Skip Navigation
Genetics Home Reference: your guide to understanding genetic conditions
http://ghr.nlm.nih.gov/     A service of the U.S. National Library of Medicine®

BEST1

Reviewed October 2008

What is the official name of the BEST1 gene?

The official name of this gene is “bestrophin 1.”

BEST1 is the gene's official symbol. The BEST1 gene is also known by other names, listed below.

What is the normal function of the BEST1 gene?

The BEST1 gene provides instructions for making a protein called bestrophin. Although the exact function of this protein is unknown, it appears to play a critical role in normal vision. Bestrophin is found in a thin layer of cells at the back of the eye called the retinal pigment epithelium (RPE). This cell layer supports and nourishes the retina, which is the light-sensitive tissue that lines the back of the eye. The retinal pigment epithelium is involved in the growth and development of the eye, maintenance of the retina, and the normal function of specialized cells called photoreceptors that detect light and color.

Bestrophin functions as a channel across cell membranes in the retinal pigment epithelium. Charged chlorine atoms (chloride ions) are transported through these channels in response to cellular signals. Some studies suggest that bestrophin may also help regulate the entry of charged calcium atoms (calcium ions) into cells of the retinal pigment epithelium. Other potential functions of bestrophin are under study.

How are changes in the BEST1 gene related to health conditions?

vitelliform macular dystrophy - caused by mutations in the BEST1 gene

More than 100 mutations in the BEST1 gene have been identified in people with vitelliform macular dystrophy. These mutations can cause either the early-onset form of the disorder (known as Best disease) or the adult-onset form. Both types of vitelliform macular dystrophy are characterized by the buildup of a fatty yellow pigment (lipofuscin) in cells of the retinal pigment epithelium. Over time, the abnormal accumulation of this substance can damage the photoreceptors that are critical for sharp central vision.

Most BEST1 mutations change or delete single protein building blocks (amino acids) in bestrophin. The altered protein probably forms an abnormally shaped channel that cannot properly regulate the flow of chloride ions into or out of cells in the retinal pigment epithelium. It remains unclear how this defect is related to the buildup of lipofuscin and a progressive loss of central vision in people with vitelliform macular dystrophy.

other disorders - caused by mutations in the BEST1 gene

BEST1 mutations cause several additional eye disorders. For example, mutations in this gene have been found in some cases of a rare condition called autosomal dominant vitreoretinochoroidopathy (ADVIRC). This condition is characterized by abnormalities of the retina and the clear gel that fills the eyeball (the vitreous). Mutations in the BEST1 gene also have been identified in individuals who have other eye abnormalities, such as very small eyes (nanophthalmos), increased pressure in the eyes (glaucoma), and clouding of the lens (cataracts). Although it is not known how BEST1 mutations cause these problems, researchers believe that the eye abnormalities are related to defects in the retinal pigment epithelium.

A recently described eye disorder called autosomal recessive bestrophinopathy is also caused by mutations in the BEST1 gene. This condition is characterized by progressive vision loss and an autosomal recessive inheritance pattern. Autosomal recessive inheritance means affected individuals have mutations in both copies of the BEST1 gene in each cell. The mutations that cause autosomal recessive bestrophinopathy alter the structure of bestrophin, which obstructs the flow of chloride ions into or out of cells of the retinal pigment epithelium. It is unclear how changes in bestrophin lead to vision loss in people with this disorder.

Additionally, researchers have studied BEST1 mutations related to age-related macular degeneration. This eye disease is a leading cause of vision loss among older people worldwide. Mutations in the BEST1 gene have been found in a small number of people with age-related macular degeneration, but changes in this gene are probably not a major risk factor for this common eye disorder. A combination of genetic and environmental factors likely determine the risk of developing age-related macular degeneration.

Where is the BEST1 gene located?

Cytogenetic Location: 11q13

Molecular Location on chromosome 11: base pairs 61,717,355 to 61,731,934

The BEST1 gene is located on the long (q) arm of chromosome 11 at position 13.

The BEST1 gene is located on the long (q) arm of chromosome 11 at position 13.

More precisely, the BEST1 gene is located from base pair 61,717,355 to base pair 61,731,934 on chromosome 11.

See How do geneticists indicate the location of a gene? (http://ghr.nlm.nih.gov/handbook/howgeneswork/genelocation) in the Handbook.

Where can I find additional information about BEST1?

You and your healthcare professional may find the following resources about BEST1 helpful.

You may also be interested in these resources, which are designed for genetics professionals and researchers.

What other names do people use for the BEST1 gene or gene products?

  • BEST
  • BEST1_HUMAN
  • BMD
  • RP50
  • TU15B
  • vitelliform macular dystrophy 2 (Best disease, bestrophin)
  • VMD2

See How are genetic conditions and genes named? (http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/naming) in the Handbook.

What glossary definitions help with understanding BEST1?

acids ; amino acid ; atom ; autosomal ; autosomal dominant ; autosomal recessive ; calcium ; cataract ; cell ; cell membrane ; channel ; chloride ; chloride ion ; epithelium ; gene ; glaucoma ; inheritance ; inheritance pattern ; ions ; lipofuscin ; macular degeneration ; mutation ; photoreceptor ; pigment ; protein ; recessive ; retina ; risk factors ; tissue

You may find definitions for these and many other terms in the Genetics Home Reference Glossary (http://ghr.nlm.nih.gov/glossary).

References

  • Burgess R, MacLaren RE, Davidson AE, Urquhart JE, Holder GE, Robson AG, Moore AT, Keefe RO, Black GC, Manson FD. ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing. J Med Genet. 2009 Sep;46(9):620-5. doi: 10.1136/jmg.2008.059881. Epub 2008 Jul 8. (http://www.ncbi.nlm.nih.gov/pubmed/18611979?dopt=Abstract)
  • Burgess R, Millar ID, Leroy BP, Urquhart JE, Fearon IM, De Baere E, Brown PD, Robson AG, Wright GA, Kestelyn P, Holder GE, Webster AR, Manson FD, Black GC. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet. 2008 Jan;82(1):19-31. doi: 10.1016/j.ajhg.2007.08.004. (http://www.ncbi.nlm.nih.gov/pubmed/18179881?dopt=Abstract)
  • Entrez Gene (http://www.ncbi.nlm.nih.gov/gene/7439)
  • Hartzell C, Qu Z, Putzier I, Artinian L, Chien LT, Cui Y. Looking chloride channels straight in the eye: bestrophins, lipofuscinosis, and retinal degeneration. Physiology (Bethesda). 2005 Oct;20:292-302. Review. (http://www.ncbi.nlm.nih.gov/pubmed/16174869?dopt=Abstract)
  • Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT. Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev. 2008 Apr;88(2):639-72. doi: 10.1152/physrev.00022.2007. Review. (http://www.ncbi.nlm.nih.gov/pubmed/18391176?dopt=Abstract)
  • Krämer F, White K, Pauleikhoff D, Gehrig A, Passmore L, Rivera A, Rudolph G, Kellner U, Andrassi M, Lorenz B, Rohrschneider K, Blankenagel A, Jurklies B, Schilling H, Schütt F, Holz FG, Weber BH. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet. 2000 Apr;8(4):286-92. (http://www.ncbi.nlm.nih.gov/pubmed/10854112?dopt=Abstract)
  • Marmorstein AD, Kinnick TR. Focus on molecules: bestrophin (best-1). Exp Eye Res. 2007 Oct;85(4):423-4. Epub 2006 May 23. Review. (http://www.ncbi.nlm.nih.gov/pubmed/16720022?dopt=Abstract)
  • Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, Sandgren O, Forsman K, Holmgren G, Andreasson S, Vujic M, Bergen AA, McGarty-Dugan V, Figueroa D, Austin CP, Metzker ML, Caskey CT, Wadelius C. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998 Jul;19(3):241-7. (http://www.ncbi.nlm.nih.gov/pubmed/9662395?dopt=Abstract)
  • Renner AB, Tillack H, Kraus H, Kohl S, Wissinger B, Mohr N, Weber BH, Kellner U, Foerster MH. Morphology and functional characteristics in adult vitelliform macular dystrophy. Retina. 2004 Dec;24(6):929-39. (http://www.ncbi.nlm.nih.gov/pubmed/15579992?dopt=Abstract)
  • Renner AB, Tillack H, Kraus H, Krämer F, Mohr N, Weber BH, Foerster MH, Kellner U. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology. 2005 Apr;112(4):586-92. (http://www.ncbi.nlm.nih.gov/pubmed/15808248?dopt=Abstract)
  • Seddon JM, Afshari MA, Sharma S, Bernstein PS, Chong S, Hutchinson A, Petrukhin K, Allikmets R. Assessment of mutations in the Best macular dystrophy (VMD2) gene in patients with adult-onset foveomacular vitelliform dystrophy, age-related maculopathy, and bull's-eye maculopathy. Ophthalmology. 2001 Nov;108(11):2060-7. (http://www.ncbi.nlm.nih.gov/pubmed/11713080?dopt=Abstract)
  • Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):4008-13. (http://www.ncbi.nlm.nih.gov/pubmed/11904445?dopt=Abstract)
  • White K, Marquardt A, Weber BH. VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat. 2000;15(4):301-8. Review. (http://www.ncbi.nlm.nih.gov/pubmed/10737974?dopt=Abstract)
  • Yardley J, Leroy BP, Hart-Holden N, Lafaut BA, Loeys B, Messiaen LM, Perveen R, Reddy MA, Bhattacharya SS, Traboulsi E, Baralle D, De Laey JJ, Puech B, Kestelyn P, Moore AT, Manson FD, Black GC. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci. 2004 Oct;45(10):3683-9. (http://www.ncbi.nlm.nih.gov/pubmed/15452077?dopt=Abstract)
  • Yu K, Qu Z, Cui Y, Hartzell HC. Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4694-705. (http://www.ncbi.nlm.nih.gov/pubmed/17898294?dopt=Abstract)

 

The resources on this site should not be used as a substitute for professional medical care or advice. Users seeking information about a personal genetic disease, syndrome, or condition should consult with a qualified healthcare professional. See How can I find a genetics professional in my area? (http://ghr.nlm.nih.gov/handbook/consult/findingprofessional) in the Handbook.

 
Reviewed: October 2008
Published: February 25, 2013