NERSCPowering Scientific Discovery Since 1974

Visualizing Type Ia Supernova Explosions

Childs1a-Supernovasm.png

Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side, but this simulation explores the consequences of central ignition. In a localized hot spot, represented here by a deformed sphere with an average radius of 100 km, carbon is assumed to have already fused to iron, producing hot ash (~10 billion K) with a density about 20% less than its surroundings. As the burning progresses, this hot buoyant ash rises up and interacts with cold fuel. Rayleigh-Taylor fingers give rise to shear and turbulence, which interacts with the flame, causing it to move faster. In about 2 seconds, the energy released blows the entire white dwarf star up, leaving nothing behind but a rapidly expanding cloud of radioactive nickel, iron, and other heavy elements. A Type Ia supernova is born. Acknowledgements: visualization by Hank Childs of VACET in conjunction with members of the Computation Astrophysics Consortium (CAC): Haitao Ma and Stan Woosley of UC Santa Cruz, and John Bell, Ann Almgren, and Andy Nonaka of LBL.