Multiscale Porous Carbon Materials for Energy Storage

Chengdu Liang CNMS User Meeting Sept. 2010

Managed by UT-Battelle for the Department of Energy

Porous Carbon is Important for Energy Applications

Goal: Tailed mesoporous carbon for energy applications

Outline

- Synthesis of mesoporous carbon materials
 - Soft templates for ordered nanostructures
 - Bimodal macro-mesoporous carbons
 - Bimodal meso-microporous carbons
- Manipulation of physiochemical and interfacial properties
 - Chemical modification of carbon surfaces
- Porous carbon for energy storage
 - Li-S batteries
 - Supercapacitors
- Conclusions and perspectives

Background of Porous Carbon Materials

Synthesis of OMCs via Soft Templates

Synthesis of OMC(I): Hydrogen-bonding Directed Self-Assembly of PS-b-P4VP/Resorcinol Blends

Microphase separation with Hydrogen-bonding associated small molecules

Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S., *Angew. Chem.-Int. Edit.* 2004, 43, 5785 Dai, S.; Liang, C. US patent 2006 057051

Highly Ordered Mesoporous Carbon Film

HD-7567 x400k SE

80.0nm

Synthesis of OMCs(II): One-Pot Synthesis of OMCs via Enhanced Hydrogen-bonding

Tunable Porous Structure

N_2 adsorption isotherms at 77K

F127

F108 F88

P123

The templates determine the size and structure of mesoporous carbon

Various forms of OMCs

Synthesis of Bimodal Macro-MesoPorous Carbons by Dual Phase Separation

CAK RIDGE National Laboratory

Synthesis of Bimodal Meso-MicroPorous Carbons by Activation

Diazonium Chemistry Enables Covalent Modification of OMCs

Delamar M.; Hitmi R.; Pinson J.; Saveant J.M. J. Am. Chem. Soc. 1992, 114, 5883

Liang, C. D.; Huang, J. F.; Li, Z. J.; Luo, H. M.; Dai, S., Eur. J. Org. Chem. 2006, 3, 586

Electrochemical Modification: Simple, Easy Approach to Functionalized OMCs

cyclovoltammograms

Application 1

High-Energy Li-S Batteries

- Retain sulfur at the cathode
- High utilization of active materials
- Long cycle-life

Why Li/S can't cycle long?

 Passivate Li anode •Decrease the diffusivity of ions •Gel electrolytes Solid electrolytes Physically absorb S •High surface area carbons Conducting polymers Chemically immobilize •S-polymers

S-salts

1) Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.; Lim, H. S. Journal of the Electrochemical Society 2004, 151, A2067-A2073. 2)Mikhaylik, Y. V.; Akridge, J. R. Journal of the Electrochemical Society 2004, 151, A1969-A1976.

Retain S at Cathode

- S/C composites by using bimodal porous carbon
 - Physical confinement of S in < 2nm pores
 - Electronic contact of S
 - Adsorption of polysulfides

Liang, Dudney, and Howe, Chemistry of Materials 2009, 4724

MPC

KOH

discharge

charge

Activated MPC

S₈

Sulfur Infiltration in Micropores

OAK RIDGE

Nanostructure of S/C Composites Is Key to Retaining S at Cathode

Nano-engineered S/C composites improve the retention of S at the cathode

Application 2 Supercapacitors

- Major applications in
 - Transportation (hybrids, fuel cells)
 - Power boost
 - Power quality
 - High-power capability for grid "defibrillators"
 - Defense
 - Weapons, vehicles, portable power systems
- Needs:
 - Electrode materials with
 - High accessible surface area
 - High conductivity
 - Compatibility of electrodes with electrolyte
 - low degradation at higher cell voltages

Mesoporous carbons are Key to Improved Energy Storage

CURRENT COLLECTOR

AK

850°C-Treated OMC Has High Specific Capacitance but Slow Response

Comparison of the 1600 °C Treated OMCs with Commercial Carbons

1600 °C treated OMCs: fast response, high capacitance, low resist

Conclusions

- Soft-templating methodologies have been developed for synthesis of OMCs
 - Adjustable pore sizes and morphologies of carbons through direct block copolymer templates.
 - Bimodal porous structures through dual phase separation or activation.
- Chemistries of OMCs can be fine tuned
 - Surface modification through diazonium chemistry.
- OMCs have a great potential in energy storage
 - Li-S batteries
 - Supercapacitors

Acknowledgement

- People
 - Members of Multiscale Functionalities Group
 - Kunlun Hong
 - Jingfang Huang
 - Sam Park
 - Nancy Dudney
 - Jane Howe
- Funding
 - DOE BES programs: battery and user facilities
 - ORNL LDRD supercapacitor program
 - ORNL SEED high-power batteries
 - Honeywell Inc. supercap.

