WETLAND DETERMINATION DATA FORM – Midwest Region | Project/Site: | | c | ity/County: | | | Sam | npling Date: _ | | |--------------------------------------|-----------------------------|-----------------|----------------------|-------------|---|---------------------------------|--------------------------------|----------------------| | Applicant/Owner: | | | | | State: | Sam | npling Point: _ | | | Investigator(s): | | s | Section, Tov | nship, Ra | nge: | | | | | Landform (hillslope, terrace, etc.): | | | L | ocal relief | (concave, convex | c, none): | | | | Slope (%): Lat: | | L | .ong: | | | Datu | um: | | | Soil Map Unit Name: | | | | | NWI | classification | : | | | Are climatic / hydrologic conditions | on the site typical for the | his time of yea | r? Yes | No _ | (If no, exp | lain in Remar | ks.) | | | Are Vegetation, Soil | _, or Hydrology | significantly d | isturbed? | Are ° | "Normal Circumst | ances" prese | nt? Yes | No | | Are Vegetation, Soil | _, or Hydrology | naturally prob | lematic? | (If ne | eeded, explain an | y answers in l | Remarks.) | | | SUMMARY OF FINDINGS | - Attach site map | showing | sampling | point l | ocations, trai | nsects, im | portant fe | atures, etc. | | Hydrophytic Vegetation Present? | Yes | No | | | | | | | | Hydric Soil Present? | Yes | | Is the | Sampled | | | | | | Wetland Hydrology Present? | Yes | No | withi | n a Wetlar | nd? Y | es | No | | | Remarks: | VEGETATION – Use scient | ific names of plant | s. | | | | | | | | Troe Stratum (Plat size: | ` | | Dominant
Species? | | Dominance Te | st workshee | t: | | | Tree Stratum (Plot size: 1 | | | | | Number of Don
That Are OBL, | | | (A) | | 2 | | | | | Total Number of | | | | | 3 | | | | | Species Across | All Strata: | | (B) | | 4 | | | | | Percent of Dom
That Are OBL, | ninant Species | s
.C: | (A/B) | | | | = | | | Prevalence Inc | | | (/15/ | | Sapling/Shrub Stratum (Plot size | | | | | | over of: | | y by: | | 2. | | | | | OBL species | | | | | 3 | | | | | FACW species | | | | | 4 | | | | | FAC species | | | | | 5 | | | | | FACU species | | x 4 = | | | | | = | | | UPL species | | x 5 = | | | Herb Stratum (Plot size: | | | | | Column Totals: | | _ (A) | (B) | | 1
2 | | | | | Prevalence | ce Index = B/ | 'A = | | | 3 | | | | | Hydrophytic V | egetation Inc | dicators: | | | 4. | | | | | 1 - Rapid T | est for Hydro | phytic Vegeta | ation | | 5 | | | | | 2 - Domina | ınce Test is > | 50% | | | 6 | | | | | 3 - Prevale | | | | | 7 | | | | | 4 - Morpho
data in | ological Adapta
Remarks or o | ations¹ (Provi
n a separate | de supporting sheet) | | 8 | | | | | Problemati | | | | | 9
10 | | | | | | | | | | | | | = Total Cove | er | ¹ Indicators of his be present, unli | | | | | 1 | | | | | Hydrophytic | | | | | 2 | | | | | Vegetation
Present? | Yes | No | | | | | | Total Cove | er | I TOSEIN! | | | | | | | | | | Hydrophytic | Yes | · | | SOIL Sampling Point: _____ | Profile Description: (Describe to the de | pth needed to document the indicator or | confirm the absence of indicators.) | |---|--|---| | Depth Matrix | Redox Features | | | (inches) Color (moist) % | Color (moist) % Type ¹ | Loc ² Texture Remarks | 1=Reduced Matrix, MS=Masked Sand Grain | | | Hydric Soil Indicators: | | Indicators for Problematic Hydric Soils ³ : | | Histosol (A1) | Sandy Gleyed Matrix (S4) | Coast Prairie Redox (A16) | | Histic Epipedon (A2) | Sandy Redox (S5) | Dark Surface (S7) | | Black Histic (A3) | Stripped Matrix (S6) | Iron-Manganese Masses (F12) | | Hydrogen Sulfide (A4) | Loamy Mucky Mineral (F1) | Very Shallow Dark Surface (TF12) | | Stratified Layers (A5) | Loamy Gleyed Matrix (F2) | Other (Explain in Remarks) | | 2 cm Muck (A10) | Depleted Matrix (F3) | | | Depleted Below Dark Surface (A11) | Redox Dark Surface (F6) | 31 | | Thick Dark Surface (A12) | Depleted Dark Surface (F7) | ³ Indicators of hydrophytic vegetation and | | Sandy Mucky Mineral (S1) 5 cm Mucky Peat or Peat (S3) | Redox Depressions (F8) | wetland hydrology must be present,
unless disturbed or problematic. | | Restrictive Layer (if observed): | | driless disturbed or problematic. | | _ , , , , | | | | Type: | | Hydric Soil Present? Yes No | | Depth (inches): | | | | Remarks: | | | | | | | | 1 | | | | | | | | | | | | | | | | HYDROLOGY | | | | | | | | Wetland Hydrology Indicators: | uired: check all that apply) | Secondary Indicators (minimum of two required) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requ | | Secondary Indicators (minimum of two required) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requ Surface Water (A1) | Water-Stained Leaves (B9) | Surface Soil Cracks (B6) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requ Surface Water (A1) High Water Table (A2) | Water-Stained Leaves (B9) Aquatic Fauna (B13) | Surface Soil Cracks (B6)Drainage Patterns (B10) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requestions) Surface Water (A1) High Water Table (A2) Saturation (A3) | Water-Stained Leaves (B9)Aquatic Fauna (B13)True Aquatic Plants (B14) | Surface Soil Cracks (B6)Drainage Patterns (B10)Dry-Season Water Table (C2) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested in the second | Water-Stained Leaves (B9)Aquatic Fauna (B13)True Aquatic Plants (B14)Hydrogen Sulfide Odor (C1) | Surface Soil Cracks (B6)Drainage Patterns (B10)Dry-Season Water Table (C2)Crayfish Burrows (C8) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested in the second | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Roots (C3) Saturation Visible on Aerial Imagery (C9) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested in the second | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested in the second | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested in the second | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested as a surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Base) Sparsely Vegetated Concave Surface | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Base) Sparsely Vegetated Concave Surface Field Observations: | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Base) Sparsely Vegetated Concave Surface Field Observations: | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface) Field Observations: Surface Water Present? Yes | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface) Field Observations: Surface Water Present? Water Table Present? Yes Water Table Present? | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface Water Present? Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface Water Present? Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface Water Present? Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Surface Water Present? Water Table Present? Yes Saturation Present? Yes (includes capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, manual capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | | Wetland Hydrology Indicators: Primary Indicators (minimum of one is requested Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (Based Sparsely Vegetated Concave Surface Field Observations: Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes Saturation Present? Yes (includes capillary fringe) Describe Recorded Data (stream gauge, manual capillary fringe) | Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled S Thin Muck Surface (C7) Gauge or Well Data (D9) (B8) Other (Explain in Remarks) No Depth (inches): No Depth (inches): | Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) g Roots (C3) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5) Wetland Hydrology Present? Yes No | US Army Corps of Engineers Midwest Region – Version 2.0