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1 Background

This report has been prepared as a portion of my responsibilities as a panel member

for the “Vessel Calibration Analysis Review” held at the Northeast Fisheries Science

Center on 11-14 August, 2009. The Chair’s consensus report provides summary

views of the panel, particularly as a way for NMFS to move forward on upcoming

fall stock assessments. I concur with those recommendations. This individual report

will expand on my own views regarding issues connected with terms of reference

items d and e. These issues include methods for evaluating models relative to their

representation of zero frequency tows for various species in one or both vessels, and

the development of an alternative modeling strategy that may allow the estimation

of calibration factors for situations (e.g., species/season combinations) resulting in

fewer observations than the panel suggested were needed for such estimation in

Protocol 2.2 in the Chair’s consensus report. As suggested in the Chair’s consensus

report, the first of these might be approached through the use of simulation-based

model assessment, which is described in Section 2 of this report. Of particular

relevance to the assessment of zero frequencies or frequencies with which one vessel

has no catch but the other some catch is the material presented in Sections 2.2.3

and 2.3.3 in what follows. A suggested framework for development of models for

calibration that holds potential for dealing with the second issue, as mentioned in the

Chair’s consensus report in response to terms of reference item e, is then presented

in Section 3. Discussion of issues needed to produce analysis using the framework

developed in Section 3 is contained in Section 4, and Section 5 lays out a procedure

to realize the objective of extending estimation to situations with small sample sizes.

I received a request to address the issue of how length might be incorporated into

this framework after preparation of this report was under way, and this is addressed

in Section 6. Finally, a few summary remarks are contained in Section 7.
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2 Simulation Based Model Assessment

I will cast this topic in terms of evaluating the ability of one or more models to

adequately reflect the number of tows in which no individuals of a particular species

were captured, but the procedures suggested could be applied to any characteristic of

the observed data identified as of interest including, for example, the entire marginal

distribution of counts. This material is drawn from notes that I have prepared for

the course “Statistics 601: Advanced Statistical Methods” offered at Iowa State

University, specifically Chapter 12.3, pages 560-581. I have attempted to renumber

mathematical expressions as appropriate for this report, and remove the majority

of references to specific sections and expressions that appear in previous chapters of

the notes.

One of the goals of statistical modeling is to capture the key elements of a sci-

entific mechanism in a small number of model parameters. Given the formulation

of a statistical model, we may then view that model as a “data generating mecha-

nism”. If a model provides an adequate description of a set of observed data, then

that (fitted) model should generate data that is similar in appearance to the actual

observations. We consider here a number of methods for model assessment that rely

on this notion.

2.1 Fundamental Concepts

The fundamental concept of simulation based model assessment follows directly from

the view of a statistical model as a data generating mechanism. If a (fitted) model is

adequate to describe an observed set of data, then data generated from that model

should be similar to the observed data in all important aspects. What is needed to

put this concept into practice are:

1. Data realizations from a (fitted) model.
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2. A measure or measures of discrepancy between either a fitted model and a data

set, or between two data sets, or a quantification of some aspect of interesting

behavior in a set of data.

3. A reference distribution for the measure(s) of discrepancy chosen.

We have discussed the first item above, simulating data from a given model, pre-

viously. The second and third items are inter-twined with each other, and require

additional discussion. Consideration of these aspects of simulation-based model as-

sessment will lead to three situations; (1) a discrepancy measure between a data set

and a fitted model is available but either a theoretical reference distribution is not

available, or we choose not to use such a reference distribution (which is likely to

be asymptotic), (2) a discrepancy measure between two data sets is available but

either a theoretical reference distribution is not available or we choose not to use

one if it is available, and (3) a measure of some interesting aspect of data behav-

ior is available but we have no theoretical reference distribution available. We will

consider the first two situations in the case of independent response variables. The

third situation lends itself readily to either independence cases or to models with

more complex dependence structures such as longitudinal settings or spatial models.

2.2 Discrepancy Measures

2.2.1 Discrepancy Between a Data Set and a Fitted Model

Most of the available quantities used as goodness of fit statistics constitute measures

of discrepancy between a data set and a model fitted to the data set. A few of the

more commonly used statistics for independent random variables are briefly reviewed

here. The setting for all that follows in this subsection is that we have a model fitted

to independent random variables Y1, . . . , Yn that has resulted in a set of estimated



4

expected values µ̂1, . . . , µ̂n, or a set of fitted probability mass or density functions

f1(y|θ̂), . . . , fn(y|θ̂).

1. Chi-Square Statistic.

A traditional goodness of fit measure is the Chi-square statistic,

D =
n
∑

i=1

(yi − µ̂i)
2

ˆvar(µ̂i)
, (1)

which has, under the hypothesized model, a limiting χ2 distribution with n−p

degrees of freedom where p is the number of parameters estimated.

2. Deviance.

As was noted in the development of deviance residuals, the overall deviance

given for exponential dispersion families could be used as a goodness of fit

statistic. If the dispersion parameter φ is known (e.g., φ = 1 for binomial or

Poisson random components), the deviance has a limiting χ2 distribution with

n − p degrees of freedom, where p is the number of estimated parameters in

a model. For many models this distributional result does not hold, but the

scaled deviance D∗ using an estimated value of the dispersion parameter φ̂

still provides a measure of discrepancy between the data and a fitted model.

3. Power-Divergence Statistics.

An entire family of goodness of fit statistics was proposed by Read and Cressie

(1988) as the family of power divergence statistics. Suppose that the model

under consideration is either for discrete random variables with possible values

yi ∈ {C1, . . . , Ck}, or that we have binned a model for continuous random

variables into k categories C1, . . . , Ck. For j = 1, . . . , k, let Xj denote the

observed frequency with which the response variables Y1, . . . , Yn take on the

value or belong to the category Cj. Suppose further that the model may

be used to calculate marginal probabilities for either the possible data values
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(discrete case) or category membership (continuous case). In either case, let

these estimated probabilities be denoted as π̂j ; j = 1, . . . , k. The family of

power divergence statistics is defined as, for −∞ < λ <∞,

Dλ =
2

λ(λ+ 1)

k
∑

j=1

Xj





(

Xj

nπ̂j

)λ

− 1



 . (2)

In many cases, an asymptotic χ2 distribution is available for Dλ under the

hypothesized model. This may not always be the case, however, particularly

in models for continuous variables in which parameters are estimated from the

density form of the model (e.g., with a likelihood or log likelihood defined in

terms of densities) and Dλ is applied to categories from a subsequent binning

procedure (e.g., Read and Cressie, 1998, Chapter 4.1).

The family of power divergence statistics is indexed by the parameter λ and

includes a number of traditional statistics such as Pearson’s Chi-square (λ =

1) and the likelihood ratio statistic for multinomial data (limit as λ → 0).

Read and Cressie (1998) suggest a generally useful value of λ = 2/3, but it

seems to me that one of the strengths of the power divergence statistic is

what it might reveal as λ varies. This family of statistics increases in power

against “bump” alternatives as λ gets larger and positive, and increases in

power for “dip” alternatives as λ gets larger and negative. A bump alternative

corresponds to one or more cell frequencies substantially larger than under

the hypothesized (or fitted) model, and a dip alternative corresponds to a cell

frequency substantially smaller than under the hypothesized model. Thus,

computing Dλ over a range of values for λ would seem to provide valuable

information (see, e.g., Kaiser and Finger, 1996).

4. Kolmogorov-Smirnov Statistics.

Consider here a set of random variables {Yi : i = 1, . . . , n} that are not

only independent but also identically distributed according to a theoretical
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distribution with density f(y|θ). Kolmogorov-Smirnov statistics are based on

the empirical distribution function, defined for −∞ < y <∞ as,

Gn(y) ≡
1

n

n
∑

i=1

I(yi ≤ y). (3)

Any model for iid random variables produces a theoretical distribution func-

tion, usually with parameters that are to be estimated. Within the context of

this subsection, the estimated distribution function can be written as

F (y|θ̂) =
∫ y

−∞

f(t|θ̂) dt.

The Kolmogorov-Smirnov statistics are,

D+ = sup
{

Gn(y) − F (y|θ̂)
}

D− = sup
{

F (y|θ̂) −Gn(y)
}

D = max{D+, D−}

D′ = D+ +D− (4)

The last quantity in (4) is often called Kuiper’s statistic

A good deal of work has been conducted on determining the distributions of

these and other statistics based on the empirical distribution function under

various settings (see Chapter 4 of D’Agostino and Stephens, 1986, for a review).

Our concern, as with the other discrepancy measures presented, will be to make

use of these statistics in a simulation-based assessment procedure.

5. Cramer-von Mises Statistic.

The Cramer-von Mises statistic is also based on the empirical distribution

function (3) and is generally presented as a statistic useful in testing a hy-

pothesized distribution F0 as,

W 2
n = n

∫

∞

−∞

[Fn(y) − F0(y)]
2 dF0(y)
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A computational form of this statistic for ordered data observations y[1] ≤

y[2] ≤ . . . ,≤ y[n] is

W 2
n =

1

12n
+

n
∑

i=1

(

F0(y[i]) −
2i− 1

2n

)2

. (5)

As for Kolmogorov-Smirnov and related statistics, a good deal of work has

been conducted on distributional theory for the Cramer-von Mises statistic,

generally in an asymptotic framework. Also as for the other statistics presented

here, our concern is simply the possible use of this statistic as a measure of

discrepancy.

6. Generalized Residuals.

An extremely flexible procedure for measuring the discrepancy between a set

of data and a fitted model is based on the generalized residuals of expressions

(12.18) in the continuous case and (12.19) in the discrete case. Under a correct

and completely specified model (i.e., no estimated parameters) these residuals

will behave as independent and identically distributed realizations of a uni-

form distribution on the interval (0, 1). Any of the goodness of fit statistics

presented previously (e.g., Kolmogorov-Smirnov or Cramer-von Mises) could

then be used to measure the discrepancy of these generalized residuals with a

uniform distribution. With estimated parameters in a fitted model, the distri-

bution of generalized residuals will not be uniform, and this has stymied their

use in model assessment in the past. If the number of observations is large

relative to the number of estimated parameters, however, the distribution of

generalized residuals should be quite similar to a uniform distribution, and

statistics such as those in (4) or (5) provide a useful measure of discrepancy

in a simulation-based procedure.
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2.2.2 Discrepancy Between Two Data Sets

Overall discrepancy between two sets of data may be quantified using two-sample

versions of some of the goodness of fit statistics presented previously as discrepancy

measures between a set of data and a fitted model. Among these are the two-sample

versions of Kolmogorov-Smirnov statistics and the Cramer-von Mises statistic. To

formalize, let Gn(y) and Hm(y) denote the empirical distribution functions of two

sets of data, one of size n and the other of size m; in simulation-based procedures

we will typically have n = m but that is not strictly necessary. The two-sample

Kolmogorov-Smirnov statistics are then,

D+ = sup {Gn(y) −Hm(y)}

D− = sup {Hm(y) −Gn(y)}

D = max{D+, D−}

D′ = D+ +D− (6)

Let y = {yi : i = 1, . . . , n} denote the observations from one set of data, and

y∗ = {y∗j : j = 1, . . . , m} the observations from the other set of data. The two-

sample Cramer-von Mises statistic can be written as (c.f., Conover, 1980),

D =
mn

(m+ n)2

∑

x∈y

∑

x∈y∗

[Gn(x) −Hm(x)]2 . (7)

For comparison of a set of data with a fitted model the Kolmogorov-Smirnov and

Cramer-von Mises statistics are typically presented in the context of independent

and identically distributed random variables, as was done previously in this subsec-

tion. But any set of observed data can be used to construct a marginal empirical

distribution function as given in expression (3), regardless of whether those data

are assumed to have arisen from a model with iid random variables, independent

but not identically distributed random variables, or even dependent random vari-

ables. Conditional on any factors that result in non-identical or non-independent
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distributions, such as covariates in a regression model, any theoretical model can be

used to simulate sets of data that reflect the observed levels of those factors. This

then provides a vehicle for comparison of the marginal data distribution with the

marginal distribution reflected by a given fitted model.

2.2.3 Quantifying Data Behavior

In many situations we may have interest in a particular aspect of the pattern of

observed data, and whether a fitted model provides a good representation of that

behavior. For example, if a set of data contains a small number of extremely large

values that are separated from the bulk of the observations and with fairly great

spacing among themselves, we may have attempted to account for those values by

using a distributional form with a long right tail in the model. We might then

reasonably question whether that distributional form is sufficient to represent the

observed pattern, in the size of samples we actually have. That is, a long right tail

can lead to large values, but does it do so with about the correct frequency, and with

the type of spacing observed in the actual data. To quantify this data pattern, we

might use the difference between the largest and next-to-largest values in the data

set, or we might use the average spacing among the three or four largest values.

There is great flexibility in choice of an appropriate quantification of various

aspects of data patterns. The goal, of course, is to define a measure or measures

that reflect behaviors we believe are important to a given problem. While general

prescriptions are elusive, we can list some of the more common issues with which

we might be concerned. Appropriate quantifications that reflect the aspects of data

patterns listed here are largely model-specific.

1. Extreme Values.

As illustrated immediately above, we are often concerned with data observa-

tions that fall away from modeled expected values. Even with a model we are
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generally satisfied with as a description of the overall data pattern we may

wish to assess the frequency with which extreme observations occur. Such ob-

servations in a data set may reflect simply unusual circumstances or oddities;

this is the traditional sense of data values labeled as outliers. But extreme

observations may also reflect situations (data values) that arise somewhat in-

frequently, but should not be considered unusual or entirely unexpected under

a given model. Our intent in assessing patterns of extreme values may be

to guide model improvement, may be simply to identify an aspect of the ob-

served situation our (fitted) model is not entirely adequate to describe, or may

be to identify cases in the data that deserve closer inspection from a scientific

viewpoint.

2. Unusual Data Value Frequencies.

In some cases a set of data appear to exhibit a high relative frequency of

one or two particular values. Perhaps the most common occurrence of this

phenomenon is with count data having a large frequency of 0 values. We may

well have modeled such a situation through use of a mixture, such as a gamma-

Poisson or lognormal-Poisson mixture model. As we have seen, often the only

situations in which one is able to distinguish between these two model forms are

those that have a high frequency of zero values, because lognormal and gamma

distributions can often be “matched” up to the first two moments except for

J−shaped gamma distributions. A relevant question is then whether both,

one, or neither of these (fitted) models has adequately captured the frequency

of zero observations, or whether a more severe model, such as a two-stage

model of a binary process combined with a conditional count process, is called

for.

3. Need for Additional Random Terms.
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It is not always clear when random effects or random data model parameters

are beneficial in describing a problem. While the underlying subject matter

or science can provide the strongest motivation for such terms in a model, we

do not always have such guidance available. There has been, in my opinion,

an unfortunate tendency among statisticians to assign the label of “overdis-

persion” to any situation involving large and perhaps complex patterns of

variances, and to respond by including various overdispersion parameters in a

model without giving interpretation to such parameters within the context of

the problem. Such additional random terms in a model are not infrequently

added for any number of rather arbitrarily chosen groups to “account” for

overdispersion. An excellent question in many cases is whether random pa-

rameters or effects are truly needed, or whether an alternative approach to

modeling variances might be preferred.

4. Mean-Variance Relations.

Aside from those based on the normal distribution, most random model com-

ponents imply a particular form of relation between expected values and vari-

ances. In some ways this can be thought of as a “systematic portion” of the

random model component. It may well be possible to determine the type of

mean-variance relation exhibited by a data set, and to assess potential models

relative to this aspect of the observed data pattern.

5. Marginal versus Conditional Structures.

As we have seen, many complex models involve conditioning on either data

model parameters (e.g., mixed linear models, hierarchical models) or on por-

tions of the entire set of observable random variables (e.g., Markov random field

models). When this is the case we have referred to conditional and marginal

model structures. In determining an appropriate quantification or quantifica-
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tions of data pattern, we need to keep in mind whether the pattern or patterns

we have interest in are connected with marginal or conditional model struc-

tures. A model that is fully adequate to describe a particular problem should,

of course, correctly reflect both of these structures. Our ability to assess these

parts of overall model structure may, however, be limited by data availability.

For example, it is not uncommon in fitting Markov random field models that

estimates can be obtained using maximum pseudo-likelihood or some other

estimation method, and that these estimates indicate the presence of substan-

tial dependence among the random field locations. But, if one simulates from

the fitted model, it may occur that the simple average over all locations (as

an estimate of the marginal mean) is no where near the observed value. One

would then need to seriously question whether the data generating mechanism

embodied in the fitted statistical model provides an adequate description of

the actual scientific mechanisms that led to the observed data.

2.3 Simulation of Reference Distributions

Given the selection of one or more measures of discrepancy and/or quantifications of

data pattern, we are prepared to simulate reference distributions for those measures

or quantities. We will consider, in turn, the three situations mentioned in Section

2.1.

2.3.1 Discrepancy Between a Data Set and a Fitted Model

If the assessment is to be based on a measure of discrepancy between a the actual

data and the fitted model, a value of the measure is available for the actual analysis.

The chosen measure may be thought of as a functional of the estimated parameter θ̂

and the true but unknown parameter θ0, so let this value of the discrepancy measure

be denoted as D(θ̂, θ0). Let the joint distribution implied by the fitted model be
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denoted F (y|θ̂). Simulation of a reference distribution against which to assess the

value D(θ̂, θ0) may be produced by what is essentially a parametric bootstrap in the

following manner:

1. For k = 1, . . . ,M , simulate data sets y(k) from F (y|θ̂).

2. For each simulated data set estimate θ̂ as θ(k) and compute the chosen dis-

crepancy measure as D(θ(k), θ̂).

3. The empirical distribution function of theM values {D(θ(k), θ̂) : k = 1, . . . ,M}

forms a reference distribution against which to assess the actual value D(θ̂, θ0).

In particular, a simulation-based p−value can be computed as,

p =
1

M

M
∑

k=1

I{D(θ̂, θ0) ≥ D(θ(k), θ̂)}, (8)

where I is the indicator function that assumes a value of 1 if its argument is

true and a value of 0 otherwise.

There is one modification of the above procedure that is worth noting if a joint

sampling distribution is available for θ̂. The assumption inherent in this process is

that the distribution of D(θ̂, θ0) is the same as that of the D(θ(k), θ̂), just as was

needed in parametric bootstrap methods. This assumption can be checked, to some

degree, by modifying the algorithm so that a new value of θ̂ is chosen from its joint

sampling distribution prior to simulation of each data set y(k) on which estimation of

the θ(k) are based. If the assumption that the distribution of a function of θ̂ and the

true parameter θ0 is the same as that of the function applied to estimates θ(k) and

the “true” θ̂, then this modification should not change the empirical distribution of

the D(θ(k), θ̂) obtained in step 3 of the procedure.
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2.3.2 Discrepancy Between Two Data Sets

If the assessment is to proceed based on a measure of discrepancy between two data

sets, a test quantity or test statistic is not available from only the actual data set

and the model estimated from it. In this case, we need to obtain through simulation

both the test quantity and its reference distribution. Let the actual data set be

denoted as y∗, the distribution implied by the fitted model be denoted as before

by F (y|θ̂), and the chosen measure of discrepancy of y∗ with any other set of data

be denoted as D(y∗,y(k)). We assume here that D(y∗,y(k)) is a summary measure

that compares data sets in total, such as Kolmogorov-Smirnov or Cramer-Von Mises

statistics as discussed in Section 2.2, and we assume that this measure can assume

only non-negative values. A procedure to accomplish simulation-based assessment

is as follows:

1. For k = 1, . . . ,M , simulate data sets y(k) from F (y|θ̂).

2. For each simulated data set, compute the discrepancy between it and the

actual data as D(y∗,y(k)), resulting in the set of measures {D(y∗,y(k)) : k =

1, . . . ,M}.

3. Compute the average of these discrepancy measures as a reflection of the dif-

ference between the data and the fitted model as T = (1/M)
∑

D(y∗,y(k)).

The statistic T will play the role of the “test statistic” for a hypothesis that

the model with estimated parameter θ̂ provides an adequate fit to the data.

4. For each simulated data set y(k), repeat this entire process as if it were the

actual data. That is, for k = 1, . . . ,M ,

4.1 Estimate the parameter as θ̂(k) from the “data” y(k).

4.2 For j = 1, . . . ,M , simulate data sets y(k,j) from F (y|θ̂(k)).
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4.3 For each simulated data set y(k,j), compute the discrepancy between it

and the “actual” data as D(y(k),y(k,j)), resulting in the set of measures

{D(y(k),y(k,j)) : j = 1, . . . ,M}.

4.4 Compute the average of these discrepancy measures as T (k) = (1/M)
∑

j D(y(k), y(k,j)).

The statistic T (k) plays the role of a “test statistic” for a hypothesis that

the model with estimated parameter θ̂(k) provides an adequate fit to the

“data” y(k).

5. The result of step 4 is a set of values {T (k) : k = 1, . . . ,M}. The empirical

distribution of these M values represents a reference distribution against which

to compare the actual test statistic T from step 3 of the procedure. If desired,

this comparison may be represented in the form of a p−value as

p =
1

M

M
∑

k=1

I(T (k) ≥ T ), (9)

where I(·) is the usual indicator function.

There are possible modifications of this procedure that may be useful in partic-

ular situations. First, there is really no reason that M need be the same value in

steps 1− 3 as it is in step 4. A modification would be to simulated M +S data sets

in step 1, but use only M of them in steps 2 − 3. Step 4 would then be conducted

for all of the M +S data sets originally simulated, with M simulated data sets used

throughout step 4. In steps 5 and 6, M would then be replaced with M + S. What

is important is that the original test statistic T and the simulated test statistics T (k)

be produced in precisely the same manner. That is, whatever is “done” to the actual

data should also be “done” to each of the simulated data sets from step 1. While

this modification is perfectly reasonable, it is typically not a great deal of benefit,

because the most time consuming step in the procedure is step 4.1, estimating the

parameter ˆtheta as θ̂(k) for each of the data sets simulated in step 1. It can often be
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difficult to automate estimation in complex models so that, for example, no individ-

ual attention to data sets is needed to determine appropriate starting values for an

iterative estimation algorithm. One can contemplate any number of modifications

to the procedure aimed at alleviating this difficulty by requiring no estimation be-

yond what is conducted with the actual data. One could, for example, compute the

discrepancy measure for each of the M(M−1)/2 unique pairs of simulated data sets

from step 1, resulting in a set of measures {D(y(k),y(j)) : 1 ≤ k < j ≤ M} from

which to construct a reference distribution. Or, one might consider simulating M+1

data sets in step 1, and compute discrepancy measures among each of these and the

remaining M sets to construct a reference distribution. Both of these possibilities

would likely lead to less variability in the reference distribution than is appropriate.

One could attempt to circumvent this if a sampling distribution is available for the

original θ̂ by using it in the same manner as suggested previously in this subsection

for assessing discrepancy between a data set and a fitted model. All of these, as well

as other potential modifications one might consider, are entirely unevaluated at this

point in time. While I cannot recommend using any of them, I do suggest that such

evaluation would be a potentially profitable enterprise.

2.3.3 Quantification of Data Patterns

Suppose that model assessment is to be based on one or more given quantifications

of the behavior of data that might be generated from the fitted model, as described

in Section 2.3. Let Q(y∗) denote the value of such a quantity for the actual data set.

Really, the only distinction between this situation and that for comparison of two

data sets is that we assume Q(y) can be computed from a single data set rather than

requiring a pair of data sets. This does, however, simplify the procedure needed

to produce a reference distribution from that required for discrepancy measures

between data sets, as it eliminates the need for estimation using each data set
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simulated from the actual fitted model. A simulation-based procedure for arriving

at a reference distribution for Q(y∗) can be outlined as follows.

1. For k = 1, . . . ,M , simulate data sets y(k) from F (y|θ̂).

2. For each simulated data set, compute the quantity Q(y(k)), resulting in the

set of quantities {Q(y(k) : k = 1, . . . ,M}.

3. A simulation-based p−value for Q(y∗) may then be computed as

p =
M
∑

k=1

I
(

|Q(y∗)| ≥ |Q(y(k))|
)

, (10)

where I is the usual indicator function.

If the quantity Q(y) can assume only non-negative (or non-positive) values, such

as the proportion of zero values in a model for count data, the absolute values of

expression (10) are not needed. As for the simulation of reference distributions for

measures of discrepancy between a data set and a fitted model, one might choose

to simulate data sets in step 1 after having first chosen a parameter value from the

sampling distribution of θ̂ if one is available.

2.4 Issues in Model Assessment

In keeping with the theme of this entire set of notes, this chapter has attempted to

present model assessment within the context of general approaches rather than as a

recipe book for particular models. In this context there are a number of larger issues

involved in model assessment that deserve mention. The resolution of these issues

in any particular situation must involve the objectives of a statistical analysis, as

discussed in the introductory portion of this chapter. Here, we identify and briefly

discuss several of the major issues.
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2.4.1 Goodness of Fit as a Statistical Test

One major issue that arises in consideration of model assessment is whether it is

possible to test the “goodness of fit” of a model within the framework of traditional

statistical hypothesis testing. Actually, this is something of a misstatement as this

really is not an “issue”; nearly all statisticians agree that the answer is no it is

not possible to cast goodness of fit in the framework of Neyman-Pearson hypothesis

tests. But the reasons for this do raise issues as to how the results of goodness of fit

tests should be interpreted.

We are familiar with tests of the form H0 : µ = µ0 versus the disjunctive alter-

native H1 : µ 6= µ0, which may also be taken to mean “something other than µ0”.

Similarly, traditional goodness of fit tests are often formulated as H0 : Y ∼ F (y|θ0)

versus H1 : Y has some other distribution. There are a number of differences, how-

ever, between testing the goodness of fit of a model and the usual development of

hypothesis tests about values of parameters within an assumed model.

1. Hypothesis tests are generally developed by first considering simple null and

simple alternative hypotheses for the value of a parameter, such as H0 : θ = θ0

versus H1 : θ = θ1, where θ0 and θ1 are specified numerical values. In this

setting, the Neyman-Pearson lemma can be used to find most powerful tests

of specified size. Often, it can be shown that most powerful tests do not

depend on the specific value θ1, making them most powerful for composite

alternative hypotheses, at least for one-sided alternatives (e.g., H1 : θ > θ0).

This development simply cannot be pushed through in the case of goodness

of fit hypotheses. Even when the null hypothesis is simple, the alternative

will be not only composite, but also vague. That is, the composite alternative

hypothesis in a goodness of fit setting cannot be generated as a known class of

simple alternatives in the same way as composite alternatives for parameters

can be in the classic hypothesis testing theory as, for example, H1 : µ > µ0,
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and there is no reason to even consider taking the step to unbiased tests

that allow two-sided alternatives. So, no concept of optimality is available for

goodness of fit tests.

2. The null hypothesis in a goodness of fit test is typically composite itself, such

as H0 : Y ∼ N(µ, σ2) with unspecified parameters µ and σ2. This removes

goodness of fit tests one additional step from the theory used to develop hy-

pothesis tests that have known (and in some situations optimal) properties.

3. While the previous comments are true, they may also be largely moot, because

the typical interest in a goodness of fit test is to “accept” the null hypothesis.

This is directly opposed to the logical development of hypothesis testing (c.f.,

the nested syllogism of experimentation in Chapter 4.2) and the concept that

failing to reject the null hypothesis is not the same as accepting the null

hypothesis.

The conclusion that must be reached is that goodness of fit tests cannot be con-

sidered tests of hypotheses in the usual sense. This should not be seen as any great

loss. We understand that a statistical model is a conceptualization of the situation

under investigation so that testing whether a model is “true” is not a viable enter-

prise in the first place. One view is that we can still interpret a p−value that results

from a test-like procedure (e.g., expression 12.29, 12.30, or 12.31) as a measure of

“surprise” under the assumption that the fitted model is an adequate description of

the mechanisms that produced the observed data. This may be possible, but even

this needs to be qualified in some cases, in part because of the next issue to be

discussed.
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2.4.2 Goodness of Fit Versus Model Selection

A fundamental issue that has resulted in some lengthy discussions in the literature

is whether any model assessment can truly take place in the absence of an potential

alternative model, regardless of whether that alternative is available in explicit or

only implicit form. Two aspects of this issue seem rather immediate. First, if we

have an alternative model explicitly available, we most likely will conduct some

type of a test or comparison of the two models to select between them. Second, we

would certainly desire to be able to assess a model in the absence of any posited

alternative. After all, the model under consideration at this point may well have

already been selected from a set of possible alternatives, assuming the status of what

we sometimes refer to as a “final model” in an analysis. We would like to be able to

declare our final model as adequate, or indicate that even our best efforts have not

produced a satisfying result and send the problem back to the “scientific drawing

board”. I have called this issue fundamental because the question is whether we can

actually achieve this objective within the context of what is known about statistical

analysis, not whether it would be a good idea were it possible.

At the heart of the position that it is not truly possible to assess a model without

some type of alternative in mind is the fact that all, or nearly all, statistical test

statistics are more sensitive to some types of discrepancy between data and model (or

two data sets) than they are to others. For example, in Section 2.2.1 we described a

parameterized family of test statistics called power divergence statistics. This family

includes traditional Pearson Chi-square and likelihood ratio statistics. Depending

on the value of the parameter λ in expression (2), this statistic is more sensitive to

particular alternative data patterns such as “bump” (one or two large frequencies) or

“dip” (one or two small frequencies) alternatives. As a result, the value of λ chosen

(even if that value results in Chi-square or likelihood ratio statistics) implies at

least an implicit alternative. Given this, the argument can be made that our efforts
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would be better directed toward explicitly formulating an alternative model and

using some form of model comparison between it and the model under consideration.

This argument certainly seems to carry some force in the situation in which a fitted

model is being compared to a data set using statistics such as those described in

Section 2.2.1. At the very least, the indication is that we should not pretend that

such statistics quantify the “adequacy” of a fitted model relative to a set containing

equally weighted members of “anything else”.

If our chosen measure of discrepancy is based on a particular feature of the data

or quantification of a data pattern, one view is that the selection of that feature

really has defined the type of alternative being considered. For example, if our

measure is the proportion of 0 counts in a data set, then the unspoken alternative

to our fitted model is one that produces data with the relative frequency of zeros as

observed. To call this an alternative could also, however, be considered a tautology

(e.g., the alternative is nothing more than the data as so is redundant and without

additional meaning). This is my view, and I would claim that the question being

asked in such an assessment (could this model have reasonably generated these data)

comes as close to being “alternative free” as we can achieve.

3 A Class of Hierarchical Models for Calibration

In this section of the report I present an initial formulation of a class of hierar-

chical models that might allow estimation for particular situations (e.g., species

or species/season combinations) that lack a large amount of data. It is possible

that this strategy could also provide a unified structure within which to approach

estimation of calibration factors in general.
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3.1 General Principles

I first reiterate a point made at the review that the selection of situations for which

calibration factors are to be estimated, and the inclusion or exclusion of model terms

(e.g., covariates) should be based on a combination of two considerations, biological

sensibility and observed data pattern. The need to rely on both of these consider-

ations, rather than primarily one or the other, is accentuated by the limited time

in which the Albatross and the Bigelow could be operated in tandem. Given the

number of possible effects that could be considered, reliance on only indications of

statistical “significance” in this setting would almost certainly lead to models that

incorporate spurious factors. On the other hand, the fundamental principle that

pronouncements of various factors as “important” should be verified through em-

pirical observation indicates that selection of models based only on what we believe

we “know” is not a tenable scientific option. Given the unfortunate combination of

budgetary realities and mechanical difficulties that restricted the available data for

comparison of the Albatross and Bigelow, the overall goal should be identification

of models that provide stability in prediction of what one vessel would catch based

on observation of the other. That such stability in prediction does not always cor-

respond to the model having the “best fit” for a particular data set (as indicated

for example by AIC values) is illustrated in an entirely different context by Kaiser

and Finger (1996). The stability being sought in the current problem must come

primarily from widely accepted biological understanding.

The strategy proposed here to develop a class of generally applicable calibration

models is that of hierarchical modeling, in which calibration factors for individual

situations (e.g., a species/season or species/length class or species/season/sex set

of data) are estimated by “borrowing strength” from observation of other similar

situations. Although such models are not inherently Bayesian, a Bayesian approach

to estimation and inference is a natural statistical choice and will be advocated here.
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Our objective is to estimate the ratio in “catchability” of the two vessels for a set of

situations. Differences caused by specifics of gear, acoustic factors, towing speeds,

and other relevant factors are subsumed under the heading of vessel differences.

Considered as a function of vessel operation and fish behavior (for a particular

situation) catchability should conceptually be a fixed value, and will be represented

as such in the models proposed. Variability in the density of fish encountered by the

two vessels is accounted for through the use of “mixing distributions” or “random

parameter models” in the overall statistical structure. The class of models proposed

contains three main components, the “data model”, the “mixing distribution(s)”,

and the “prior distribution(s)”. These are considered in turn.

3.2 The Data Model

Following the majority of models proposed for estimation of calibration factors, we

will assume that the number of fish caught in an individual tow can be represented as

corresponding to an observation of a random variable having a Poisson probability

mass function. To this end, let YA,i be a random variable corresponding to the

number of fish caught by the Albatross at sampling station i and YB,i similarly

correspond to the number of fish caught by the Bigelow at station i. Let DA,i

denote the density of fish encountered by the Albatross and DB,i denote the density

of fish encountered by the Bigelow, both at station i. Let VA,i denote the volume (or,

if appropriate for a situation, the area) of water sampled by the Albatross and VB,i

the volume sampled by the Bigelow, also both at station i. Here, YA,i and YB,i are

random variables associated with observable phenomena, DA,i and DB,i are random

variables associated with unobservable phenomena, and VA,i and VB,i are constants

that can be calculated based on tow duration and speed. Assume that, given DA,i

and DB,i, YA,i and YB,i have independent Poisson distributions with parameters

qAVA,iDA,i and qBVB,iDB,i, respectively. That is, assume that the probability mass



24

functions of YA,i and YB,i are,

f(yA,i|DA,i, qA) =
1

(yA,i)!
{qAVA,iDA,i}

yA,i exp{−qAVA,iDA,i}

f(yB,i|DB,i, qB) =
1

(yB,i)!
{qBVB,iDB,i}

yB,i exp{−qBVB,iDB,i} (11)

In expression (11) qA and qB are the catchabilities of the Albatross and the Bigelow

for the specified situation, respectively. Different versions of the model are produced

through different assumptions about the densities of fish encountered by the two

vessels, DA,i and DB,i.

3.3 Mixing Distributions

Work conducted by NMFS and presented at the review indicates that models in-

corporating a stochastic component over tows or sampling stations have superior

performance to models that do not incorporate such a component. This is not

surprising given the restrictive nature of mean-variance relation in Poisson distri-

butions. Three basic models (meaning without covariates such as length) are given

by three different assumptions about the densities of fish a a station, although all

of these models take densities to be random quantities. Assume that, for a set of

stations to be considered in estimation of a calibration factor, i = 1, . . . , S say, YA,i

and YB,i have probability mass functions given in expression (11).

3.3.1 Model 1.

Assume that, for i = 1, . . . , S, DA,i = DB,i = Di. Let Di ∼ iid according to some

distribution that has density g(di|θ) with support on the positive line and parameter

θ. Assume that YA,i and YB,i are conditionally independent given Di = di. The joint

conditional probability mass function of the two catches is then

f(yA,i, yB,i|di, qA, qB) = f(yA,i|di, qA) f(yB,i|di, qB) (12)
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and the marginal model becomes

h(yA,i, yB,i|qA, qB, θ) =
∫

∞

0
f(yA,i, yB,i|di, qA, qB) g(di|θ) d(di), (13)

where the notation d(di) is just for clarity because of the multiple “d”s; expression

(13) is an ordinary Riemann integral. Depending on the choice of g(di|θ), it may or

may not be possible to evaluate the integral (13) analytically. If not, this difficulty

can be overcome through inclusion of the densities di : i = 1, . . . , S as “parameters”

in an overall MCMC algorithm. If (13) can be relatively easily evaluated we may

or may not choose to do so, as will be discussed in Section 4. Also note that, while

YA,i and Yb,i are assumed conditionally independent, they will not be marginally

independent. Assuming independence among sampling stations, the likelihood for

this model is

h(yA,i,yB,i|qA, qB, θ) =
S
∏

i=1

h(yA,i, yB,i|qA, qB, θ). (14)

3.3.2 Model 2

In this model we assume that DA,i 6= DB,i, but that values of these random quan-

tities can be considered as arising as two independent draws from the same mixing

distribution. So DA,i has density g(dA,iθ) and DB,i has the same density g(dB,i|θ).

In this case, YA,i and YB,i are both conditionally and marginally independent with

marginal probability mass functions

h(yA,i|qA, θ) =
∫

∞

0
f(yA,i|qA, dA,i) g(dA,i|θ) d(dA,i)

h(yB,i|qB, θ) =
∫

∞

0
f(yB,i|qB, dB,i) g(dB,i|θ) d(dB,i). (15)

The joint marginal data model for YA,i and Y B, i at sampling station i is given

as the product h(yA,i, yB,i|qA, qB, θ) = h(yA,i|qA, θ) h(yB,i|qB, θ), and the likelihood

becomes

h(yA,yB|qA, qB, θ) =
S
∏

i=1

h(yA,i, yB,i|qA, qB, θ)
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=
S
∏

i=1

h(yA,i|qA, θ) h(yB,i|qB, θ). (16)

3.3.3 Model 3

Here, assume that DA,i 6= DB,i as in Model 2, but that the observed values of these

variables can be represented as correlated draws from a bivariate mixing distribution

with density g(dA,i, dB,i|θ), with support on the strictly positive quadrant of R2 and

parameter θ. The joint conditional probability mass function for the two catches

now becomes

f(yA,i, yB,i|dA,i, dB,i, qA, qB) = f(yA,i|dA,i, qA) f(yB,i|dB,i, qB) (17)

and the marginal model has the form

h(yA,i, yB,i|qA, qB, θ) =

∫

∞

0

∫

∞

0
f(yA,i, yB,i|dA,i, dB,i, qA, qB) g(dA,i, dB,i|θ) d(dA,i) d(dB,i) (18)

With the distinction between marginal probability mass functions in expressions

(13) and (18) noted, the likelihood for this model again has the form of expression

(14).

3.3.4 Comparison of Models

A variety of specific models can be developed through selection of particular forms

for the mixing distributions g(di|θ) in Model 1, the common g(dA,i|mbtheta) and

g(dB,i|θ) in Model 2, and g(dA,i, dB,i|θ) in Model 3. For Models 1 and 2, choices

that readily suggest themselves are gamma, generalized gamma, lognormal, and ex-

treme value distributions. Any of these choices could be folded into a finite mixture

to produce greater frequencies of zero catch if that appears necessary. For Model

3 the choices are more limited but include bivariate lognormal and (possibly) ex-

treme value distributions. One could, of course include truncated (at zero) normal
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distributions for each model, but it seems reasonable that something with longer

right tail behavior would be more appropriate. Each of the three model structures

conceptualizes the number of fish captured by the Albatross and Bigelow as arising

from somewhat different probabilistic mechanisms, and there are also some analogies

with models considered by NMFS and presented at the review.

1. Model 1.

Model 1 takes the density of fish encountered by the two vessels at a sam-

pling station to be the same. While the catch of the Albatross and Bigelow

are taken to be conditionally independent in this model, they will not be

marginally independent because of this common value of di. This might be

most appropriate for situations involving species that are widespread and are

either non-schooling or form schools that are structured horizontally. A ques-

tion with the structure of Model 1 is whether it is flexible enough to produce

the level of correlations observed between catches of the two vessels. There

is similarity between models of this structure and what was presented at the

review as a “correlated negative binomial” model. These structures may even

be equivalent if the mixing distribution for Di is taken to be gamma, although

I have not worked out the details. As already pointed out, however, the more

general structure of Model 1 allows any number of distributions to be consid-

ered for the Di within the same framework.

2. Model 2.

Model 2 allows the densities of fish encountered by the two vessels at a sampling

station to differ, but takes these quantities to be independent. As a result, the

catches of the vessels will be independent in the marginal data model as well.

Evidence was presented at the review that any number of species show marked

correlation in catch across sampling stations, and Model 2 would most likely

not be fully adequate to describe such situations. But there may be cases in
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which correlation among vessels is weak, and these are the situations for which

one might consider the use of this model. Situations involving species that have

extremely patchy distributions or schools that are vertically structured might

lend themselves to representation by Model 2. There is similarity of Model 2

with the “independent negative binomial” model presented at the review but,

as for Model 1, this would be most true only if the mixing distributions were

taken as gamma. The beta-binomial model presented at the review is also

similar to Model 2 if the mixing distribution is gamma and the additional step

is taken of conditioning on the sum DA,i +DB,i.

3. Model 3.

Like Model 2, Model 3 allows the densities of fish encountered by the Albatross

and Bigelow to differ but, unlike Model 2, attempts to maintain some degree of

correlation across sampling stations. This model is an attempt to incorporate

the “best” features of both Model 1 and Model 2 into one structure. While

somewhat more elegant than either of the previous models, a drawback of this

model is difficulty in constructing an appropriate bivariate mixing distribution

for (DA,i, DB,i). This difficulty would be accentuated if a need arises to make

use of a finite mixture formulation of to account for large numbers of 0 catches.

That is, the model reflects 0 catches through the combination of low density

values and the frequency for 0 values resulting from a Poisson observation

model with small mean (e.g., qAVA,iDi). If this structure is not capable of

reflecting the observed frequencies of zero catch (as assessed using methods

similar to those outlined in Section 2 of this report, for example) then the

natural option is to model fish densities as arising from a finite mixture of

a point mass at 0 and a distribution for non-zero fish density. While doing

so would seem possible for both Model 1 and Model 2, achieving this in a

bivariate setting for the pair DA,i, DB,i would prove to be a challenge. This
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presents an interesting research question, but is perhaps a bit beyond what

could be expected in an analysis that is practical at the current time.

3.3.5 Considerations in Model Selection

Three aspects that should be considered in choosing any of model structures, or any

additional alternatives, are as follows.

1. The frequency of 0 values in marginal distributions of YA,i and YB,i.

2. The behavior in the right tail of marginal distributions of YA,i and YB,i.

3. Correlation between values of YA,i and YB,i in the marginal distribution.

Although I was not necessarily of this opinion at the review itself, further reflection

causes me to suggest that the first two of these might be more important to ade-

quately model than the third, although correlation should not be ignored entirely.

This is because we would expect the correct reflections of frequencies of various levels

of catch to have a greater effect on point estimation of qA and qB, while correlation

would be expected to effect primarily the precision of estimation and a proper quan-

tification of uncertainty. Thus, I would recommend focusing first on models having

the structures of Model 1 or Model 2.

3.3.6 The Beta-Binomial Formulation

The beta-binomial model advocated by NMFS at the review introduces an interest-

ing question relative to the formulation and selection of models to be considered.

That model seemed to have generally acceptable behavior in the simulations con-

ducted, and the question is what might produce this phenomenon relative to the

other models considered. Consideration of the particular mechanisms used to gen-

erate data for the simulation studies is certainly appropriate, but it strikes me that
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there may be a more fundamental issue involved. Casting the observation process

in terms of a binomial results from conditioning on the total catch at each sampling

station. Such conditioning intuitively removes a major source of variability from

the problem, that being the overall density of fish being sampled. Any differences

in VA,i and VB,i as well as DA,i and DB,i are subsumed by now non-constant qA and

qB (which could then be taken as qA,i and qB,i), and variability in the ratio of these

quantities is conditioned on the sum YA,i + YB,i. This strikes me as a less than fully

pleasing conceptualization of the problem, but it may well present a useful vehicle

for estimation of qB/qA in terms of an expected binomial parameter. Thus, I would

not recommend that NMFS completely abandon consideration of this formulation.

One point to be made is that the strategy for borrowing information across similar

situations (e.g., species groups) as described in Section 5 of this report could be ap-

plied to the beta-binomial model as well as to the models presented previously, and

details of assigning prior distributions to this model will be considered in the next

subsection along with the other models. At the same time, a single procedure that

produces calibration factors in both directions (Albatross to Bigelow and Bigelow

to Albatross) will not result from using the beta-binomial model.

3.3.7 Example: Gamma Mixing Distribution for Di in Model 1

As an example in which the integrals of expression (13) can be evaluated analytically,

consider Model 1 with g(di|θ) taken to be the density of a gamma distribution. Let

θ ≡ (α, β), and assume that

g(di|α, β) =
βα

Γ(α)
dα−1

i exp(−βdi); di > 0. (19)
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The joint data model of expression (12) is,

f(yA,i, yB,i|qA, qB, di) =

1

yA,i!yB,i!
(qAVA,i)

yA,i(qBVB,i)
yB,id

yA,i+yB,i

i exp {−(qAVA,i + qBVB,i)di} (20)

Then using (19) and (20) in the integral of expression (13), the marginal joint

probability mass function for YA,i and YB,i becomes

h(yA,i, yB,i|qA, qB, θ) =
βα(qAVA,i)

yA,i(qBVB,i)
yB,i

Γ(α)yA,i!yB,i!

×
∫

∞

0
d

α+yA,i+yB,i−1
i exp {−(qAVA,i + qBVB,i + β)di} d(di)

=
βα(qAVA,i)

yA,i(qBVB,i)
yB,iΓ(α + yA,i + yB,i)

Γ(α)yA,i!yB,i!(qAVA,i + qBVB,i + β)α+yA,i+yB,i

=

βα(qAVA,i)
yA,i(qBVB,i)

yB,i





yA,i+yB,i−1
∏

h=0

(α + h)





yA,i!yB,i!(qAVA,i + qBVB,i + β)α+yA,i+yB,i
(21)

Although expression (21) appears somewhat formidable at first glance, forming a

joint over sampling stations as in (14) and taking the logarithm would result in a

quite manageable set of summations that would not be difficult to compute, along

with the necessary derivatives, if maximum likelihood estimation was desired. A

likelihood analysis might be interesting and could provide preliminary indications

of model behavior. But likelihood analysis does not lend itself to the objective of

borrowing strength across similar species for the purpose of producing calibration

factors for individual species with low to moderate sample sizes. For this we will

need a Bayesian approach and prior distributions to be discussed presently.
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3.4 Prior Distributions

In the general structure of any of the models presented previously (aside from the

beta-binomial which will be considered at the end of this subsection), prior dis-

tributions are needed for qA, qB, and θ, although the composition of θ will differ

between models. I will focus here on the structure of Model 1. A natural overall

prior structure is the product form

π(qA, qB, θ) = πA(qA) πB(qB) πθ(θ). (22)

Prior distributions for qA and qB should have support on the interval (0, 1) and

the obvious choice is to use beta distributions for this purpose. The parameters of

these beta distributions could well be selected to result in uniform priors for these

two quantities of primary interest. That is, πA(·) and πB(·) in (22) could be taken

as

πA(qA) = 1; 0 < qA < 1

πB(qB) = 1; 0 < qB < 1 (23)

The dimension of θ may vary depending on the mixing distribution chosen for

g(di|θ), and appropriate prior distributions for these components will vary as well.

The more obvious choices for g have two parameters, such as α and β in the gamma

formulation or µ and σ2 in a lognormal formulation or what are sometimes denoted

as ψ and φ in an extreme value model (ψ is a location parameter and φ a scale

parameter in this distribution). In general, a product form can be applied to the

components of θ just as to the full parameter vector in expression (22). Some natural

choices for priors with two example models follow.

1. Gamma Formulation.

Here, it would be natural to take π(α, β) = πα(α) πβ(β) with πβ(β) being
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diffuse gamma (to exploit conditional conjugacy) and πα(α) either improper,

or proper on a large interval of the positive line.

2. Lognormal Formulation.

For a model in which g(di|θ) is taken to be lognormal with θ ≡ (µ, σ2) we

might take π(µ, σ2) = πµ(µ) πσ(σ2) in which πµ(µ) is normal with a large

variance (e.g., 1000 or 5000) and πσ(σ2) is either proper uniform on a large

interval or diffuse inverse gamma (say with parameters 0.01 and 0.01).

Choosing priors for models with more extreme tail behavior in the mixing distri-

bution for fish densities, such as extreme value or generalized gamma distributions

might be a bit more involved only because we have less experience with such models.

I have suggested some priors for a model with extraordinary right tail behavior in

work on another project involving discard estimation, and something along those

lines might apply to this problem as well, if it is determined that more standard

formulations for g(di|θ) are not fully adequate.

Assigning priors to a beta-binomial model is actually fairly straightforward.

From a standard (α, β) parameterization of a beta distribution, let µ = α/(α+β) be

the expected value and let φ = 1/(α+β+1) be an additional dispersion parameter.

In this parameterization, the sets of possible values for µ and φ are both the unit

interval (0, 1). This suggests uniform or some other beta distribution for individual

priors πα(α) and πβ(β), with the joint prior in product form, π(α, β) = πα(α) πβ(β).

4 Simulation of Posteriors

It can be taken as a given that posterior distributions will not be available in closed

form, and that Markov Chain simulation will be needed to produce samples from

the joint (and, hence also marginal) posteriors of qA, qB and θ. The most likely

overall structure for a Markov Chain Monte Carlo algorithm in this problem would
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seem to be that of the Gibbs Sampler. I assume throughout that the reader has a

basic familiarity with the Gibbs Sampling algorithm. If this is not the case, then

much of what is presented in this subsection will be without meaning. For a Gibbs

algorithm what is needed are the full conditional posteriors or functions that are

proportional to them. There are two situations that might arise, that in which the

marginal data model (e.g., expression 13) is available in closed form and that in

which it is not. I consider these two situations in turn.

4.1 Closed Form Data Model

If h(yA,iyB,i|qA, qB, θ) can be derived in closed form, such as in expression (21)

for the gamma model example, then there are only a relatively small number of

conditional posteriors that will be needed. Suppose that θ = (θ1, θ2)
T . Let y

denote the entire set of observed catches from both the Albatross and the Bigelow.

The distributions that will be required for simulation are then p(qA|qB, θ1, θ2,y),

p(qB|qA, θ1, θ2,y), p(θ1|qA, qB, θ2,y) and p(θ2|qA, qB, θ1,y). All of these conditional

posteriors are proportional to the joint posterior which, in turn can be represented

by

π(qA, qB, θ1, θ2,y) ∝ h(yA,yB|qA, qB, θ1, θ2) πA(qA) πB(qB) π1(θ1) π2(θ2). (24)

Conditional posteriors (un-normalized) result from considering the right hand side of

(24) as functions of the individual parameters for fixed values of all other quantities

involved. Typically, when using a marginal data model there is not a great deal of

simplification available for various conditional posteriors because h(yA,yB|qA, qB, θ)

is a product given by expression (14). It is not uncommon that this can result in

computational difficulties such as overflow (e.g., an expression exceeding exp(360)).

Sometimes such problems can be overcome through computational maneuvers (e.g.,

a product is the exponentiation of the sum of its log terms) but other times com-
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putations can become prohibitive, and one might choose to consider the problem

in the context of a situation in which a closed form is not available for the data

model. The potential benefit of using a marginal closed form data model, if such is

available, is that the number of conditional posteriors that must be sampled from

in an overall Gibbs algorithm is greatly reduced. The potential drawback is that

computation may be difficult or impossible.

One possible strategy for sampling from the conditional posteriors is the use of

a Metropolis rule. If this is the case, it may be beneficial to sample qA and qB

jointly, using the acceptance rule on this bivariate pair rather than sampling of the

two quantities individually. The overall algorithm structure would still be that of

a Gibbs Sampler, but the steps of sampling from p(qA|qB, θ1, θ2,y) would be folded

into one step of sampling from the bivariate distribution p(qA, qB|θ1, θ2,y). A natural

proposal distribution to use in this scenario would be independent beta (or uniform)

distributions for qA and qB, resulting in a random walk Metropolis embedded in an

overall Gibbs algorithm.

4.2 Data Model with Unevaluated Integrals

If h(yA,i, yB,i|qA, qB, θ) cannot be determined analytically because the integral in

(13) is intractable, the usual approach to simulation from the conditional posteriors

is to effectively conduct the integration as a portion of the simulation procedure.

For Model 1, this would be accomplished by defining the fish densities Di; i =

1, . . . , S to be additional “parameters” in the model. Continue to assume that

θ ≡ (θ1, θ2)
T . Let D ≡ {di : i = 1, . . . , S} be defined as the set of fish densities

for all sampling sites, and let D−i ≡ D\di be defined as this set less the value at

sampling station i. Then the conditional posteriors needed for a Gibbs algorithm are

p(qA|qB, θ1, θ2,D,y), p(qB|qA, θ1, θ2,D,y), p(θ1|qA, qB, θ2D,y), p(θ2|qA, qB, θ1,D,y)

and the entire set {p(Di|qA, qB, θ1, θ2,D−i,y) : i = 1, . . . , S}. At each cycle of the
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Gibbs algorithm, then, there will be a need to sample from 4 + S distributions

(as opposed to only 4 if the data model is available in closed form), where S is the

number of sampling stations which is in the hundreds. Nevertheless, this may be the

only option if the integral of expression (13) is not tractable or may be chosen anyway

if the conditional posteriors of expression (24) are exceedingly difficult to sample

from. Typically, although many more distributions are needed in this situation, the

un-normalized conditional posterior densities allow substantial simplification.

Consider the example model of expressions (19) and (20) in which the Di; i =

1, . . . , S are taken to be independent and identically distributed as gamma random

variables. The joint posterior may then be represented as,

p(qA, qB, α, β,D,y) ∝
S
∏

i=1

[f(yA,i, yB,i|qA, qB, di) g(di|α, β)] πA(qA) πB(qB) πα(α) πβ(β)

(25)

Now, considerable simplification occurs as expression (25) is considered proportional

to the conditional posteriors of qA, qB, α, β, and the elements of D. In particular,

p(qA|qB, α, β,D,y) ∝
S
∏

i=1

[f(yA,i, yB,i|qA, qB, di)] πA(qA)

p(qB|qA, α, β,D,y) ∝
S
∏

i=1

[f(yA,i, yB,i|qA, qB, di)] πB(qB)

p(α|qA, qB, β,D,y) ∝
S
∏

i=1

[g(di|α, β)] πα(α)

p(β|qA, qB, α,D,y) ∝
S
∏

i=1

[g(di|α, β)] πβ(β)

and, for i = 1, . . . , S

p(di|qA, qB, α, β,D−i,y) ∝ f(yA,i, yB,i|qA, qB, di) g(di|α, β) (26)

These un-normalized density functions will be much simpler to simulate from than

those corresponding to the closed form data model. For example, if g(di|α, β) is a

gamma density and πβ(β) is also a gamma density, then by conjugacy p(β|qA, qB, α,D,y)

will also be a gamma density, which may then be sampled from directly. This is
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exploitation of conditional conjugacy as mentioned in Section 3.4 on prior distribu-

tions. The last row of expression (26) gives S distributions, but each of these depends

on only one bivariate pair of (yA,i, yB,i), not the entire data set. And, if g(di|α, β)

is as given in expression (19) while f(yA,i, yB,i|qA, qB) is as given in expression (20),

then

p(di|qA, qB, α, β,D−i,y) ∝ d
α+yA,i+yB,i−1
i exp {−(qAVA,i + qBVB,i + β)di} ,

so that each of these conditional posteriors are also identified as gamma distributions.

Note that this great simplification is unlikely to occur if g(di|θ) must be chosen as a

distribution with more extreme right tail than can be accommodated with a gamma

distribution. Nevertheless, the point remains that although the Gibbs algorithm

without a closed form data model requires simulation from many more conditional

posterior distributions than does the algorithm with a closed form data model, the

necessary sampling may be easy enough to make overall computation faster than

use of the closed form – it will certainly make programming easier.

Simulation from the posterior of a beta-binomial model can be accomplished with

a pure Metropolis-Hastings algorithm for jointly sampling the pair (µ, φ) defined at

the end of the previous subsection. I have attached as an appendix to this report

a lab exercise from the class Statistics 601: Advanced Methods at Iowa State that

presents an example of analysis in considerable detail.

4.3 Posteriors for Calibration Factors

The procedures outlined in this section produce posterior distributions for any num-

ber of quantities, the primary interest being in the “catchabilities” qA and qB. Ac-

counting for the volume (or, if appropriate for some species, area) towed complicates

calculation of conversion factors to some degree, and one must consider what quanti-

ties are the object of conversion. To convert the catch on one tow from the Albatross
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to the corresponding value for the Bigelow under Model 1, in a situation where each

vessel conducts a tow we would use the following.

E{YA,i} = qAVA,iDi

E{YB,i} = qBVB,iDi

So then,

E{YB,i} = E{YA,i}
E{YB,i}

E{YA,i}
= E{YA,i}

qBVB,iDi

qAVA,iDi

= E{YA,i}
qBVB,i

qAVA,i

,

so that the appropriate conversion factor is ρ = (qBVB,i/qAVA,i) rather than simply

(qB/qA). Similarly, the appropriate conversion factor for Bigelow to Albatross will

be φ = (qAVA,i/qBVB,i). This presents one possible scenario for simulating posterior

distributions of conversion factors, in which a posterior distribution of conversion

factors exists for each paired tow. Assuming that a sufficient number of Monte

Carlo iterations have been conducted for the sampling chains to have “converged”

to the appropriate target distributions (i.e., burn-in) , simulated values of both

conversion factors on a per-tow basis can be produced as follows. Let qA,m denote

the value of qA at the mth cycle of the sampling algorithm and similarly for qB,m.

Then a value simulated from the posterior distribution of the conversion factor for

converting expected Albatross catch to expected Bigelow catch for sampling station

i = 1, . . . , S is,

ρi,m =
qB,mVB,i

qA,mVA,i

, (27)

and a value simulated from the posterior distribution of the conversion factor for

converting expected Bigelow catch to expected Albatross catch for sampling station

i = 1, . . . , S is,

φi,m =
qA,mVA,i

qB,mVB,i

. (28)

Thus, each sampling station (i.e., each pair of tows) has its own posterior distribution

for the conversion factors. These posterior distributions could be used for model
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assessment in determining how well we can predict the catch of one vessel from that

of the other for the data set in which both are available. But for the objective of

converting Bigelow to Albatross or Albatross to Bigelow for surveys conducted in

either the past or the future this is not adequate because VA,i and VB,i are not both

available.

Under the model, the catchabilities qA and qB are constant for a given situation

(e.g., species or species group or species/season or species/sex combination). Despite

this, when only one of the two vessels actually conducts a tow at a sampling station,

and the desire is to convert to the corresponding value that would have occurred

if the other vessel had conducted the tow instead, there are several ways to define

what is desired in terms of a conversion factor.

1. One possible definition of conversion with data from a single vessel would be to

predict the catch that would result from the other vessel if it had conducted a

tow with the same volume (or area) sampled by the vessel actually conducting

the tow. For example, to convert from Albatross to Bigelow in a situation

in which only the Albatross was active (e.g., past surveys) assuming that the

Bigelow sampled the same volume of water as the Albatross we would use

E{ỸB,i} = qBVA,iDi =
qB
qA
qAVA,iDi =

qB
qA
E{YA,i}, (29)

where in (29) ỸB,i is used to denote the fact that this expected value differs

from what we have taken as E{YB,i} previously. Similarly, the conversion

factor would be qA/qB for predicting the catch of the Albatross from that of

the Bigelow, assuming that the Albatross had sampled the same volume or

area as the Bigelow. This conversion is what occurs on an aggregate level (i.e.,

the total catch on a survey) if we simply multiple the total catch of a given

vessel by the appropriate ratio of (estimated) catchabilities.

2. Another possible definition of conversion in this situation would necessitate
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an assumption that VA,i = VA and VB,i = VB for all tows, and that these two

constants are known. Under this assumption we may then consider predicting

the catch of one vessel from that of the other if the vessel to be predicted had

sampled using its own protocol (and, thus, its own constant volume or area).

Then conversion is the same at the tow and aggregate levels. At the aggregate

level, conversion from Albatross to Bigelow would be,

E

{

S
∑

i=1

YB,i

}

= qBVB

S
∑

i=1

Di =
qBVB

qAVA

qAVA

S
∑

i=1

Di =
qBVB

qAVA

S
∑

i=1

E{YA,i}. (30)

The appropriate factor for converting Albatross catch to Bigelow catch is then

ρ = (qBVB)/(qAVA) and that for converting Bigelow catch to Albatross catch

is φ = (qAVA)/(qBVB).

Both of the above procedures rely on estimation of qB/qA or qA/qB. In the

MCMC procedure outlined previously, samples from both of these quantities are

automatically available. After convergence of the chain, at cycle m = 1, . . . ,M of

the MCMC algorithm we have values qA,m and qB,m available as sampled values

from the respective posterior distributions. Thus, we also have available one value

ρm = (qB,m/qA,m) sampled from the posterior distribution of this factor and one

value φm = qA,m/qB,m sampled from the posterior distribution of this factor as well.

With m = 1, . . . ,M such simulated values an approximation to the posterior of

each conversion factor is given by the empirical distribution of simulated values.

Note that quantiles of these posteriors will be reciprocals and reversed. That is, the

25%−tile of the posterior distribution of ρ = (qB/qA) will be one divided by the

75%−tile of the posterior distribution of φ = (qA/qB). It will not necessarily be the

case, however, that expected values will be reciprocals.

The presentation of this subsection has been in the context of Model 1 but should

apply equally to either Model 2 or Model 3. It will not be the case, however, for the

beta-binomial model as has been mentioned previously. For this model, separate
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analyses will be needed for the two possible “directions” of conversion.

4.4 Model Assessment

For Model 1, Model 2, or Model 3 presented previously, assessment can be based

on posterior predictive distributions, because these models include explicit distri-

butional forms for random variables corresponding to observable quantities (e.g.,

YA,i and YB,i). The posterior predictive distributions result from one additional step

at each cycle of the MCMC algorithm. At iteration m = 1, . . . ,M we have avail-

able sampled values qA,m, qB,m, θm, and di,m; i = 1, . . . , S. For Model 1, an entire

data set simulated from the posterior predictive distribution is then produced by

additionally simulating values y∗A,i and y∗B,i from the data models f(yA,i|qA,m, di,m)

and f(yB,i|qB,m, di,m). Assessment of model aptness based on posterior predictive

distributions follows essentially the same progression as the model-based assessment

described in Section 2. The major difference is simply how simulated data sets are

produced – from a fitted model or a posterior predictive distribution.

Assessment of a beta-binomial model would require additional thought since this

model conditions on the total catch at each sampling station. Comparison with the

other models suggested here thus becomes more involved to avoid allowing this con-

ditioning to a priori result in better agreement of the beta-binomial model with the

data observed from the paired survey. As stated previously in Section 3.3.6, I find

this formulation less than satisfying as a representation of the process by which the

two vessels catch fish, although it may lead to quite good estimation of conversion

factors per se. The use of cross-validation in conjunction with the posterior pre-

dictive distribution of conversion factors (as produced by a transformation of the

binomial parameter for which we can easily simulate the posterior predictive) may

be appropriate for this model. Setting aside 5% of the actual paired tows as a “pre-

diction set”, estimating the model based on the remaining data, and then predicting
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the catch of one vessel based only on the catch of the other (rather than the observed

total) for the prediction set would remove the conditioning effect for the prediction

data set. Repeating this for many randomly selected prediction sets could result in

a powerful assessment for the beta-binomial formulation.

5 Borrowing Strength Within Species Groups

This section presents two versions of an overall procedure to meet the objective

of producing stable estimates of conversion factors for situations (e.g., species or

species/season or species/sex) for which only moderate amounts of data are available

from the paired tow surveys. My personal preference lies with what is called “Bayes

Empirical Bayes” in what follows, but I will also present what I will call “Hierarchical

Extension” as an alternative, due to an objection that many statisticians would offer

to Bayes Empirical Bayes. The objection, and my argument for preferring Bayes

Empirical Bayes despite this objection, will be discussed in the last subsection of

this section.

5.1 The Overall Intent

Both versions of the procedures outlined in what follows have the same objective

and the same motivation, which draws directly on the discussion of Section 3.1 in

this report. At the review, the panel spent considerable time pursuing the notion

that any number of species have similar behaviors. Given that catchability is largely

determined by the interaction of gear and sampling protocol with behavior, this sug-

gests that catchabilities of the Albatross and Bigelow (qA and qB) may show distinct

patterns across species groups. Also at the review, NMFS staff devoted considerable

effort to the production of empirical evidence supporting or refuting this concept.

I believe the result of these efforts was the demonstration that groups of similar
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species do, in fact, often have conversion factors with some commonality. For ex-

ample, there appeared to be a distinctive “skate pattern” in relative catches of the

two vessels and also a distinctive “flounder pattern”, among others. There were,

to be certain, individual departures from generally perceived patterns, but the no-

tion that interaction between sampling protocol (including gear) and fish behavior

largely determines catchability seemed to be supported by empirical evidence from

the available data. Staff from NMFS were readily able to begin development of a

categorization of species groups based on factors such as whether species were dem-

ersal or pelagic, schooling or non-schooling, or exhibited what was called “herding

behavior”. Calibration factors produced from the beta-binomial model by NMFS

could be visually grouped along these same factors. This is an example of the com-

bination of biological sensibility and observed data pattern mentioned in Section

3.1 of this report, and the objective is to use stochastic stability produced by these

considerations to improve estimation of calibration factors for individual situations

(e.g., species).

The fundamental conceptualization espoused in this section, then, is that bi-

ologically meaningful species groups result in distinct statistical distributions of

conversion factors. Individual species differ in the appropriate conversion factor,

but species within a group are more similar than species among groups. The basic

intent is then to make use of information within groups of similar cases (i.e., species

groups) to improve estimation in each individual case (i.e., species). As already

mentioned, there are (at least) two approaches to accomplish this objective.

5.2 Bayes Empirical Bayes

I am uncertain whether or not the procedure outlined in this subsection has been

called Bayes Empirical Bayes previously, but the name seems to fit. Any number of

specific approaches to statistical analysis have been called Empirical Bayes, including
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what I would call Marginal Maximum Likelihood (e.g., maximization of a beta-

binomial likelihood). One common formulation of what is sometimes called the

“empirical Bayes problem” is that we are faced with a collection of like situations

in each of which we wish to use the same form of likelihood and a common prior. A

classic example is a collection of binomial problems. To select the common prior, we

may estimate it through the use of a mixing distribution, such as a beta distribution

in the example of a collection of binomial problems. This estimation is generally

based only on the data, such as would occur with maximum likelihood. The mixing

distribution with parameters set to the maximum likelihood estimates then becomes

the common prior used for each individual problem in the collection. This is a

traditional description of empirical Bayes. What is proposed here is similar, but

also draws on the use of a posterior from “previous” analysis as the prior for a

current situation.

Consider a collection of K species for which conversion factors are desired such

that those species may be considered a species group with similar biological and

behavioral characteristics. We wish to estimate the conversion factor separately for

each species by producing posterior distributions for those factors, but would also

like to account for commonality among these species by using the same informative

prior. And, we would like that prior to be more strongly informative for individual

species on which lesser data are available than for species on which greater data

are available. To produce such a prior we consider the entire collection of data

for the species group and produce a posterior using “naive” priors such as those

described in Section 3.4 of this report. The basic idea is to use that posterior

as the common prior for additional analyses that make use of only data from each

individual species. There are two complications that need to be addressed to put this

notion into practice. First, if the posterior from the combined analysis is produced

through simulation, as will be the case here, no analytical parametric expression
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will be immediately available for its distributional form. Second, the strength of the

combined posterior needs to be adjusted in a differential manner for each individual

analysis depending on the amount of data available in those analyses.

1. Determining a Distributional Form.

The more easily addressed of the two complications is turning an empirical

posterior distribution of MCMC output into a analytical prior parametric dis-

tribution for use in individual analyses. This really amounts to nothing more

than fitting a model to simulated values from a Markov chain; the simulated

values are treated as “data”. Such a fitting process need not be elaborate, as

we are not fitting a distribution for the purposes of inference, and so care less

about efficiency than bias, or at least consistency. Suppose, for example, we

have determined that a gamma distribution is an appropriate mixing model

for fish densities in Model 1 (i.e., the g(di|α, β) in that model, see expressions

(19) and (20)). Suppose further that we have assigned qA and qB uniform

priors on the interval (0, 1) as in expression (23), and have also assigned β a

diffuse gamma prior and α an improper prior on the positive line as suggested

in Section 3.4 of this report. We might then produce priors for analyses of

individual species as follows.

(a) Fit beta distributions using method of moments estimates to the simu-

lated values of posterior distributions for both qA and qB.

(b) Fit a gamma distribution also using the method of moments to the sim-

ulated values of the posterior distribution of β.

(c) Fit an appropriate distribution, such as normal or gamma to the simu-

lated values of the posterior distribution of α, depending on whether the

empirical distribution of those simulated values appears more symmetric

or right skew. If, by chance, the empirical distribution of these simulated
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values appears skew left (on the positive line) then one might fit an ex-

treme value distribution. All of this can again be accomplished through

simple matching of moments.

2. Discounting in Conversion of Posterior to Prior.

The second difficulty noted previously was that we will desire a procedure

to vary the strength of the prior distributions chosen for analyses of individ-

ual species. This may be accomplished through the process of “discounting”

which refers simply to increasing the variance of the (modeled as in step 1)

posterior from the combined analysis to arrive at a prior for analyses of indi-

vidual species. It is difficult to avoid a certain amount of arbitrary decision

making in this procedure, but the fundamental idea is to increase discount-

ing as proportional to the amount of data (or a power of the amount of data)

available for individual analyses. The exact mathematics of such a discounting

process will depend on the particular forms chosen for parametric description

of the posterior simulations from the combined analysis which, in turn, will

depend on the particular forms chosen for the mixing and prior distributions

of the model used in the combined analysis. In reports on a different project

of estimation of discard in Northeast groundfish fisheries I have given a bit

more specific suggestions for models particular to that problem. Similar ideas

should apply here, although the exact procedure that might be best suited to

the calibration problem will require additional thought.

5.3 Hierarchical Extension

An immediate objection to the Bayes Empirical Bayes procedure described in the

previous subsection is that it makes double use of available data, once in determina-

tion of the prior (posterior from the combined analysis) and once in determination
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of the posterior (individual analyses). An alternative approach is based on the idea

that considering individual species within a species group to be more similar that

species from different groups motivates an additional level to the hierarchical models

proposed previously. In this approach, we would consider catchabilities for individ-

ual species, qA,k and qB,k for species k say, to arise from an additional level in the

hierarchy and be assigned either separate or joint mixing distributions mA(qA,k|ψA)

and mB(qB,k|ψB) or m(qA,k, qB,k|ψ). The catchabilities qA,k and qB,k are then also

considered parameters in a simulation-based analysis (similar to the use made of

the fish densities Di in Section 4.2) and posteriors for these quantities produced

as part of an overall MCMC simulation involving data from all of the members of

a species group. This avoids the need for a “two-part” procedure consisting of an

analysis for the combined data followed by an individual analysis for a particular

species. It also avoids the double use of data contained in the Bayes Empirical Bayes

approach. Complications introduced by this approach include the need to specify

mixing distribution for the qA,k and qB,k and prior distributions for the parameters

of those mixing distributions. Also, the complexity of the model would increase in

at least the Poisson-based models because separate gamma mixing distributions for

fish density would be needed for different species. As an example of this approach,

consider Model 1 of Section 3.3.1 with a gamma chosen for the mixing distribution of

fish densities across sampling stations as in Section 3.3.7. To extend this particular

model to multiple species in a hierarchical manner we could proceed as follows. Let

A and B denote Albatross and Bigelow and i = 1, . . . , S index sampling stations as

before. Let k = 1, . . . , G index species within the species group of concern. Specify

the following distributions.

YA,i,k ∼ Po(qA,kVA,iDk,i)

YB,i,k ∼ Po(qB,kVB,iDk,i)

Dk,i ∼ Gamma(αk, βk); k = 1, . . . , G
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qA,k ∼ Beta(ak, bk)

qB,k ∼ Beta(a∗k, b
∗

k)

Finally, priors would be needed on {(αk, βk) : k = 1, . . . , G}, (ak, bk), and (a∗k, b
∗

k),

which could be achieved much as described in Section 3.4.

5.4 In Support of Bayes Empirical Bayes

As mentioned previously, at this point I prefer the Bayes Empirical Bayes approach

to that of Hierarchical Extension. The reasons for this assessment follow.

1. The Bayes Empirical Bayes approach of fitting a model to the combined data

from a species group and then using the posterior from that analysis to pro-

duce an (estimated) prior for analyses of individual species offers more control

over prior dispersion than does an extension of the hierarchy. Experience

gained in consideration of estimating amount of discard in another project

suggests that situations involving large variability and small sample sizes are

best approached through the use of strong prior information, based on either

accumulated past data or biological knowledge. At the same time, situations

in which a great deal more current data are available should not be overly con-

strained by prior strength. A hierarchical approach attempts to automate the

degree to which individual situations borrow strength from the entire group.

Although introducing a potentially arbitrary decision about how much dis-

counting should be used in producing individual prior distributions from the

group posterior, the Bayes Empirical Bayes approach allows greater flexibil-

ity in determining the degree to which strength is borrowed across individual

situations.

2. The primary effect of the double use of data, as occurs in the Bayes Empir-

ical Bayes procedure, is under-estimation of variability. That is, the prior is
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selected to be “in concert” with the data and, as a result, the data tend to

agree with the prior, giving a somewhat false sense of precision in the resultant

posteriors. I believe that this can be admitted as a shortcoming of the Bayes

Empirical Bayes approach without invalidating the approach in total. One

could drop each individual species from the “group” model one-at-a-time to

produce priors for individual analyses and this would eliminate the double use

of data. My opinion is, however, that the increase in computational burden

would outweigh an potential benefits.

6 Considerations of Length

Subsequent to the review meeting, I was asked to address the issue of how length

might be incorporated into calibration models. There are two major avenues by

which to accomplish incorporation of length if it is deemed important in a given

situation, using length as a grouping factor, or using length as a continuous model

covariate. It is not clear that greater ability of one vessel to capture smaller (or

larger) fish should automatically result in length being incorporated as a continuous

covariate in calibration models. A change in cod-end mesh size alone, for exam-

ple, might well produce differential catchabilities for size classes, but would not

necessarily indicate a continuous effect over an entire range of lengths. A differ-

ence in turbulence, on the other hand, might more plausibly be thought to have a

continuous-like effect on the escape ability of fish of differing sizes. A combination

of biological knowledge and empirical evidence would again seem like the best ap-

proach for determining whether length is important for a given situation and, if so,

whether it should be considered a grouping factor or a continuous covariate.
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6.1 Length as a Grouping Factor

If length is used as an additional grouping factor (e.g., small versus large) along

with species and possibly season, then nothing new is introduced for analysis. The

primary effect would be to create more individual situations with smaller sample

sizes. There would be an additional question in the formation of groups for the

approach of the previous section, however. In consideration of multiple species with

multiple length classes, for example, should a combined group consist of a number

of species all of the same length class, or of a number of species crossed with several

length classes? In addition, unless a demarcation can be clearly identified from

observed data, there may well be a certain arbitrariness to determining cut points

for the formation of length classes.

6.2 Length as a Covariate

If length is used as a continuous covariate in a regression model, there is a need

to determine the most appropriate way to incorporate it into a model. This will,

to a large extent, be model specific, but a few general guidelines are possible. We

consider separately here the Poisson-based models introduced in this report and the

beta-binomial model already considered by NMFS.

6.2.1 Poisson Models

In the Poisson-based models of Section 3.3 (Models 1, 2, and 3) the most natural

manner to incorporate a length effect would be through the conditional expected

values E{YA,i|DA,i} and E{YB,i|DB,i}. Under the data model of expression (11) in

Section 3.2 these conditional expectations are,

E{YA,i|DA,i} = qAVA,iDA,i

E{YB,i|DB,i} = qBVB,iDB,i
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Now, however, we wish to split YA,i and YB,i into vectors of counts for different

length classes. Let j = 1, . . . , ℓ denote length classes to be used. Then the random

variables become

YA,i = (YA,i,1, YA,i,2, . . . , YA,i,ℓ)
T

YB,i = (YB,i,1, YB,i,2, . . . , YB,i,ℓ)
T

and the data models of expression (11) are replaced with, for i = 1, . . . , S and

j = 1, . . . , ℓ,

f(yA,i,j|DA,i,j, qA,j) =
1

(yA,i,j)!
{qA,jVA,iDA,i,j}

yA,i,j exp{−qA,jVA,iDA,i,j}

f(yB,i,j|DB,i,j, qB,j) =
1

(yB,i,j)!
{qB,jVB,iDB,i,j}

yB,i,j exp{−qB,jVB,iDB,i,j}

(31)

Note that, in (31), qA,j and qB,j are catchabilities for the jth length class, the en-

countered fish densities are also indexed by length class, but the tow volumes (or

areas) do not depend on length. The conditional expected values corresponding to

the data model of (31) are now

E{YA,i,j|DA,i,j} = qA,jVA,iDA,i,j

E{YB,i,j|DB,i,j} = qB,jVB,iDB,i,j

To model these conditional expectations so that catchabilities qA,j and qB,j are

affected by length we can use a combination of several link functions from basic

generalized linear models and what is typically called an “offset” term, this latter to

separate VA,i and DA,i,j or VB,i and DB,i,j from the effects of length. The offset is the

most easily understood and results from parameterization of a Poisson distribution

in terms of a “rate”. Before proceeding to the actual data models (31) for this
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problem, consider the simpler case of Poisson responses for Y1, . . . , Yn such that, for

a known constant wi, Yi has probability mass function

f(yi|ρi, wi) =
1

yi!
(ρiwi)

yi exp(−ρiwi); yi = 0, 1, . . . (32)

Here, E(Yi) = ρiwi and the interpretation is that ρi represents a “rate” for the

occurrence of some event with a “population at risk” of size wi. Note that defining

ρi as a rate in this type of formulation requires a standard unit of “population” size,

such as 100, 000 individuals. The parameters ρi are then expressed as number per

unit and wi is similarly expressed in terms of these units. While this formulation

would be possible in principle for the current problem, determining a suitable unit

of fish population would be problematic, particularly for multiple species. This

difficulty aside, taking probability mass functions as in expression (32), a basic

generalized linear model to incorporate covariates {xi : i = 1, . . . , n} into the rate

parameter ρi might use a log link function as,

log{E(Yi)} = log(ρi) + log(wi) = β0 + log(wi) + β1xi (33)

In (33) log(wi) is called an “offset” term and notice that the covariate then effects

only the rate parameter as log(ρi) = β0 + β1xi.

We could use the device of an offset term with the data models in expression

(31) which, with i indexing sampling station, j indexing length class, and xj being

the value of the jth length class, would result in

log{E(YA,i,j|DA,i,j)} = log(qA,j) + log(VA,i) + log(DA,i,j)

= βA,0 + log(VA,i) + log(DA,i,j) + βA,1xj

log{E(YB,i,j|DB,i,j)} = log(qB,j) + log(VB,i) + log(DB,i,j)

= βB,0 + log(VB,i) + log(DB,i,j) + βB,1xj (34)

The only real elaboration of (34) over (33) is that the offset term has been split

into two portions log(VA,i) and log(DA,i,j). Of course the settings differ in that
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(33) was formulated for a simple problem involving one vector of response variables

Yi; i = 1, . . . , n while (34) contains multiple vectors (one for each sampling station

indexed by i). A potential difficulty with (34) is that it implies models for the qA,j

and qB,j as,

log(qA,j) = βA,0 + βA,1xj

log(qB,j) = βB,0 + βB,1xj (35)

While this is analogous to the model for the ρi implied by (33) it could cause

difficulties because, unlike the ρi in (33) for most problems, qA,j and qB,j have, for

j = 1, . . . , ℓ, parameter spaces given by the unit interval (0, 1). Given that length

class values xj ; j = 1, . . . , ℓ will be strictly non-negative, one could ensure the

proper parameter spaces by constraining βA,0, βB,0, βA,1 and βB,1 all to take values

on the negative line. What seems a superior alternative in that it avoids the need

for constraints, would be to model the qA,j and qB,j using a logit link function as

log

(

qA,j

1 − qA,j

)

= βA,0 + βA,1xj

log

(

qB,j

1 − qB,j

)

= βB,0 + βB,1xj

or, with ηA,j = βA,0 + βA,1xj and similarly for ηB,j,

qA,j =
exp(βA,0 + βA,1xj)

1 + exp(βA,0 + βA,1xj)
=

exp(ηA,j)

1 + exp(ηA,j)

qB,j =
exp(βB,0 + βB,1xj)

1 + exp(βB,0 + βB,1xj)
=

exp(ηB,j)

1 + exp(ηB,j)
(36)

From expression (36) we have that

log(qA,j) = ηA,j − log{1 + exp(ηA,j)}

log(qB,j) = ηB,j − log{1 + exp(ηB,j)} (37)
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Finally, substitution of (37) into the first lines of the expressions in (34) yields the

models

log{E(YA,i,j|DA,i,j)} = log(qA,j) + log(VA,i) + log(DA,i,j)

= ηA,j − log{1 + exp(ηA,j)} + log(VA,i) + log(DA,i,j)

log{E(YB,i,j|DB,i,j)} = log(qB,j) + log(VB,i) + log(DB,i,j)

= ηB,j − log{1 + exp(ηB,j)} + log(VB,i) + log(DB,i,j)

(38)

In Section 3.3, three distinct models resulted from different assumptions about

the distribution of fish densities encountered, which are now indexed by length

class as DA,i,j and DB,i,j. The same three assumptions may be applied to the

data models of expression (31), resulting in analogous models to those presented

previously, except taking length into consideration in each case. We might call these

Model 1L, Model 2L, and Model 3L, respectively, with L denoting the incorporation

of length in each model. Because the number of model “pieces” may have seemed

to explode in consideration of length-based models, I give the length-based version

of Model 1 (say Model 1L) explicitly.

Example: Model 1L

Model 1 of Section 3.3.1 arose through the assumption that DA,i = DB,i = Di in

the data models of expression (11) and that Di ∼ iid according to some distribution

with density g(di|θ). The analogous assumption here is that DA,i,j = DB,i,j = Di,j

in the data models of expression (31) for each j = 1, . . . , ℓ. The data models of

expression (31) then become,

f(yA,i,j|Di,j, qA,j) =
1

(yA,i,j)!
{qA,jVA,iDi,j}

yA,i,j exp{−qA,jVA,iDi,j}
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f(yB,i,j|Di,j, qB,j) =
1

(yB,i,j)!
{qB,jVB,iDi,j}

yB,i,j exp{−qB,jVB,iDi,j} (39)

where, as in expression (37) with xj ; j = 1, . . . , ℓ denoting the value of length class

j and ηA,j = βA,0 + βA,1xj and ηB,j = βB,0 + βB,1xj ,

log(qA,j) = ηA,j − log{1 + exp(ηA,j)}

log(qB,j) = ηB,j − log{1 + exp(ηB,j)} (40)

Note that we could use any equivalent form here, such as the logistic equations given

just before expression (37), or expression (37) itself.

Fish densities Di,j are taken to be independent and identically distributed across

sampling stations i and independent among length classes j, so that we me write

the mixing distributions for Di,j as g(di,j|θj) for j = 1, . . . , ℓ. If, for example, these

are taken as gamma distributions, we would have θj ≡ (αj, βj) and,

g(di,j|αj , βj) =
β

αj

j

Γ(αj)
d

αj

i,j exp(−βjdi,j); di,j > 0 (41)

For a Bayesian analysis of this model we need to assign prior distributions to the

parameters βA,0, βB,0, βA,1, βB,1, and {(αj, βj) : j = 1, . . . , ℓ}. A natural choice is

to assign all of the regression parameters normal distributions,

βA,0 ∼ N(mA,0, vA,0)

βA,1 ∼ N(mA,1, vA,1)

βB,0 ∼ N(mB,0, vB,0)

βB,1 ∼ N(mB,1, vB,1) (42)

In (42) a simple device would be to setmA,0 = mB,0 = mA,1 = mB,1 = 0, which would

give a prior expectation for all qA,j and qB,j of 0.5. This could be easily adjusted

by setting mA,0 = mB,0 = c for some constant c; values of c greater than zero

lead to prior expected values greater than 0.5 and negative values of c lead to prior
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expected values less than 0.5. The variances could be all taken to produce diffuse

priors, for example vA,0 = vB,0 = vA,1 = vB,1 = 100 (or 1000). Prior distributions

for the parameters {(αj, βj) : j = 1, . . . , ℓ} could be specified in the same manner as

discussed in Section 3.4, with π(αj, βj) = π(αj)π(βj) where π(βj) is diffuse gamma

(e.g., gamma(0.01, 0.01) or gamma(0.001, 0.001)) and π(αj) is either improper on

the positive line or proper uniform on a large interval.

Given specification of priors, full conditional posteriors needed for a Gibbs sam-

pling algorithm similar to that described in Section 4.2 combine prior distribu-

tions and the data model. Let Y A = {YA,i,j : i = 1, . . . , S; j = 1, . . . , ℓ} and

Y B ≡ {YB,i,j : i = 1, . . . , S; j = 1, . . . , ℓ} denote the entire collection of random

variables across all sampling stations and length classes for the two vessels. Simi-

larly, let D ≡ {Di,j : i = 1, . . . , S; j = 1, . . . , ℓ}. Also, let βA ≡ (βA,0, βA,1)
T and

βB ≡ (βB,0, βB,1)
T denote the regression parameters for the two vessels. Using con-

ditional independence between vessels, among length classes within each sampling

station, and across sampling stations,

f(yA|βA,D) =
S
∏

i=1

ℓ
∏

j=1

f(yA,i,j|βA, Di,j)

f(yB|βB,D) =
S
∏

i=1

ℓ
∏

j=1

f(yB,i,j|βB,Di,j) (43)

Note that, in (43), f(yA,i,j|βA, Di,j) denotes the data model (39) combined with the

regression model (40), and similarly for f(yB,i,j|βB, Di,j). Use the notation p(x|·) to

denote the posterior of x given “everything else”, where x ∈ {βA,0, βA,1, βB,0, βB,1, {Di,j :

i = 1, . . . , S; j = 1, . . . , ℓ}, {αj : j = 1, . . . , ℓ}, {βj : j = 1, . . . , ℓ}} and “everything

else” is all members of this set other than x. Then the necessary full conditional

posteriors for the regression parameters are,

p(βA,0|·) ∝ π(βA,0)f(yA|βA,D)

p(βA,1|·) ∝ π(βA,1)f(yA|βA,D)
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p(βB,0|·) ∝ π(βB,0)f(yB|βB,D)

p(βB,1|·) ∝ π(βB,1)f(yB|βB,D) (44)

Those for the controlling parameters of the fish density mixing distributions are, for

j = 1, . . . , ℓ

p(αj|·) ∝ π(αj)
S
∏

i=1

g(di,j|αj, βj)

p(βj|·) ∝ π(βj)
S
∏

i=1

g(di,j|αj, βj) (45)

And those for the latent (auxiliary) densities of fish are, for i = 1, . . . , S and j =

1, . . . , ℓ,

p(di,j|·) ∝ g(di,j|αj , βj)f(yA,i,j|βA, di,j)f(yB,i,j|βB, di,j) (46)

A Gibbs sampling algorithm would then take the form described in Section 4.2, using

the marginal data model as represented by unevaluated integrals. The production of

posteriors for length-based calibration factors should be a straightforward extension

of the material presented in Section 4.3, and the same for model assessment as

described in Section 4.4. Use of models that incorporate length in a procedure that

borrows strength within a group of species would almost necessarily rely on the

Bayes Empirical Bayes approach of Section 5.2 to avoid potential problems with

model identifiability in the normal priors for regression parameters.

6.2.2 Beta-Binomial Formulation

It is also possible to incorporate length as a covariate in the beta-binomial model

presented by NMFS at the review meeting. Before presenting this model formula-

tion, however, it is worth noting that one could also choose to incorporate length

as a covariate directly into a binomial data model, and then let the regression co-

efficients be random across sampling sites. I believe this model structure has less

justification than that presented in what follows because it would imply that the
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relation between length and proportion of total catch at each sampling site due

to the Bigelow (or Albatross) varies across sampling sites. If the relation between

length of fish and characteristics of gear and sampling protocol of the two vessels is

due to interaction between fish behavior and gear/towing configuration, this would

seem an untenable assumption. The proportion of total catch accounted for by one

vessel might vary due to the effects of fish density, but the relation between this and

length, if there is one, should be characteristic of vessel gear and sampling protocol.

Thus, although one could certainly formulate a model in which the relation between

length and proportion of total catch due to one vessel varies across sampling sites,

my opinion is that the model presented here is more defensible.

To formulate the beta binomial model in a manner appropriate for incorporation

of length, let Zi,j be a random variable connected with the catch of the Bigelow

for sampling station i and length class j, conditioned on the total catch of both

vessels having a value of ci,j. The possible values of Zi,j are then contained in the

set {0, 1, . . . , ci,j}. The data model is then,

f(zi,j|θi,j) =
ci,j!

zi,j! (ci,j − zi,j)!
z

θi,j

i,j (1 − θi,j)
ci,j−zi,j ; zi,j = 0, 1, . . . , ci,j (47)

Now, let the θi,j; i = 1, . . . S; j = 1, . . . , ℓ be independent with mixing distributions

g(θi,j|αj, βj) =
Γ(αj + βj)

Γ(αj)Γ(βj)
θ

αj−1
i,j (1 − θi,j)

βj−1; 0 < θi,j < 1 (48)

The expected value and variance of the distribution in expression (48) are

E(θi,j) =
αj

αj + βj

= µj

var(θi,j) =
αj βj

(αj + βj)2 (αj + βj + 1)
= φµj(1 − µj) (49)

where φ = 1/(αj + βj).

Note that we have imposed a restriction in expression (49). The expected values

of the θi,j are allowed to vary with length class j = 1, . . . , ℓ, but the original beta



59

distribution parameters are constrained in that αj + βj is constant across length

classes. Nevertheless, parameterization in terms of µj and φ has served to isolate

expected values in terms of the parameters µj; j = 1, . . . , ℓ. Notice also that the

relevant parameter spaces are now 0 < µj < 1 and 0 < φ < 1. This allows

incorporation of length as the covariate xj ,

log

(

µj

1 − µj

)

= β0 + β1xj . (50)

As a side note, other link functions could be used in place of the logit link in

expression (50) if they were deemed more appropriate, such as a log-log link or

a complimentary log-log link. To complete a Bayesian specification of this model

requires prior distributions for β0, β1 and φ. The natural choices are

β0 ∼ N(m0, v0)

β1 ∼ N(m1, v1)

φ ∼ U(0, 1) (51)

Setting m0 = m1 = 0 in (51) would lead to a prior expectation for µj of 0.50. The

prior parameters v0 and v1 could again be made large, as suggested for the normal

priors in expression (42) for Model 1L.

This beta-binomial model contains only three parameters, although if the {θi,j :

i = 1, . . . , S; j = 1, . . . , ℓ} are not integrated out of the data model, we will need

3 + Sℓ conditional posteriors for simulation. Write the joint prior in product form

π(β0, β1, φ) = π(β0)π(β1)π(φ) where π(β0), π(β1) and π(φ) are as specified in (51).

Let g(θi,j|β0, β1, φ) denote the mixing distribution (48) written in terms of param-

eters β0, β1 and ψ, as results from the re-parameterization of (49) and the model

of (50). Let θ ≡ {θi,j : i = 1, . . . , S; j = 1, . . . ℓ} and θ−(i,j) ≡ θ\θi,j be this set

less the value θi,j. Then the necessary full conditional posteriors for the three fixed



60

parameters may be written as

p(β0|β1, φ, θ, z) ∝ π(β0)
S
∏

i=1

ℓ
∏

j=1

g(θi,j|β0, β1, φ)

p(β1|β0, φ, θ, z) ∝ π(β1)
S
∏

i=1

ℓ
∏

j=1

g(θi,j|β0, β1, φ)

π(φ|β0, β1, θ, z) ∝ π(φ)
S
∏

i=1

ℓ
∏

j=1

f(zi,j|θi,j) (52)

and those for the θi,j; i = 1, . . . , S; j = 1, . . . , ℓ as

p(θi,j |β0, β1, φ, θ−(i,j), z) ∝ g(θi,j|β0, β1, φ) f(zi,j|θi,j) (53)

Because each of the Sℓ distributions in (53) will be the product of a beta density

with a binomial probability mass function, each of these conditional posteriors will

be beta distributions and simulation of the θi,j will be fast. An alternative would

be to integrate the θi,j out of the data model as described in Section 4.1 but, given

the simple form of the distributions in expression (53) this likely would not pro-

duce a substantial decrease in computational effort. The primary difficulty in this

MCMC algorithm will be sampling the first two distributions in expression (52); the

conditional posterior of φ will again be a beta distribution and will not cause any

problems. As for the Poisson-based models of Section 6.2.1, use of a beta-binomial

formulation including length as a covariate to borrow strength within a species group

would be feasible perhaps only through the use of what has been called here Bayes

Empirical Bayes. As with those previous models, attempts to extend the hierarchy

with a beta-binomial formulation could easily result in non-identifiable models.

7 Summary

There is a fair amount of material contained in this report. This is due, in part, to

the attempt to present a range of possible models within a consistent framework,
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rather than select one possibility and present it as the only alternative. I have also

attempted to provide a moderate amount of detail for several cases to make the

suggestions offered more concrete. Full implementation of any of the ideas offered in

this report, however, will require additional effort, and NMFS faces some immediate

needs related to stock assessments. At the same time, the procedures currently

developed for estimation of calibration factors will not prove adequate for the full

suite of situations in which such estimation is desired. My recommendations for

making use of the ideas contained in this report follows.

1. The Chair’s consensus report recommends a procedure to determine a method-

ology for estimation of calibration factors in pressing situations. I agree that

this is a defensible strategy that should be followed in the near-term. The

one addition to this prescription, that was also recommended by the review

panel, is a more thorough assessment of representation of zero frequencies

occurrences. Methods by which this can be accomplished in a non-Bayesian

setting are presented in Section 2 of this report. The outcome of such an

assessment should be a determination of whether the data models under cur-

rent consideration, including the beta-binomial model and the Poisson-based

models presented in this report, are adequate to reflect the frequencies of zero

catches in the data. The alternative is to replace those data models with finite

mixtures or so-called “zero-inflated” models. Note that everything presented

in this report would apply to this type of data model as well as to the for-

mulations that have been given explicitly, although care would be needed in

derivation of exact mathematical expressions for zero-inflated models.

2. Assessment of the general modeling framework presented in Section 3 of this

report should be pursued beginning immediately. This assessment concerns

the use of Poisson-based models that take catchability of vessels, as deter-

mined by the interaction of fish behavior with gear and sampling protocols,
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as fixed values. The central question is whether such a formulation of the

problem (possibly with finite mixture or zero-inflated data models) should be

preferred to the beta-binomial formulation that conditions on total catch by

both vessels at each sampling station and takes proportional catch by one

vessel (and, hence, catchability) as random across stations. Poisson-based

formulations with catchability as characteristics of vessels seem preferable in

terms of problem conceptualization. But, as mentioned in this report, that

does not necessarily guarantee superior performance in estimation of calibra-

tion factors.

3. Incorporation of length as either a grouping factor or continuous covariate is

conceptually straightforward with any of the Poisson-based models or the beta-

binomial model. Mathematical details needed to result in practical estimation

procedures, however, are not trivial and depend largely on re-parameterization

of models to isolate expected values and attention to issues of consistency

in allowable parameter spaces under various parameterizations of statistical

distributions. Section 6 of this report contains guidance on how this can be

accomplished using either Poisson-based or beta-binomial models.

4. The most statistically controversial suggestion in this report is the use of what

has been called Bayes Empirical Bayes in Section 5 to allow estimation of cal-

ibration factors for situations with modest sample sizes. This procedure is not

a part of standard statistical practice, although I find it hard to believe that

no one has thought of it before and there may very well be some information

about this approach in the literature. While I believe this is a practical and

defensible procedure, it will most likely result in a certain degree of underes-

timation of uncertainty. Thus, although I recommend this method be used, I

acknowledge the need for additional research into its properties.
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Appendix: Bayesian Analysis of a Beta-Binomial

Model

Statistics 601, Fall 2008

Lab 14 Notes

This lab concerns a Bayesian analysis of beta-binomial mixture models. We will

consider both a simulated example and an analysis of the Gambusia reproduction

study described in Example 7.12 of the course notes and continued as Example 9.2,

this latter in which we looked at forming interval estimates using normed profile

likelihoods. We approach this problem as a Bayesian analysis of a beta-binomial

mixture model, rather than an analysis of a collection of binomial models to which

we wish to assign a hierarchical prior.

Model:

Assume we have a collection of observable random variables Y1, . . . , Yn and fixed

constants m1, . . . , mn such that the distributions of of the random variables are

taken as independent for given values of parameters θ1, . . . , θn. Specifically, let Yi

have pmf

f(yi|θi) =
mi!

(mi − yi)! yi!
θyi

i (1 − θi)
mi−yi; yi = 0, 1, . . . , mi (54)

and with 0 < θi < 1 for i = 1, . . . , n. Further, let θi be exchangeable random

variables having pdf, for i = 1, . . . , n,

g(θi|α, β) =
Γ(α + β)

Γ(α) Γ(β)
θα−1

i (1 − θi)
β−1; 0 < θi < 1 (55)

As we are considering this a Bayesian analysis of a beta-binomial mixture model,

we have little direct interest in possible values of the θi; i = 1, . . . , n and it is

appropriate to determine the distributions of the Yi as they depend only on the
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parameters α and β. As we have seen previously, these are independent mixture

distributions of the form,

h(yi|α, β) =
∫ 1

0
f(yi|θi) g(θi|α, β) dθi

=
Γ(α + β)

Γ(α) Γ(β)

Γ(α+ yi) Γ(β +mi − yi)

Γ(α + β +mi)

mi!

(mi − yi)! yi!
(56)

The joint mixture for Y1, . . . , Yn given parameters α and β is the product of the

n pmfs in expression (3),

h(y|α, β) =
n
∏

i=1

h(yi|α, β). (57)

To assign prior distributions to the parameters of the joint mixture model (4)

it is convenient to first re-parameterize in terms of the mean of the beta mixing

distribution and an additional parameter. The mean, which is µ = α/(α + β) has

range (0, 1). In analysis by maximum likelihood, we took the additional parameter

to be φ = 1/(α + β), which has range (0, ∞). While we could certainly work with

this, it is even more convenient to choose φ = 1/(α+ β + 1) which has range (0, 1)

so that we have two parameters that both assume values on the unit interval. This

will also make it easier to simulate values from the posterior p(α, β|y) (even if we

don’t arrive at a very efficient algorithm).

To accomplish the re-parameterization then, let

µ =
α

α + β

φ =
1

α + β + 1
,

so that,

α =
(1 − φ)µ

φ

β =
(1 − µ) (1 − φ)

φ

α + β =
1 − φ

φ
. (58)
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The joint mixture model of expression (4) may then be written in terms of µ and

φ as,

h(y|µ, φ) =

(

n
∏

i=1

mi!

(mi − yi)! yi!

)





Γ
(

1−φ)
φ

)

Γ
(

(1−φ) µ

φ

)

Γ
(

(1−φ) (1−µ)
φ

)





n

×

∏n
i=1 Γ

(

(1−φ) µ

φ
+ yi

)

∏n
i=1 Γ

(

(1−µ)(1−φ)
φ

+mi − yi

)

∏n
i=1 Γ

(

1−φ
φ

+mi

) . (59)

Now, expression (6) looks fairly horrid and it, in fact, is. However, in computer

functions we can always compute h(y|µ, φ) by expressions (3) and (4) after first

defining α and β in terms of µ and φ as in expression (5).

Prior Distributions

Because we now have parameters µ and φ such that µ ∈ (0, 1), φ ∈ (0, 1) and

(µ, φ) ∈ (0, 1) × (0, 1), we can assign a joint prior distribution as,

π(α, β) = π(α) π(β), (60)

where π(·) is a uniform distribution on the interval (0, 1). That is,

π(µ) =











1 0 < µ < 1

0 o.w.

and,

π(φ) =











1 0 < φ < 1

0 o.w.

Posterior Distribution

The joint posterior distribution of (µ, φ) is such that,

p(µ, φ) ∝ h(y|µ, φ) π(µ, φ) = h(y|µ, φ), (61)
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where h(y|µ, φ) is given in (6) and π(µ, φ) is given in (7), and this expression holds

for any (µ, φ) ∈ (0, 1) × (0, 1).

This joint posterior will need to be assessed through simulation rather than an-

alytical derivation. We have already seen the use of a Gibbs Sampling algorithm to

simulate from a joint posterior, and we could certainly consider such an algorithm

here, considering (8) first as a function of µ for a given φ and then again as a function

of φ for a given µ. This would, however, perhaps be more cumbersome than needed,

and we might like to simulate from a joint distribution with density proportional to

(8) directly. An approach by which to accomplish this is provided by a Metropolis

algorithm, which we described in a previous lab.

Simulation from Joint Posterior

To simulate from p(µ, φ|y) using a Metropolis algorithm, we need (1) a candidate

distribution by which to produce proposed “jumps” for the sampler and (2) calcu-

lation of the probability for accepting proposed jumps. The first of these is fairly

easy in this problem because the joint “sample” space of (µ, φ) is (0, 1) × (0, 1),

which suggests an independence chain with candidate distribution

f(µ, φ) =











1 if (µ, φ) ∈ (0, 1) × (0, 1)

0 o.w.
(62)

We may easily simulate values (µ∗, φ∗) from this distribution by simulating µ∗ and

φ∗ independently from uniform distributions on the unit interval.

The Metropolis acceptance probability for proposed jumps from a current value

(µ, φ) to a new proposed value (µ∗, φ∗) takes the form of

α′[(µ, φ), (µ∗, φ∗)] = min{h(y|µ∗, φ∗)/h(y|µ, φ), 1}

= min{w(µ∗, φ∗, µ, φ), 1}, (63)
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where we have denoted this probability as α′ so as not to confuse it with the pa-

rameter α in the mixture model.

Our essential difficulty at this point is computation of the ratio w(µ∗, φ∗, µ, φ),

which is complicated by the fact that h(y|µ, φ) in (6) contains ratios of products of

gamma functions. Such functions can easily assume either huge or negligible values,

resulting in computational values of infinity or values that fail to exist (i.e., the NaN

assignment in R or Splus). As a result, even though the ratios may be well within

normal “computational bounds”, the components in the numerator or denominator

are not, producing computation algorithms to fail.

Our solution to this difficulty rests on two computational techniques that are

both worth knowing. First, note that the form of w(·, ·) is a ratio, and any ratio

may be written as the exponentiation of the difference of logarithms. Specifically,

w(µ∗, φ∗, µ, φ) =
h(y|µ∗, φ∗)

h(y|µ, φ)

= exp [log{h(y|µ∗, φ∗)} − log{h(y|µ, φ)}] . (64)

Also note that, from (4) we have that,

log{h(y|µ, φ)} =
n
∑

i=1

log{h(yi|µ, φ)}. (65)

Secondly, notice that the components of (12) can be simplified by applying prop-

erties of gamma functions to the component densities in (3). That is, (4) may be

written as proportional to,

h(y|α, β) ∝
n
∏

i=1

∏yi−1
j=0 (α + j)

∏mi−yi−1
j=0 (β + j)

∏mi−1
j=0 (α + β + j)

, (66)

or, in terms of logs,

log{h(y|α, β)} ∝
n
∑

i=1





yi−1
∑

j=0

log(α + j)
mi−yi−1
∑

j=0

log(β + j) −
mi−1
∑

j=0

(α + β + j)



 , (67)
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and (14) can be computed in terms of µ and φ by first defining α and β as in

expression (5).

All of this leads to a practical computational approach for implementation of a

Metropolis algorithm to (1) generate candidate jumps and (2) calculate acceptance

probabilities for those proposals. An outline of that algorithm is as follows.

1. Begin with initial values (µ0, φ0) ∈ (0, 1) × (0, 1)

2. Set current values (µc, φc) = (µ0, φ0) and set k = 1

3. At iteration k, generate a proposed jump (µ∗, φ∗) as a pair of independent

values from uniform distributions on the unit interval.

4. Compute w(µ∗, φ∗, µc, φc) as given in (11) making use of (14) with (αc, βc)

and (α∗, β∗) defined by the transformations in (5).

5. Generate an independent value u from a uniform distribution on (0, 1).

6. If u ≤ w(µ∗, φ∗, µc, φc) let (µk, φk) = (µ∗, φ∗). Otherwise, let (µk, φk) =

(µc, φc)

7. Set (µc, φc) = (µk, φk) and update k to k + 1, and return to step 3.

8. Discard values for a burn-in period (k ≤ B)

9. Continue for M additional iterations, collecting values of (µk, φk) at each

iteration.

At the conclusion of this algorithm we have a collection of M values of (µ, φ) sim-

ulated from the posterior p(µ, φ|y).

Simulation from Posterior Predictive

An important part of model assessment in many Bayesian analyses is the ability



69

to simulate not only from the joint (and hence marginal) posterior distribution(s),

but also from the posterior predictive distribution. In a situation involving a data

model f(y|θ) and a prior π(θ), the posterior predictive distribution is defined as

the distribution for a new observation (or new data set) conditional on the observed

data. Let y∗ denote a new (or future) observation assumed to follow the same data

model as y so that, given θ, the distribution is f(y∗|θ). The posterior predictive

distribution is then,

p(y∗|y) =
h(y∗, y)

h(y)

=

∫

f(y∗|θ) f(y|θ) π(θ) dθ

h(y)

=
∫

f(y∗|θ)
f(y|θ) π(θ)

h(y)
dθ

=
∫

f(y∗|θ)p(θ|y) dθ (68)

This is the structure of the model we are using here, with f(y∗|θ) and f(y|θ)

replaced by h(y∗|µ, φ) and h(y|µ, φ), and π(θ) replaced by π(µ, φ). Note that,

in our case, we consider the posterior predictive p(y∗|y) to be for n random vari-

ables Y ∗

1 , . . . , Y
∗

n having the same values of m1, . . . , mn as in the original variables

Y1, . . . , Yn.

To simulate values from p(y∗|y) we make use of the model structure involv-

ing f(y|θ) and g(θ|µ, φ). The Metropolis algorithm described previously produces

values of (µ, φ) from the posterior p(µ, φ|y). Because

h(y|µ, φ) =
∫

f(y|θ) g(θ|µ, φ) dθ,

we may easily simulate from the posterior predictive using the following algorithm.

1. For each value of (µ, φ) simulated from the posterior of these quantities, trans-

form to (α, β) using the relation in expression (5).
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2. Simulate a set of values θ1, . . . , θn from g(θ|α, β) which can be accomplished

with the built-in R function for generating observations from a beta distribu-

tion.

3. For each set of θ1, . . . , θn resulting from step 2, simulate a set of values y∗1, . . . , y
∗

n

from binomial distributions with parameters θi and binomial ”sample sizes”

mi; i = 1, . . . , n.

4. Repeating this procedure for each value of (µ, φ) simulated from the posterior,

we end up with M sets of data {y∗i : i = 1, . . . , n}k; k = 1, . . . ,M simulated

from the posterior predictive distribution.

Model Assessment Using Posterior Predictive Values

Having simulated data sets from the posterior predictive distribution, it remains to

use these values in a model assessment. A simple and effective strategy recommended

by Gelman, Carlin, Stern and Rubin (1995) is based on the idea we have seen before

that an adequate model should generate data similar to those we actually have. To

put this idea into practice here, we choose one or more ”features” of the data that

indicate something meaningful about the way the model represents the situation.

For example, we may look at the number of ”extreme” values in data sets, the range

or interquartile range, or perhaps the realized mean-variance relation. One caution

is that functions of the data that correspond to sufficient statistics in the data model

are probably not too valuable here, since these are how the data model influences

the prior and, hence, are likely to be well represented by the posterior in all but the

most hopelessly inadequate models.

Given a feature of the data of interest, represented as a function q(y1, . . . , yn)

say, we may compute this function for each of the simulated data sets and compare
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the location of the value obtained from the actual data within the empirical distri-

bution of these values. Note that this is similar to what we have already done with

non-Bayesian analyses. There is, however, one important difference. If we simulate

from a fitted model using maximum likelihood estimates (for example) as parameter

values, we have simulated data from only one point in the parameter space. In the

Bayesian approach using posterior predictive distributions we have simulated from

a model that integrates over the entire parameter space.

Simulated Example

To illustrate this overall procedure, a simulated data set with n = 25, all mi =

m = 20, and parameters α = 2, β = 4 (or µ = 0.33, φ = 0.143) was generated

from a beta-binomial mixture model. The algorithm outlined above was run using

a burn-in of B = 50 and a total of M = 50, 000 kept values. Starting values were

µ0 = 0.5 and φ0 = 0.5.

A histogram of 50, 000 simulated values from the posterior of µ is presented in

Figure 1, and a histogram of the same number of simulated values from the posterior

of φ is presented in Figure 2. True parameter values are shown with solid vertical

lines (although they can be easy to miss in these figures). Posterior expectations

were 0.293 for µ and 0.0368 for φ.

An assessment of model adequacy was conducted by simulating 50, 000 data sets

from the posterior predictive distribution as described previously. Three quantities

were chosen to reflect features of these data sets, the mean observed proportion,

the variance of observed proportions, and the difference between the maximum and

minimum proportions (i.e., the range of observed proportions). Histograms of values

for these three quantities obtained from the simulated data sets are presented in
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Figure 1: Posterior Distribution of µ From Simulated Example
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Figure 2: Posterior Distribution of φ From Simulated Example
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Figures 3, 4, and 5, along with the values corresponding to the actual observed data

(which in this case was also simulated).

Observed Mean Proportion
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Figure 3: Distribution of mean proportions from simulated data sets
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Figure 4: Distribution of variances of proportions from simulated data sets

Max Diff in Observed P

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

1.
0

2.
0

3.
0

Actual Value=0.75

Figure 5: Distribution of range in proportions from simulated data sets
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Gambusia Reproduction Study

The same model developed above was applied to the study of reproductive success

(or failure) in Gambusia in the Central Valley of California. This study is described

in Example 7.12 in the course notes, and an analysis based on maximum likelihood

is presented in Example 8.13. Here, we use the Bayesian analysis for a beta-binomial

mixture model with data from the San Luis drain for which fish were held in the

same water from which they were collected. The raw data are given in the table

that accompanies Example 8.13.

The same Metropolis algorithms as used in the simulated example was applied

to these data, with B = 50, M = 50, 000, and initial values µ0 = 0.5, φ0 = 0.5.

Histograms of the posterior distribution of µ is presented in Figure 6 and that for φ

is presented in Figure 7. Table 1 compares maximum likelihood estimates for these

data with the corresponding values from the Bayesian Analysis.
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Figure 6: Posterior Distribution of µ From Gambusia Reproduction Study
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Figure 7: Posterior Distribution of φ From Gambusia Reproduction Study

The values in Table 1 for maximum likelihood analysis of φ are not the same as

those presented in the table of Example 8.13. In that analysis, we took µ = α/(α+β)

the same as here, but we defined φ = 1/(α + β). Here, we used φ = 1/(α+ β + 1).

The maximum likelihood point estimate of φ̂ = 0.244 (see Example 8.13 in the

course notes) was transformed to be comparable with the definition of φ used here

in the Bayesian analysis. Specifically, if φ̂ is the maximum likelihood estimate of

Maximum Likelihood Bayes

Parameter Estimate Variance 90% Interval Estimate Variance 90% Interval

µ 0.822 0.0023 (0.744, 0.901) 0.799 0.0029 (0.702, 0.878)

φ 0.196 0.0091 (0.087, 0.401) 0.245 0.0078 (0.123, 0.403)

Table 1: Comparison of maximum likelihood and Bayes estimates for the Gambusia

reproduction study.
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1/(α + β) then φ/(φ + 1) is the maximum likelihood estimate of 1/(α + β + 1)

and this is the value in Table 1 (0.196). The value for variance and the interval

estimate in Table 1 were produced using the delta method since in the maximum

likelihood analysis the interval was produced using Wald theory. The values in Table

1 show overall agreement between the maximum likelihood and Bayesian analyses,

which we would expect. The Bayesian interval for µ is shifted slightly to the left

(smaller) from the maximum likelihood interval, and is also a bit wider (0.176 for the

Bayesian interval versus 0.157 for the mle interval). The Bayesian point estimate of

φ is greater than the mle, but there is less difference in the intervals that this might

suggest. Interestingly, the Bayesian interval is more narrow (width of 0.280) than is

the Wald theory interval (width of 0.314).

The same model assessment used with the simulated example was conducted for

these data, resulting in Figure 8 for means of observed proportions, Figure 9 for

variances of observed proportions, and Figure 10 for range of observed proportions.

If one computes posterior predictive p-values from the values shown in these fig-

ures, one obtains p = 0.3800 for means (i.e., the proportion of means from simulated

data sets that are greater than the value from the actual data is 0.38). The p-value

for variances is p = 0.3791, and that for ranges is p = 0.2565. In all, these values

indicate little in the way of model deficiency. The spread of the ranges exhibited

in Figure 10 is perhaps interesting, but careful thought would be needed before

concluding too much from this phenomenon.
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Figure 8: Distribution of mean proportions from simulated data sets for the Gam-

busia study
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Variance of Observed Proportions
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Figure 9: Distribution of variances of proportions from simulated data sets for the

Gambusia study
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Figure 10: Distribution of range in proportions from simulated data sets for the

Gambusia study


