causing nausea or vomiting than SSRIs as 
a class. Such  statements, however, should be accompanied by a measure of absolute risk, such 
as the risk difference or a number needed to treat (NNT) or harm (NNH), to provide enough 
information for readers to assess the clinical relevance of such a finding. The CER on second-
generation antidepressants reported a corresponding NNH of 9 (95% CI, 6-23). 
 
The term “relative risk” can be confusing, however, if it refers to a beneficial outcome. 
Substituting “relative risk” with “relative benefit” may help readers avoid confusion with 
contradicting terminology. For  example, the term "relative benefit" was used  in a systematic 
review on the efficacy and safety of second-generation antidepressant to describe the beneficial 
response to treatment (Hansen, Gartlehner et al. 2005). 
 
Although ORs have mathematical advantages over RRs, they are more difficult to interpret 
because they describe the ratio of the odds of an event among those exposed to an intervention to 
the odds among those not exposed. Frequently, odds and odds ratios are interpreted 
inappropriately as risks and risk ratios. Because odds and risks differ substantially when event 
rates are high (> 30 percent), incorrect interpretations can lead to an overstatement of the actual 
effect size. For example, a study examining physician diagnostic practices for patients with chest 
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pain noted a statistically higher rate of cardiac catheterizations for men than for women (OR 1.7, 
95%CI, 1.1-2.5) (Schulman, Berlin et al. 1999), causing concerns in the media about gender 
disparities. Schwartz et al. reanalyzed the same data and found a substantially smaller effect size 
when using RRs (RR 1.07 95%CI 1.01-1.16) (Schwartz, Woloshin et al. 1999).  Thus, converting 
ORs to RRs  may be advisable to allow easier interpretation.  
 
The clinical relevance of risk differences (RD) depends on the underlying event rates. A RD of 2 
percent could be clinically significant if the change is from 3 percent to 1 percent of an event, 
and less significant if the intervention reduces the rate of events from 78 percent to 76 percent. 
Therefore, when reporting a risk difference, the underlying event rate should be reported as well. 
For example, in a placebo-controlled RCT, the  authors presented event rates and  relative and 
absolute risk reduction to summarize differences in the risk of ventricular fibrillation and 
arrhythmic death (Table 9-4) (Cairns, Connolly et al. 1997).  
 
Table 9.4. Absolute and relative risk reduction of resuscitated ventricular fibrillation and 
arrhythmic death for amiodarone vs. placebo in all patients and subgroups with different 
baseline rates of events. 

Patient 
Characteristics 

Amiodarone Placebo Relative-
risk 
Reduction 
(%) 

Absolute 
risk 
reduction Events Rate per 

year (%) Events Rate per 
year (%) 

All patients  25 2·29 39 3·71 38·2 1.42 

Concomitant use of  
beta -blockers 2 0.38 16 2.93 87·1 2.55 

Previous myocardial 
infarction 6 2.33 20 6.89 66.2 4·56 

Previous congestive 
heart failure 8 5.13 15 7.8 34 2.67 

 
NNTs and NNHs are frequently used because they portray the absolute effect of an intervention 
in an intuitive way. NNTs and NNHs themselves do not reflect variations attributable to 
underlying event rates; and they do not have a standardized unit of time.  These drawbacks 
should be considered when NNTs or NNHs are presented. EPCs should report these measures 
with an appropriate time frame and confidence intervals and make clear that they are based on an 
average estimate, for example,  “On average, 10 patients would have to be treated for 3 years 
with treatment A to observe one fewer event after 3 years” (Hutton 2000). If substantial 
variations in NNTs (NNHs) exist based on different event rates, dosages, or subgroups, then 
EPCs should report them separately for each group. 
 
Smeeth and colleagues  calculated NNT with statins to prevent one cardiovascular event 
(Smeeth, Haines et al. 1999). Although the authors pooled studies to achieve a summary NNT, 
they also presented NNTs for individual studies with varying baseline risks (Table 9.5.). The 
pooled NNT to prevent one death was 113 over 5 years. NNTs of individual studies, however, 
ranged from 41 to 167 corresponding to baseline risks of cardiac death from 1.4/100 to 0.1/100 
person-years. 
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Continuous Outcomes 
The weighted mean difference (WMD) and the standardized effect size can be used for meta-
analyses of continuous data.  WMD can be used when outcome measurements in all trials are 
assessed on the same scale. The summary effect has the same unit as the scale employed in the 
included studies. For example, the CER on second-generation antidepressants conducted a meta-
analysis of differences in points on the Montgomery-Asberg Depression Scale (MADRS) 
between escitalopram and citalopram (WMD of 1.13 [95% CI, 0.18 – 2.09]) (Gartlehner, Hansen 
et al. 2007).  Because the unit of the pooled summary effect is the same as that of the original 
scale, findings can be interpreted as escitalopram having an additional treatment effect of 1.13 
points on the MADRS. Although this finding was statistically significant, the clinical 
significance of a difference of 1.13 points must be determined independently. 
 
Standardized effect size meta-analyses can be used if the same outcome was assessed on 
different measurement scales. Results however, are expressed in units of standard deviations, 
rather than in units of any measurement scales and can be difficult to interpret.  For example, 
Hansen et al. pooled functional outcomes in placebo-controlled studies of Alzheimer’s drugs 
(Hansen, Gartlehner et al. 2007) and reported the pooled findings in units of standard deviations. 
Although they had interpreted results based on a classification of Cohen’s d, the clinical 
significance of the additional treatment effect of Alzheimer’s drugs compared with placebo is 
difficult to determine. An approximation of the size of the effect on the included measurement 
scales can be achieved by multiplying the standardized effect sizes by the pooled standard 
deviation for each included scale. 



    

 
Table 9.5. Number needed to treat with statins to prevent one cardiovascular event in 5 
years.  

Trials 
No of 
subjects 

Baseline 
risk 
of CHD 
mortality 
per 100 
person-
years 

Rate ratios 
 

Number needed to treat (5 
years) 

Total 
mortality

CHD 
mortality

All CV
events

Total 
mortality 

CHD 
mortality

All CV 
events 

Primary prevention         

AFCAPS/TexCAPS7 6,605 0.1 1.04 1.36 0.69 167 1000 28 
WOSCOPS8 6,595 0.4 0.78 0.67 0.7 118 182 28 
Secondary 
prevention         

Scandinavian 
simvastatin survival 
study trial 

4,444 1.6 0.71 0.59 0.64 33 31 8 

CARE 4,159 1.2 0.92 0.81 0.75 133 95 11 
Long-term intervention 
with pravastatin in 
ischaemic disease 

9,014 1.4 0.78 0.77 0.8 41 64 17 

Pooled effects (95% 
CI)   

0.80 
 (0.74 to 
0.87) 

0.73  
(0.66 to 
0.81) 

0.74 
 (0.71 
to 
0.77) 

113 
 (77 to 
285) 

500  
(222 to -)

20 
(17 to 25)

 
CHD, coronary heart disease; CV, cardiovascular. 
 
 
Reporting the Quantitative Synthesis of Studies 
The following summary of headings (Tables 9.6 and 9.7) for reporting quantitative syntheses of 
studies may ensure some degree of uniformity in how EPCs can present CER methods results. 
The summary is not entirely prescriptive because CERs only need to include headings relevant to 
analyses included in the review.  If a review touches upon an area encompassed by a heading or 
subheading, then the heading or subheading should be included in the review. Reporting of 
elements pertaining to the heading or subheading should be done in accordance with the 
explanations provided in the “required reporting” column of the table below.  For additional 
information, we identify the section of the guide that discusses the pertinent issues. The exact 
titles of headings and subheadings are left to the discretion of authors. 
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For example, if the authors decide to conduct a meta-analysis, then they will have to include a 
heading in the methods section of their report that pertains to “method of combining studies.”  
Under this heading, they will have to describe and justify the statistical procedure used to 
combine effect measures from individual studies.  In the results, a graphical summary of 
individual and combined study effect estimates will have to be provided in accordance with the 
recommendations enumerated below.  
 
Table 9.6.  Summary of Headings for Reporting the Quantitative Synthesis of Studies: 
Methods Section 
 
Headings 
 

 
Subheadings 

 
Required Reporting 

Rationale to combine 
(see 9.1 Decisions to 
combine or not 
combine individual 
studies) 
 

Clinical 
heterogeneity 

Specify important clinical characteristics which may differ 
among studies (e.g. intervention, dosage, baseline 
disease severity, length of follow-up) and how they will 
affect the decision to combine.  Define the threshold for 
acceptable differences in clinical characteristics which 
could be combined in a meta-analysis based on the scope 
of the research question. 

 Methodological 
heterogeneity 

Specify important methodological characteristics which 
may differ among studies (e.g. mechanism of 
randomization, extent and handling of withdrawals and 
losses to follow up) and how they will affect the decision to 
combine.  Define the threshold acceptable differences in 
methodological characteristics which could be combined in 
a meta-analysis based on the scope of the research 
question. 

Criteria for selecting 
outcomes for 
combining (see 9.1 
Decisions to combine 
or not combine 
individual studies)  

Outcome 
definitions 

Specify whether outcome definitions or the way outcomes 
were measured differed among studies.  Specify whether 
surrogate outcomes or combined endpoints were used.  If 
observational studies are included, specify the definition 
and measurement of confounding factors/effect modifiers. 

 Primary vs. 
secondary 
outcomes 

Specify whether outcomes were primary or secondary 
outcomes in the original studies.  Specify benefit and harm 
outcomes and their combinations. 

 Outcome 
assessment in 
RCTs 

Specify whether ITT, per protocol, last observation carried 
forward, etc. was used to handle outcomes in each study.  
If estimates from different outcome definitions were 
combined, then subgroup and/or sensitivity analyses 
should also be undertaken 

Types of studies 
included (see 9.1 
Decisions to combine 
or not combine 
individual studies) 
 

Study design Specify what type of study designs are being combined 
(e.g. RCT (crossover, cluster randomized, factorial), 
observational (cohort, case-control, cross-sectional)) 

95 
 



    

 
Headings 
 

  
Subheadings Required Reporting 

 Rationale for 
inclusion of 
observational 
studies 

If observational studies are included, then provide a 
rationale (e.g. to broaden generalizability, to examine 
longer follow up periods, etc.) 

Type of comparisons 
(see chapters 9.A1, 
9.6, 9.7) 

Direct comparisons 
(9.A1 An approach 
to the meta-
analysis of 
aggregate data 
using direct 
comparisons 

Specify what types of comparisons are being made.  
Specify what methods are used to combine study data if 
indirect or mixed comparisons are being made (e.g. 
logistic regression, meta-regression, or adjusted indirect 
comparisons)  

 Indirect 
comparisons (9.6 
Indirect 
comparison) 
 

If indirect comparisons are being made then clearly state 
the rationale.  Unadjusted indirect comparisons can lead 
to bias and should not be conducted 
 

 Mixed designs (9.7 
Combining studies 
of mixed designs) 

Specify what types of RCT study designs are being 
combined (e.g. parallel group, crossover, cluster 
randomized).  If observational studies are included, 
compare stratified results from RCT and observational 
studies either qualitatively or quantitatively.  There are 
currently no standard methods to combine RCT and 
observational studies. 

Explanation of choice 
of effect measure 
(see 9.2 Choice of 
effect measures) 

 Specify what type of outcome data is being combined (e.g. 
dichotomous, continuous, ordinal, counts, time to event) 
and the measure(s) of effect chosen (e.g. RR, OR, RD, 
HR, mean difference, standardized mean).  This should be 
done for each outcome considered.  If the study design 
allows a choice of effect measure then choose the one 
that best answers the research question and provide a 
rationale for that choice. 

Methods for 
combining study 
estimates (see 9.3 
Choice of model for 
combining studies) 

Statistical 
procedure and 
justification of 
model chosen  

Describe and justify the statistical model used to combine 
effect measures (e.g. random effects model, fixed effects 
model, Bayesian model) 

 Special 
considerations (see 
9.3.1 Special 
considerations) 

Describe and justify the statistical methods used when 
there are sparse data or selective reporting of outcomes 

Statistical 
heterogeneity (see 
9.4 Heterogeneity, 
9.5 Exploring 
heterogeneity) 

Statistical tests Specify how statistical heterogeneity is assessed and the 
threshold used to identify “important” heterogeneity 

 Quantifying 
heterogeneity 

Specify methods used to quantify statistical heterogeneity 
(e. g., I2, H, tau2)  
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Headings 
 

  
Subheadings Required Reporting 

 Exploring 
heterogeneity  
 

Specify the methods used to explore important clinical, 
methodological, or statistical heterogeneity (e.g., meta-
regression, control rate meta-regression, subgroup 
analysis). Distinguish between pre-specified and post hoc 
analysis.  The total number of subgroups examined should 
be reported. 

Additional analyses 
(see 9.8 and chapter 
10) 

Assessment of 
selection bias 
including 
publication bias 
and selective 
reporting within 
studies (see 
chapter 10 Explore 
potential bias) 

Specify how selection bias including publication bias and 
selective reporting within studies is assessed (e.g. funnel 
plots, L’abbe plots, Egger test); and how this information is 
to be used in any data syntheses.  

 Sensitivity analysis 
(see 9.8 Sensitivity 
analyses) 

Specify what sensitivity analyses are being done and how 
they relate to key decisions and assumptions made in the 
systematic review.  Sensitivity analyses should be 
specified a priori. 
 

 
Table 9.7 Summary of Headings for Reporting the Quantitative Synthesis of Studies: 
Results Section 
 
Headings 
 

 
Subheadings 

 
Recommendations 

Descriptive study 
information (see 9.9 
Interpretation and 
translation of results of 
meta-analyses) 

 Include information for each study describing the sample 
size, intervention, outcome, study design, target population, 
study population, baseline risk and other important PICOS 
study characteristics that are related to clinical, 
methodological or statistical heterogeneity.  Sponsorship of 
the studies and reported conflict of interest should be 
reported. 

Level of Evidence and 
Quality of the Studies 

 Specify the level of evidence given feasibility of different 
designs to investigate the research question.  Specify the 
scale to estimate the quality of the study and how internal 
and external validity of the studies are assessed. 

Graphical summary of 
individual and overall 
study estimates  

 For each outcome present tables or a graphical 
representation of the data (forest plot) including: 
the comparison type, sample size for each study, weight 
given to each study, measure of effect and confidence 
interval for each study, and a summary measure of effect 
and confidence interval for all studies combined.  A p-value 
for a test and quantification of statistical heterogeneity 
should be included in the figure or in the figure legend.  If 
study results are not quantitatively combined, a forest plot 
without a summary estimate can still be provided. 
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Headings 
 

  
Subheadings Recommendations 

Reporting of additional 
analyses 

Assessment of 
selection bias 
including 
publication bias 
and selective 
reporting within 
studies 

Report a graphical assessment and/or the results of a 
statistical test.  If a graph is reported, then include the 
results of the statistical test in the legend in the whole group 
and in subgroups. 

 Other additional 
analyses 
(exploring 
heterogeneity, 
sensitivity 
analyses, 
inclusion of 
observational 
studies) 

Report the results of all additional analyses undertaken. 
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Appendix 9-1.  An Approach to the Meta-analysis of Aggregate Data 
using Direct Comparisons 
If a selection of two or more studies has reasonably similar patient populations, design, 
comparisons, and outcome definitions to warrant a meta-analysis, the following steps are 
suggested to approach the analysis.  
 
Step I. Examine the data and evaluate whether intervention effects vary with different 
rates for control groups (control rates) 

1. Use graphical assessments if possible including. 
a. L’Abbe plots, or  
b. Forest plots ordered by increasing control rate,  
c. Scatter plots of the point estimates of the effect size versus the control rate (a 

smoothed line may offer additional insights). 
2. Decide on which measure to use. Usually, relative (multiplicative) measures (OR, RR) 

rather than absolute (additive) measures (RD) are preferred for dichotomous data.  
a. General guidelines  for dichotomous data: 

2.a.1 Use RR for RCTs or prospective comparative studies 
2.a.2 Use OR for case-control studies and related designs 
2.a.3 Use RD for RCTs or prospective comparative studies when the control 

rates are reasonably similar.  
b. General guidelines  for continuous data: 

2.b.1 Use mean differences if outcome measures are reported on the same scale. 
2.b.2 Use standardized mean differences if outcome measures are reported on 

different scales.   Standardized effect sizes are seldom used in meta-
analyses in medical literature. However, whenever the use of a 
standardized effect size is warranted, Hedges’s g is preferred over other 
metrics of standardized effect size (Hedges 1981) e.g., Cohen’s d, Glass’s 
δ. 

3. If control rates vary, use simple (Ordinary Least Squares, weighted) regression of effect 
size on control rate to assess their correlation.  

4. If the regression slope is statistically nonsignificant, chances are that more formal 
methods will yield the same inference. Skip to Step II, below.   

5. If the regression slope is statistically significant, perform formal control rate meta-
regression using a hierarchical model or Bayesian analyses. Go to Step IIIA, below.   

 
Step II. Provide a grand mean 

1. Test for between-study heterogeneity (Q) and assess its extent (I2).   
a. If heterogeneity is extensive or substantial and there are clinical, methodological, 

and epidemiological reasons to expect systematic differences in the effects 
between the different studies, go to Step IIIA, below. 

b. If heterogeneity is not substantial or if heterogeneity is statistically significant or 
extensive but there are no strong clinical, methodological, and epidemiological 
reasons for systematic differences in the effects between the different studies, 
estimate a grand mean. 

2. Because clinical diversity can always be anticipated, estimate a grand mean using a 
random effects model.  
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a. If between-study variability (τ2) is 0, use the inverse variance fixed effects model, 
which yields the same results as the DerSimonian and Laird random effects 
model. 

  
Step IIIA. Perform a meta-regression on control rates  

1. Perform a (random effects) control rate meta-regression and describe the results along a 
range of control rates.  

a. Provide the predicted summary effect size for typical control rates in different 
settings.  

b. Corroborate with individual studies that have similar control rates.  
2. If many studies exist and there is a strong reason to consider additional study-level 

covariates, include them in the model of the control rate meta-regression analyses.  
3. If many studies exist and there is a strong reason to consider additional study-level 

covariates, include them in the model of the control rate meta-regression analyses.  
 
Step IIIB. Perform a meta-regression on patient and study-level covariates  

3. Identify patient and study-level covariates. Although aggregated patient-level factors 
(such as mean age or mean blood pressure) do not necessarily describe all patients 
accurately, they should be routinely explored. 

4. Remember:  
a. Determine whether there is enough variation in the study-level covariates to run a 

meaningful meta-regression.   
b. Separate pre-specified analyses from post-hoc analyses. 
c. Because of the anticipated small number of studies, consider examining one 

covariate at a time. 
5. If there are statistically significant associations 

a. Check their clinical plausibility  
b. Check for external evidence consistent with the identified association 
c. Make conservative statements. 
d. Provide adjusted estimates at different levels of the covariate, which may provide 

better insight than a grand summary estimate. 
6. If no significant associations are present, provide the grand summary estimate.    

 
Step IV. Conduct subgroup analyses 

1. Conduct a subgroup analysis if not already performed to assess control rate differences, 
as described in Step I above. 

2. Use meta-regression in place of the simple comparison of the summary estimates for 
subgroup analyses. A random effects meta-regression is preferred; meta-regression and z-
score comparisons of subgroup summary estimates should give roughly similar results in 
most cases unless substantial heterogeneity within subgroups is present). 

 
Step V. Conduct sensitivity analyses 

1. Use sensitivity analysis to evaluate the robustness of the quantitative answers to key 
decisions and assumptions that were made in the process of the review. Depending on the 
exact topic, different sensitivity analyses may be preferred at different levels of the 
review process.  Briefly (the list is not exhaustive), sensitivity analyses can be done for 

a. contextual review-specific decisions such as 
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i. Selection of included studies, e.g.: 
1. Subtleties in the definition of population, intervention, comparators 

and outcomes 
2. Language of publication, country of origin 
3. Studies that received different quality rating 

b. technical decisions: 
i. Consider different effect measures 

ii. Consider exploring the effects of dropouts on individual studies, e.g. by 
using a best case/worst case analysis for trials that have dropouts 
(assuming that none or all of the dropouts experienced the event).  

iii. Consider different methods for assessing the influence of publication bias 
or other selection biases. 



 

10.  AVOIDING POTENTIAL BIASES IN CONDUCTING 
SYSTEMATIC REVIEWS AND META-ANALYSES 
This chapter is deliberately omitted. 
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11. GRADING THE STRENGTH OF A BODY OF EVIDENCE 
Comparative effectiveness reviews (CERs) are essential tools for summarizing information to 
help make well-informed decisions about health care options (Helfand 2005).  Synthesizing data 
to  provide robust conclusions, and doing so 
consistently, is a critical part of the health 
technology assessment process.  Reviews 
should provide clear judgments about the 
strength of the evidence that underlies CER 
conclusions to enable decision makers to 
use CERs effectively.  This chapter explores 
the rationale for grading strength of 
evidence, defines the domains of concern 
for evidence strength, and describes the 
grading system for CERs. 
 
Box 11-1 summarizes the principal 
recommendations from this chapter.  For 
ease of reference, the approach that EPCs 
should take for CERs is labeled an “EPC 
GRADE” approach, because several 
domains and elements of the overall grading 
approach are based on the basic GRADE 
approach (Atkins, Briss et al. 2004). 
 
As noted in Box 11-1, we are 
recommending that EPCs grade strength of 
evidence only for the findings on major 
outcomes for the main comparisons of 
interest.  These will be determined in part 
by the topic nomination process (Chapter 2) 
and further refinement of key questions 
early in the review and in part by actual 
findings once analyses are completed.  As 
discussed in Chapter 2, we recommend use 
of analytic frameworks (causal pathways or 
logic models) for CERs.  We anticipate that, ideally, the principal outcomes of interest will be 
those in the box of any analytic framework that specifies the ultimate or most important health 
outcomes (e.g., death, clinical morbidity, quality of life).  

Box 11-1.  Key Points 
 
1. Grade strength of evidence  for all 
comparisons of interest for the most important 
outcomes (benefits and harms). 
2. Grade first for each major health 
outcome, then (if desired) each surrogate or 
intermediate outcome. 
3. Grade for each major harm separately. 
4. Apply required domains in all cases. 
5. Apply additional domains when 
appropriate (largely with respect to 
observational studies) 
6. Use two or more independent reviewers 
to assign grades. Resolve discrepancies or 
disagreements by consensus (first) or by use 
of a third, independent rater. Then report a 
single grade for the outcome. 
7. In a table, record domain-specific and 
overall strength of evidence grades for each 
reviewer and retain this information at the 
EPC. 
8. Describe how overall grade is determined 
from individual domains (e.g., qualitatively or 
with a numerical weighting system) 
9. Record overall grade in tabular form (e.g., 
discussion chapter; executive summary), 
along with narrative text that explains the 
rationale for the grade. 
10. Ensure that all major findings featured in 
the CER are graded and that findings for 
which a grade is given is highlighted in text. 

 
Strength of Evidence:  Domains 
In drawing conclusions about strength of evidence, a growing number of organizations have 
adopted a systematic approach to making judgments about the strength of evidence. A wide 
variety of grading systems is available (West, King et al. 2002), and different organizations may 
weigh features, or domains, of a body of evidence differently.  Consequently, discrepant, 
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contradictory, or variable ratings may arise, and results may not be helpful to some 
organizations.   
 
A major challenge for AHRQ is to ensure some consistency in how reports from different EPCs 
grade the strength of evidence.  Attaining this goal rests in part on consistency and predictability 
in the domains that EPCs use in this effort.  Although no one system for reporting results and 
grading the related strength of evidence is likely to suit all users, documentation and consistent 
reporting of the most important summary information about a body of literature will make CERs 
more useful to a broader range of potential audiences.   
 
The EPC approach to grading evidence begins with a set of agreed-upon domains pertaining to 
entire bodies of evidence about key outcomes (benefits and harms) and comparisons.  In 
selecting these domains, we relied on work by the US Preventive Services Task Force (Harris, 
Helfand et al. 2001), the Grading of Recommendations Assessment, Development and 
Evaluation (GRADE) Working Group (GRADE Working Group 2004) and other work in this 
area by EPCs (West, King et al. 2002; Treadwell, Tregear et al. 2006).  Judgments about those 
domains are then aggregated into an overall evidence grade (explained below) for each key 
outcome.  Tables 11-1 and 11-2 present two sets of domains:  required and optional 
(respectively). 
 
Required Domains 
The first set, “required domains,” comprises four major constructs that EPCs should use for all 
main outcomes and comparison(s) of interest in a CER:  risk of bias, consistency, directness, and 
precision.  Table 11-1 defines these and indicates how to assess or apply them.  These four 
domains are discussed in more detail below. 
 
Before assessing the required domains, an EPC must first identify the studies that address the 
outcomes and comparisons of interest.  When no studies are available on an outcome or 
comparison of interest, the evidence should be graded simply as insufficient.   
 
For the remaining major outcomes and comparisons of interest, the grade of evidence will 
depend on the required domains and not on the number of studies;  the EPCs have decided that 
focusing on consistency, directness, and precision is more informative than emphasizing just the 
number of studies.  Nevertheless, EPCs should note in their CERs the number of studies overall 
and for potential (or at least observed) comparisons, and they should indicate the number of 
studies that form the basis of given findings or conclusions.  In this way, readers can better 
understand the available evidence. 
 
Table 11-1. Required Domains and their Definitions 
Domain Definition and Elements Rating /Score or Application 
Risk of Bias Risk of bias is  the degree to which the included 

studies for any given outcome or comparison 
have a high likelihood of adequate protection 
against bias (i.e., good internal validity), 
assessed through two main elements: 
 
• Study design (e.g., RCTs or observational 

Use one of three levels of aggregate 
risk of bias:  
• Low Risk of Bias 
• Medium Risk of Bias 
• High Risk of Bias 
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Domain Definition and Elements Rating /Score or Application 
studies) 

• Aggregate quality of the studies under 
consideration.  Information for this 
determination comes from the grading of 
quality (good/fair/poor) done for individual 
studies 

 

See Chapter 6 
 

Consistency The principal definition of consistency is the 
degree to which reported effect sizes from 
included studies appear to go in the same 
direction.  This can be assessed through two 
main elements: 
• Effect sizes have the same sign (that is, are 

on the same side of “no effect”)  
• The range of effect sizes is narrow.  
 

Use one of 3 levels of consistency:   
• No inconsistency 
• Inconsistency present 
• Unknown or not applicable (eg, 

single study) 
As noted in the text, single-study 
evidence bases (even mega-trials) 
cannot be judged with respect to 
consistency.   

Directness The rating of directness relates to whether the 
evidence links the compared interventions 
directly to health outcomes.  For a comparison of 
two treatments, directness implies that there are 
head-to-head trials that measure the most 
important (health or ultimate) outcomes.  
Specifically, evidence is indirect if 
• It uses intermediate or surrogate outcomes 

instead of health outcomes; in this case, one 
body of evidence links the intervention to 
intermediate outcomes, and another body of 
evidence links intermediate to most important 
(health or ultimate) outcomes. 

• It uses two or more bodies of evidence to 
compare interventions A and B; for example, 
studies of A vs. placebo and B vs. placebo. 

 
Indirectness always implies that more than one 
body of evidence is required to link interventions 
to the most important health outcomes.   
Directness may be contingent on the outcomes 
of interest;  EPC authors are expected to make 
clear the level of outcomes involved.  

Score dichotomously as two levels of 
directness  

• Direct 
• Indirect 

 
If indirect, specify which of the two 
types of indirectness account for the 
rating (or both, if that is the case), and 
comment on the potential weaknesses 
caused by, or inherent in, the indirect 
analysis.  The EPC should note if  both 
direct and indirect evidence was 
available, particularly when . indirect 
evidence supports a small body of 
direct evidence. 

Precision Precision is the degree of certainty surrounding 
an effect estimate with respect to a given 
outcome (i.e., for each outcome separately)  
 
If a meta-analysis was performed, this will be the 
confidence interval around the summary effect 
size. 
 

Score dichotomously as two levels of 
precision:  

• Precise 
• Imprecise 

 
A precise estimate is an estimate that 
would allow a clinically useful 
conclusion. An imprecise estimate is 
one for which the confidence interval is 
wide enough to include clinically 
distinct conclusions ( for example, both 
clinically important  superiority and 
inferiority (i.e., the direction of effect is 
unknown), a circumstance that will 
preclude a conclusion.   
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Risk of bias 
As noted in Table 11-1, the risk of bias for an evidence base will be based on the assessment of 
the risk of bias in individual studies (see Chapter 6 Assessing the Quality...). If studies differ 
substantially in the risk of bias, greater weight could be given to the studies with a lower risk of 
bias.   
 
Consistency 
Main considerations.  Consistency refers to the degree of similarity in the effect sizes of 
different studies within an evidence base.  If effect sizes indicate the same direction of effect and 
the range of effect sizes is narrow, an evidence base can be judged to be “consistent.”  If meta-
analysis is appropriate, EPCs can evaluate consistency using statistical tests and measures of 
heterogeneity (such as chi-square tests or I2 statistics) as described in Chapter 9.  Some evidence 
bases may show statistical heterogeneity in effect sizes but consistency in the direction of effect; 
if the heterogeneity cannot be explained, the evidence base can be judged to be consistent.  With 
substantial unexplained heterogeneity, one cannot (or at least should not) determine a precise 
estimate of treatment effect, but one may still be confident in the direction of effect.  
 
EPCs should designate an evidence base to be “inconsistent” when different studies show 
statistically significant effect sizes in opposite directions,   In the absence of statistical testing or 
measurement of heterogeneity, judgment of consistency becomes more subjective. 
 
Evaluation of a single-study evidence base.  Evaluation of consistency ideally requires an 
evidence base with independent replication of findings; therefore, EPCs cannot properly evaluate 
consistency in an evidence base with a single study. Even if the study is a large multicenter trial 
(i.e., a mega-trial), findings from different centers within such a study are rarely reported 
separately.  If the results are reported separately for each center, EPCs may be able to evaluate 
consistency within the overall trial, but this is not truly independent replication.  Any flaw 
(reported or not reported) in the trial design or conduct will likely be replicated at every center.  
Even pairs of mega-trials addressing the same clinical question (i.e., the same patient-
intervention-outcome combinations) may report discrepant results (Furukawa, Streiner et al. 
2000), and the methodology of mega-trials has been further questioned (Charlton 2001).   
 
Thus, EPCs can never be certain that a single trial, no matter how large or well-designed, 
presents the definitive picture of any particular clinical benefit or harm for a given treatment.  
Accordingly, we recommend that single-study evidence bases should not be judged with respect 
to consistency, because the consistency of findings cannot be adequately evaluated.  The 
recommended judgment in this case is “consistency unknown (single study).” 
 
Directness 
As described in the section on analytic frameworks in Chapter 2, if direct evidence linking an 
intervention to the most important outcomes is lacking, then several bodies of evidence are 
needed to link the intervention to health outcomes.  When several bodies of evidence are 
involved, the ultimate decision about using a service may depend on the strength of evidence for 
every link in the causal chain.   
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Some links in the causal chain will be more important than others, and thus the final assessment 
of directness will require consideration of the strength of evidence for each link as well as the 
importance of each link in the chain. For example, in the enteral feeding example in Figure 2-1, a 
large body of well-conducted randomized trials might demonstrate that enteral supplementation 
improved nutritional status and delivery of nutrients to the area of the wound.  If, however, 
evidence of an association between a richer nutritional milieu and complete healing is weak, and 
experts agree that this is one of the more important links in the causal chain, then the decision 
might be to grade that overall body of evidence as indirect and the strength of evidence low. 
 
The point about directness is that having a single body of evidence, as in this example that links 
enteral supplementation specifically with wound healing, is preferred to needing to use two 
linked bodies of evidence, particularly if the strength of evidence for those two bodies of 
evidence differ in material ways.  Assessing directness clarifies the degree to which evidence 
between the intervention and the ultimate or health outcome does or does not meet the “ideal” set 
of studies addressing the overarching question. 
 
Precision 
Precision of an effect estimate is related to the boundaries of its confidence interval in relation to 
a threshold that would allow a judgment about the treatments being compared.  Such thresholds 
include the boundary of statistical significance, or boundaries related to a conclusion about 
whether one treatment is clinically noninferior, equivalent, or superior to another (Sackett 2004; 
Sackett 2005).  These boundaries may depend on the importance of the outcome being measured.   
Substantial heterogeneity does not necessarily render an estimate imprecise.  A truly imprecise 
estimate is one with a confidence interval that does not rule out the superiority or inferiority of 
either treatment being compared.  In this case, no conclusion can be reached.   
 
Optional Domains  
The second set of domains (“optional domains”) consists of secondary constructs that EPCs 
should use and report if they are relevant to a particular CER.  These domains also derive from 
the sources noted earlier.  Table 11-2 provides their definitions and ways to score or apply them.   
 
Generally, we expect these domains to be applied more often to evidence from observational 
studies (of all types) than from RCTs.  However, these domains also will be relevant to assessing 
the strength of evidence from RCTs that have important limitations. 
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Table 11-2 Optional Domains and their Definitions 
Domain Definition and Elements Scoring or Application 
Coherence Coherence is the degree of plausibility of 

results in relation to epidemiology or, in 
some cases, biology and 
pathophysiology.  

This additional domain does not need to be 
described or noted unless something 
“implausible” has emerged, in which case 
EPC authors should comment on it. 

Dose-
response 
association 

This association, either across or within 
studies, refers to a pattern of a larger 
effect with greater exposure (dose, 
duration, adherence)  

Score as three levels:  
• Present:  Dose-response pattern 

observed 
• Not present: No dose-response pattern 

observed (dose-response relationship 
not present) 

• NA (not applicable or not tested) 
Residual 
confounding  

Occasionally, in an observational study, 
residual confounders would work in the 
direction opposite that of the observed 
effect. A case in point is when a study is 
biased against finding an effect and yet 
it finds an effect. Thus, had these 
confounders not been present, the 
observed effect would have been even 
larger than the one observed. 

Score as three levels: 
• Confounding unlikely to explain 

observed effect:  Plausible residual 
confounders are more likely to have 
decreased the observed effect than to 
have increased the observed effect 

• Confounding may explain observed 
effect:  Plausible residual confounders 
are unlikely to have decreased the 
observed effect and could be 
responsible for observed effect  

• Cannot assess 
Strength of 
association 
(magnitude 
of effect) 

Strength of association refers to the 
likelihood that the observed effect is 
large enough that it cannot have 
occurred solely as a result of bias from 
potential confounding factors. 

Score as two levels: 
• Strong: large effect size that is unlikely 

to have occurred in the absence of a 
true effect of the intervention (e.g., 
relative risk > 5). 

• Weak: small enough effect size that it 
could have occurred solely as a result of 
bias from confounding factors (e.g., 
relative risk < 5).  

 
Other Pertinent Issues  
Publication Bias 
Publication bias indicates that studies may have been published selectively with the result that 
the estimated effect of an intervention based on published studies does not reflect the true effect.  
Publication is regarded as separate from but related to strength of evidence.  That is, the strength 
of a set of RCTs with consistent results depends on the assumption that similar (or better) RCTs 
with discrepant results were not systematically missed.  The finding that only a small proportion 
of relevant trials has been published or reported in a results database may indicate a higher risk 
of publication bias, which in turn may undermine the overall robustness of a body of evidence.  
Although this is not a separate domain, publication bias can influence ratings of consistency and 
precision (and, to a lesser degree, risk of bias and directness.)  For example, if the investigators 
identify unpublished trials, and if their results differ from those of published studies, 
investigators can take these factors into account in their rating for consistency and in calculating 
a summary confidence interval for an effect. 
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Applicability 
Like publication bias, applicability is regarded as separate from but related to strength of 
evidence.  Low applicability can reduce the strength of evidence for a particular decision maker.  
CERs should summarize characteristics that decision makers may need or want to consider in 
assessing the generalizability (sometimes denoted external validity) of the evidence.  Decision 
makers may take into account how well the evidence maps to the patient populations, settings, 
diseases or conditions, interventions, comparators, and outcomes which are most relevant to their 
decisions.  Because these factors differ with the perspective of decision makers, we have chosen 
to consider applicability as separate from but related to strength of evidence.  
 
CERs should record information about applicability for the outcomes and comparisons for which 
they specify an overall strength of evidence rating.  As described in Chapter 6, EPCs should 
summarize this information in a separate table that decision makers can review along with the 
strength of evidence table. 
 
Rating Domains 
EPCs should have two or more reviewers with the appropriate clinical and methodological 
expertise score each domain for each key outcome (benefit and harm).  Differences should be 
resolved by consensus or mediation by an additional expert reviewer.  Although the consensus 
judgments will appear in tables in the CERs, EPCs should record and save each reviewer’s 
individual judgments about domains as background documentation for the CER.  
 
Overall Strength of Evidence Grade 
Four Strength of Evidence Levels  
The overall grade for strength of evidence reflects a global assessment that takes the required 
domains above directly into account and, as needed, incorporates judgments about the optional 
domains as well.  As noted, EPCs should rate strength of evidence for each major benefit (e.g., 
impact on health outcomes such as physical function or quality of life, or effects on laboratory 
measures or other surrogate variables) and each major harm (ranging from rare, serious, or life-
threatening adverse events to common but bothersome effects) for each comparison of interest. 
 
CERs can be broad in scope, encompassing multiple patient populations, interventions, and 
outcomes.  EPCs are not expected to grade every possible comparison for every outcome.  
Rather, EPCs should set clear priorities, assigning grades to those combinations (patients-
interventions-outcomes) that are likely to be of greatest interest to readers. 
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 Table 11-3 summarizes the four levels of grades that EPCs should use.  They have two 
components: (1) the principal 
definition concerns the level of 
confidence the authors place in the 
estimate of effect (benefit or 
harm)—i.e., that the evidence 
reflects the true effect; and (2) the 
subsidiary definition involves a 
subjective assessment of the 
likelihood that future research might 
affect the level of confidence in the 
estimate or actually change that 
estimate. 

Table 11-3. Strength of Evidence Grades and 
Definitions 
Grade Definition 
High High confidence that the evidence 

reflects the true effect.  Further 
research is very unlikely to change our 
confidence in the estimate of effect. 

Moderate Moderate confidence that the 
evidence reflects the true effect. 
Further research may change our 
confidence in the estimate of effect and 
may change the estimate.  

Low Low confidence  that the evidence 
reflects the true effect .  Further 
research is likely to change the 
confidence in the estimate of effect and 
is likely to change the estimate. 

Grades are denoted high, moderate, 
low, and insufficient.  They are not 
designated by Roman numerals or 
other terms. Insufficient Evidence  either is unavailable or does 

not permit estimation of an effect.   
 

High, Moderate, or Low Strength of Evidence 
Assigning a grade of high, moderate, or low implies that evidence is available to estimate an 
effect size in the first place.  EPCs should understand that, even when evidence is low, 
consumers, clinicians, and policymakers may find themselves in the position of having to make 
choices and decisions.  The designations of high, moderate, and low should convey how secure 
reviewers feel about decisions based on evidence of differing grades.   
 
Insufficient.  In some cases, high, moderate, or low ratings will be impossible or imprudent to 
make; the reason is that the EPC cannot draw any conclusion for a particular outcome, specific 
comparison, or other question of interest.  In these situations, EPCs should apply a grade of 
insufficient.  Specifically, evidence for an outcome receives a grade of insufficient in one of two 
cases:  (1) when no evidence is available or (2) when evidence on the outcome is too weak, 
sparse, or inconsistent to permit any conclusion to be drawn. 
 
The former case is clear (no evidence at all is available from the included studies).  The latter 
case is more complicated.  It can arise for several reasons, such as unacceptably high risk of bias 
or a major inconsistency that cannot be explained (e.g., two studies with the same risk of bias 
that found opposite results, with no clear explanation for the discrepancy).  Imprecise data may 
also lead to a grade of insufficient, specifically when the confidence interval is so wide that it 
includes two incompatible conclusions: that one treatment is clinically significantly better than 
the other, and that the difference is in the opposite direction.  Indirect data based on only one 
study or comparison could also receive a grade of insufficient.  If a single quantitative estimate is 
desired, the strength of evidence may be insufficient if an effect size cannot be calculated from 
reported information.  This same evidence base, however, may still be sufficient to permit a 
conclusion about the general direction of the effect, but EPCs need to take care not to conflate 
“low” strength of evidence with “insufficient.” 
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Incorporating Multiple Domains into an Overall Grade 
To assign an overall grade to the strength of a body of evidence, EPCs must decide how to 
incorporate multiple domains into the overall grade.  In some systems, such as that of the 
GRADE working group (Atkins, Briss et al. 2004), the overall evidence grade is calculated 
directly from the ratings for each domain using a transparent point system.  Some groups, such as 
the American College of Physicians, have adopted many elements of GRADE but not an explicit 
numerical way to incorporate multiple domains into an overall grade. 
 
A point system has the advantage of transparency, because it clearly delineates a direct path from 
the evidence to its grade.  However, no empirical evidence supports the superiority (or 
inferiority) of such a numerical system compared with a more qualitative approach.  Research is 
needed to compare the performance of point systems with other grading systems before we can 
recommend that EPCs use any specific system.  
 
Although EPCs may use different approaches to incorporate multiple domains into an overall 
strength of evidence grade, several general principles are important.  We recommend that EPCs 
first evaluate the risk of bias based on the study designs of the available evidence.  For many 
types of outcomes, evidence that is based on randomized trials will have less risk of bias than 
does evidence based on observational studies. For these outcomes, if randomized trial data are 
available, the EPC may choose to start with a high grade for the strength of evidence and then 
downgrade the evidence based on other domains.  If only observational data are available, the 
EPC may choose to start with a low grade for the strength of evidence, and then upgrade the data 
based on other domains. This overall approach is similar to, but more flexible than, the methods  
used in the GRADE system.   For some outcomes, that is, the EPC may believe that 
observational studies have less risk of bias than do trials or that the available randomized trials 
have a substantial risk of bias.  In such instances, the EPC may move up the initial rating of 
strength of evidence based on observational studies to moderate or move down the initial rating 
based on randomized trials to moderate.    
 
The EPCs should use other domains to modify the overall grade for the strength of evidence.  
Inconsistency, indirectness, and imprecision should generally weaken the strength of evidence.  
EPCs should also consider the optional domains as appropriate. The strength of the evidence 
would be weakened by lack of coherence or evidence of residual confounding.   In contrast, 
several factors may increase strength of evidence and are especially relevant for observational 
studies where one may begin with a lower grade based on the risk of bias.  Presence of a clear 
dose-response association or a very strong association would justify increasing strength of 
evidence, as would a judgment that plausible biases (for example, residual confounding) would 
lead to underestimating the effect.  The degree to which the overall strength of evidence is 
downgraded or upgraded based on these domains is a judgment call that the EPC should explain 
in the report. 
 
EPCs should also take specific steps to ensure reliability and transparency within their own work 
(both in individual CERs and across them) when incorporating domains into an overall grade.  
The first step is to be explicit about whether the evidence grade will be determined by a 
numerical system for combining ratings of the domains or by a qualitative consideration of the 
domains 
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The second step is to identify the domains that are most important for the targeted body of 
evidence and to decide whether to use quantitatively or qualitatively different weights for the 
domains when assigning the evidence grade.  For the sake of consistency across CERs, the 
domains should be defined using the terminology presented earlier in this chapter.  In the 
absence of any evidence to support quantitative weighting of the domains, a qualitative approach 
generally will be reasonable; however, that does not mean that all domains should have the same 
weight.  In general, the first or highest priority should be given to the domain for risk of bias, as 
it is well established that evidence is strongest when the study design has the lowest risk of bias.   
 
The third step is to develop an explicit procedure for ensuring a high degree of inter-rater 
reliability for rating individual domains.  As mentioned earlier, this assumes that at least two 
reviewers will rate each domain; ideally, they will have appropriate clinical and methodological 
expertise.  In addition, EPCs should assess the resulting inter-rater reliability for each domain.  
Although EPCs generally will not include the details of the reliability assessment in the CER, the 
EPCs should keep records of this information for documentation.  By recording this information, 
the EPCs will be able to increase knowledge about the reliability of the grading system.   
 
The fourth step is to use the ratings of the domains to assign an overall strength of evidence 
grade according to the decisions made in steps 1-3.  If this step involves a qualitative approach 
with subjective weighting of the domains, the EPCs should consider using at least two reviewers 
and should assess the inter-rater reliability of this step in the process.  That will not be necessary 
if the approach involves a formulaic calculation or algorithm based on the ratings of the domains. 
However, the scoring system or algorithm should be specified in sufficient detail to permit 
replication by a reader. 
 
The fifth step is to prepare a narrative explanation of the reasoning used to arrive at the overall 
grade for each body of evidence.  This should include an explanation of what domains played 
important roles in the ultimate grades.   
 
Reporting Strength of Evidence 
As noted above, CERs should present information about all comparisons of interest for the 
outcomes that are most important to patients and other decision makers.  Thus, strength of 
evidence should relate to those important outcomes in the comparative context.   
 
Complete and perfect information is rarely available.  For some treatments, data may be lacking 
about one or more of the outcomes.  In other cases, the available evidence comes from studies 
that have important flaws, is imprecise, or is not applicable to some populations of interest.  For 
this reason, CERs should also present information that would help decision makers judge the risk 
of bias in the estimates of effect, assess the applicability of the evidence to populations of 
interest, and take imprecision and other factors into account. 
 
Table 11-4 illustrates one approach to providing actionable information to decision makers that 
does reflect strength of evidence.  Specifically, it presents information pertinent to assessing 
evidence strength from different types of studies—specifically on the four required domains—
and it displays estimates of the magnitude of effect (right column).  For the outcome as a whole 
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(e.g., mortality or quality of life), the table also gives the overall rating.  It shows, for instance, 
that one fair-quality RCT reported mortality, which was lower by one patient per 100 treated 
(i.e., 1 percent), a difference that was not statistically significant (95% confidence interval (CI), -
4 percent to +3 percent).  For the same comparison, 14 retrospective cohort studies had a wide 
range of effect sizes (range -7 percent to +5 percent).  Had these estimates been precise (e.g., 
narrower CI for the RCT, consistent cohort studies to allow a summary effect size), one might 
have been able to reach a conclusion. Because these estimates are imprecise, however, the 
evidence is insufficient to allow a conclusion for mortality. 
 
Table 11-4.  Treatment 1 vs. Treatment 2:  Numbers of studies and subjects, strength of 
evidence domains, magnitude of effect,  and strength of evidence for key outcomes 
Number 
of 
Studies; 
Subjects 

Domains Pertaining to Strength of Evidence Magnitude of Effect and 
Strength of Evidence 

 
 

Risk of Bias: 
Design/ 
Quality 

Consistency Directness Precision Absolute risk difference 
per 100 patients 
 

Mortality Insufficient SOE 
1;80 RCT/Fair Unknown Direct Imprecise -1    (95% CI -4 to +3) 
14;384 Retrospective 

cohort/  
Fair 

Inconsistent  Direct Imprecise -7 to +5 (range) 

Myocardial infarction Low SOE 
7: 625 Retrospective 

cohort/  
Low 

Consistent Direct Precise -3 (95% CI -5 to -1) 

Severe diarrhea Moderate SOE 
4; 256 RCTs/ Fair 

 
Consistent   Direct Imprecise -4 (95% CI -8 to +1) 

14; 
28,400 

Cohort 
studies/ Fair 

Consistent Direct Precise -5 (95% CI -8 to -2) 

Improved quality of life High SOE 
6; 265 RCTs/  

Good 
Consistent  Direct Precise -5 (95% CI -1 to -7) 

Ulcer healing High SOE 
6; 265 RCTs/ Good Consistent Direct Precise +12 (95% CI +4 to +27) 
5; 684 Retrospective 

cohort studies 
Good 

Consistent Direct Precise +17 (95% CI +12 to +22) 

CI, confidence interval; RCT, randomized controlled trial; SOE, strength of evidence.   
 
Although Table 11-4 illustrates how EPCs might organize information about the strength of 
evidence and magnitude of effect in ways useful to decision makers, it is incomplete.  First, the 
table does not convey any information about the applicability of the evidence (Chapter 6).  
Second, a narrative summary of the results is also essential for interpreting the results of a 
literature synthesis.   
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