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Why bother with x-ray diffraction? 

• X-ray diffraction is a very old technique. Surely it has been 
superceded by electron microscopy, atom probe, and other newer 
experimental tools? … not so! 

• X-ray diffraction probes a large volume of material – much larger 
than TEM or atom probe 

• So x-rays tell us a lot about the forest, whereas these other 
techniques provide exceptional detail on selected trees. Both 
sets of information can be very important! 

• Why laboratory XRD? 

– Cost (much cheaper than synchrotron or neutron sources) 

– Accessibility 
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Lower instrument cost allows for 

dedicated specialized instruments 

• HTML XRD instruments 
– 2-axis XRD (Cu k-alpha, PSD, multiple sample changer) phase ID, structure refinement 

– 2-axis MPXRD (Cu k-alpha, PSD, XRK900, HT16, MPSS, parallel-beam) multipurpose 

– 2-axis HTXRD (Cu k-alpha, PSD, HDK2.3, gas handling) phase transformations 

– 2-axis XRD (Mo k-alpha, capillary) transmission, PDF 

– 4-axis XRD (rotating anode Cu k-alpha, parallel-beam) texture, stress 

– 4-axis XRD (Co k-alpha) texture, stress 

– XRD stress goniometer residual stress 

• CNMS instruments 
– 2-axis MPXRD (Cu k-alpha, XRK900, PSD, parallel-beam, cryostat) multipurpose 

– 4-axis XRD (Cu k-alpha, high-resolution, DHS900) reflectometry, RSM, rocking curve, etc. 

– Micro-XRF (Rh white-beam source, Si(Li) detector) fast elemental analysis 

– SAXS (Cu k-alpha, various stages) 
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Contents 

• This presentation will highlight XRD-based studies of energy-
related materials including: 

– Thermoelectrics (TAGS) 

– Photovoltaics (CIGS) 

– Energy storage (Li-ion battery materials) 

– Gas separations (Pd-alloy membranes) 

– High-temperature dielectrics (Hafnium oxide) 

– Solid Oxide Fuel Cells (YSZ) 

 

 



7 Managed by UT-Battelle 
 for the U.S. Department of Energy 

X-ray Diffraction for Characterization of Materials for Energy  

Thermoelectric materials 

• There is need for thermoelectric materials that can 
operate at high temperature. 

• In-situ HTXRD allows an investigation of the lattice 
parameter changes, atom site position changes, and 
phase stability over the temperature range of interest 
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In-situ XRD study of Cu
3
SbSe

3
 

thermoelectric 

• Lattice parameters of orthorhombic 
Cu3SbSe3 as a function of 
temperature, from high-temperature 
Xray diffraction  

• three cycles of heating and cooling to 
390°C are shown, indicating good 
phase stability over this range.   

• The lattice parameters exhibit 
complex, non-linear thermal 
expansion, including negative 
thermal expansion in the c axis 
between ~100° and 175°C. How does 
this impact ZT? 

 

• Melanie Kirkham and Paul Majsztrik 
(unpublished) 
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Li-ion battery materials 

• Lithium (Z=3) is a weak x-ray scatterer, but the lattice dilation 
from lithium intercalation yields easily measured Bragg peak 
shifts and phase transformations that can be used to quantify the 
Lithium content in crystalline phases 

• Cathode materials: Lithium iron phosphate Li1-xFePO4; “NMC” Li1-

x(Ni,Mn,Co)O2;  

• Anode materials: Li1-xC6; Li4-xTi5O12; Li5-xSi; etc 

• Requires x-ray transparent windows (e.g., aluminized mylar, 
kapton, beryllium, etc.) 

• Both laboratory and synchrotron x-ray sources used.  

CRADA: A123 Systems, Dow Kokam, LLC, Planar Energy Devices 

HTML User Program: Valence Technologies, U Mich, BNL, NREL, UTK/ORNL, GM 
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In-situ XRD study of Li-ion battery 

• Charge curve and in-situ XRD patterns of LiMn2O4 during first charge to 4.5 V at room temperature 

• Ref: Chung et al., J. Electrochem. Soc., 153, A774-A780 (2006) 

• Experiments done at the National Synchrotron Light Source, X14A 
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Thin-film photovoltaic materials 
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CIGS solar cell structure 

• CIGS (CuInxGa1-xSe2) solar cells have 
measured efficiencies as high as 19.3% 
(NREL report, 2005) 

• These are direct-gap semiconductors, 
with a band gap of 1.2 eV 

• They have a high optical absorption 
coefficient, so can be made thin (~2 
µm), and have high radiation resistance 
and reliability 

• In-situ HTXRD can be used to 
investigate synthesis routes 
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HTXRD: Temperature Ramp Anneal 

Glass 

GaSe 

CuSe 

CuGaSe2 

Glass 

Data collected at HTML using Scintag PADX with mBraun PSD (2 min per 4-part scan) 

showing intermediate phase during CGS processing  

W.K. Kim (U Fla)  
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Reaction kinetics are suited for study 

using time-resolved HTXRD  

• When coupled with a high-speed data collection system (e.g., high 
fluxes from rotating anode or synchrotron sources, fast data 
collection from position-sensitive detectors, etc.), HTXRD enables 
time-resolved in-situ investigations of the crystalline phases present 
in real time at high temperature in controlled atmosphere 

 

– The data collection rate needs to be faster than the rate of change of the 
sample - may be hours, minutes, seconds, or less! 

 

– This approach allows for validation of chemical reaction models, and can be 
used to derive parameters for kinetic reaction-rate models (e.g., Avrami 
analysis, or other suitable model) 
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Isothermal annealing 

TEM-EDS 
(t~30 min) 

W.K. Kim (U Fla) Thin Solid Films (2007) 
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TEM-EDS Analysis 

Glass/GaSe/CuSe Precursor 
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TEM-EDS Analysis 

Glass/GaSe/CGS/CuSe annealed for 30 min, at 300 C 
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Time-resolved XRD: Obtaining 

reaction kinetics data 

• Determination of rate kinetics requires that data be collected faster than the 
reaction rate 

• If the data is adequate for quantitative phase analysis, then the phase fractions 
can be measured as a function of time at the non-ambient condition 

– Rietveld-quality data may not be needed – under some circumstances just a single 
peak can provide quantitative information, and even highly textured polycrystals 
can be analyzed 

• The % transformed as a function of time can be fit to a suitable model to obtain 
a rate constant (k) 

– The Avrami model is suited for nucleation and growth kinetics 

– The parabolic rate model is better suited for interfacial diffusion 

• Analysis of the rate constants for different temperatures in an Arrhenius plot 
(ln k versus 1/T) yields an activation energy for the reaction. 

M.E. Ayturk et al. / Journal of Membrane Science 316 (2008) 97–111  
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HTXRD: Kinetic Analysis 

 ln[-ln(1-)] = nln(t+t*) + nlnk 2 ~ k·t 

 Parabolic model  Avrami model 

 Analysis suggests one-dimensional diffusion controlled reaction 
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Time-resolved in-situ XRD for gas-solid 

reactions: selenization of CIGS films 

•Data taken using a modified 

Anton Paar XRK900 stage. This 

sample was a CuIn thin film on a 

Mo film on a glass substrate. 

Selenium was introduced as a 

vapor phase, and the reaction 

was observed as a function of 

time and temperature. 

 

•Time-dependent isothermal data 

at five temperatures were 

collected. The phase fractions 

were determined from the peak 

areas, and fit to a model (typically 

Avrami or parabolic rate, as 

appropriate) to determine reaction 

kinetics information. Woo Kyoung Kim (U Florida) J Cryst Growth 2006 
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In-situ XRD: Temperature dependence 

of crystallite size 

• CuInSe2 (116) peak after heating nanocrystalline precursor at 180, 
300, and 350°C for several hours reveals a different (and stable) 
crystallite size for each temperature 

• Final ten scans done at 500°C to achieve similar crystallite size 
for comparison of data sets 

Woo Kyoung Kim (U Florida), unpublished 



22 Managed by UT-Battelle 
 for the U.S. Department of Energy 

X-ray Diffraction for Characterization of Materials for Energy  

Alloys for hydrogen separation 

membranes 

• Palladium membranes are a technology for large-scale 
hydrogen separation from syn-gas 

• Hydrogen diffuses through palladium alloy membranes 
with 100% selectivity 

• Issues: 

– Palladium membrane flux is degraded by sulfur poisoning, 
but alloying can reduce this issue 

– Membranes need to be thin, so are supported on porous 
metal or ceramic supports – need to consider interfacial 
reactions 

– Large lattice dilation at low temperatures due to formation of 
metal hydrides 
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In-situ XRD for reaction pathways and 

kinetics: Pd-Cu alloy formation  

• Natalie Pomerantz (WPI), AIChE Journal (in press) 
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Reaction pathways for Pd-Au are quite 

different from Pd-Cu 

• Pd-Au has thermodynamically favored ordered compositions at Au3Pd and AuPd3 

• These ordered phases impact the diffusion constants 

• Chao-Huang Chen (WPI) unpublished 
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H
2
 Separation Membranes: 

Phase distribution in Pd-Au alloys 

• XRD results suggested that these Pd-Au alloys were 
two-phase, and subsequent XPS confirmed and located 
the two alloy phases 
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High-k dielectric materials 

• Silicon dioxide has been used as a gate oxide material for 
decades 

• As transistors have decreased in size, the thickness of the 
silicon dioxide gate dielectric has steadily decreased to increase 
the gate capacitance and thereby drive current and device 
performance 

• At thicknesses below 2nm, leakage currents due to tunneling 
increase and impact performance 

• Hafnium oxides are of great importance to the semiconductor 
industry as high-k gate dielectrics to replace silicon oxynitrides 

• In-situ HTXRD can be used to study crystallization of HfO2 films 
from amorphous precursor 

 



27 Managed by UT-Battelle 
 for the U.S. Department of Energy 

X-ray Diffraction for Characterization of Materials for Energy  

In-situ Crystallization Study: HfO
2 

• The first crystalline phase to 
form is the tetragonal (cubic?) 
phase, even though this is well 
below the temperature required 
for this phase in bulk material. 

• The tetragonal (cubic?) phase 
is transient, and is rapidly 
replaced by the stable 
monoclinic phase 

• A similar crystallization path 
has been noted for 
isostructural ZrO2 

Catriona McGilvery (Imperial College), 

J.Amer. Cer. Soc. (in press) 
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More specialized gas systems can be 

incorporated as needed 

Bubblers 
Flow 

controllers 

Stephanie Sorenson (Univ Colorado), J Membr Sci (2010) 
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Contact information: 

• Andrew Payzant 

 

• Oak Ridge National Laboratory 

• Oak Ridge, TN, 37831-6064 

 

• Phone: (865) 574-6538 

• E-mail: PayzantA@ornl.gov 

http://cnms.ornl.gov 

http://html.ornl.gov 
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Single crystal substrates can 

dominate the pattern 

• Solution (for polycrystalline films) is to tilt the sample just a few degrees to 
eliminate the substrate peaks, as shown above (cerium oxide on sapphire) 


