

An Update from the Office of Basic Energy Sciences

Peter Lee

Scientific User Facilities Division
Basic Energy Sciences
Office of Science
U.S. Department of Energy

ORNL User Week 2010 September 13 – 17, 2010 Oak Ridge, TN

Outline

I. Scientific User Facilities

Budget

Users

II. Program Update

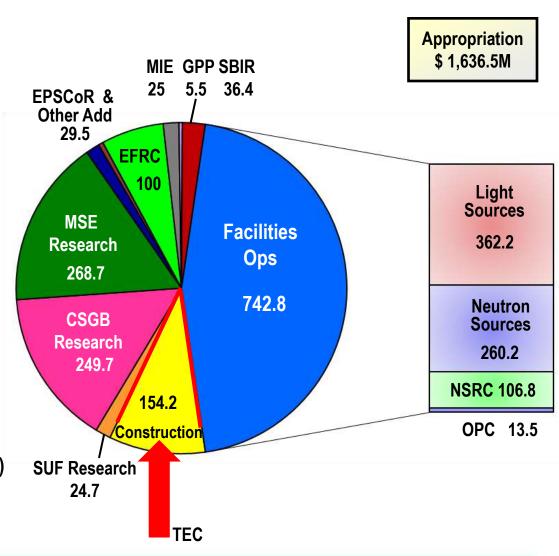
- Strategic Planning
- SISGR and EFRCs
- LCLS Commissioning

III. FY 2011 Budget Request

FY 2010 BES Budget Appropriation

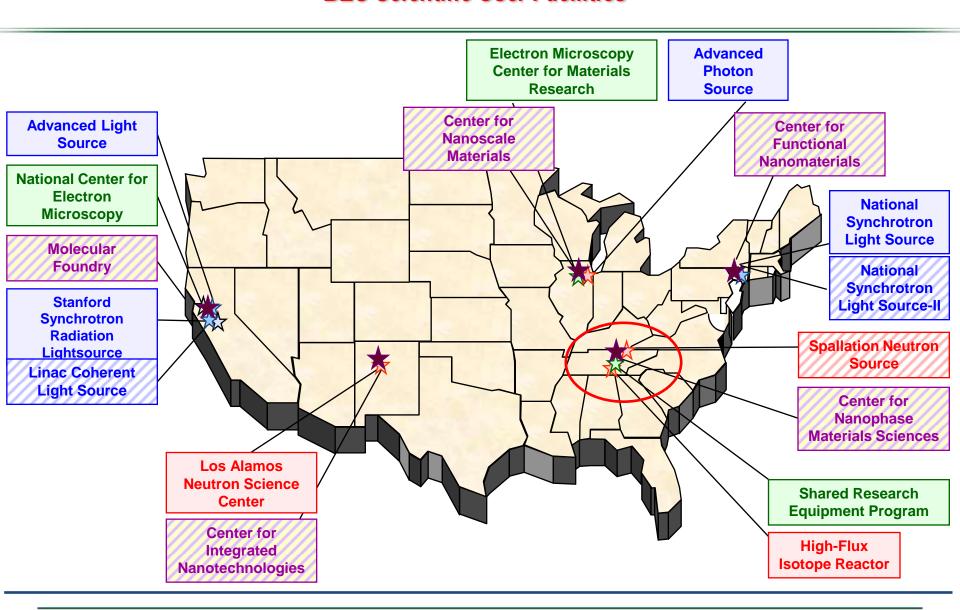
Scientific user facilities operations

Increase in operation funding (~ 3%):


- Synchrotron light sources
- Neutron scattering facilities
- Nanoscale Science Research Centers
- Construction and instrumentation

Full funding per request for:

- National Synchrotron Light Source-II
- Linac Coherent Light Source
- Spallation Neutron Source instruments
- SNS Power Upgrade


Recent Construction TPC Budgets:

- FY07 \$180.5M
- FY08 \$159.9M
- FY09 \$404.8M (Includes ARRA Funding)
- **FY10 \$167.7M**

BES Scientific User Facilities

Scientific User Facilities Division

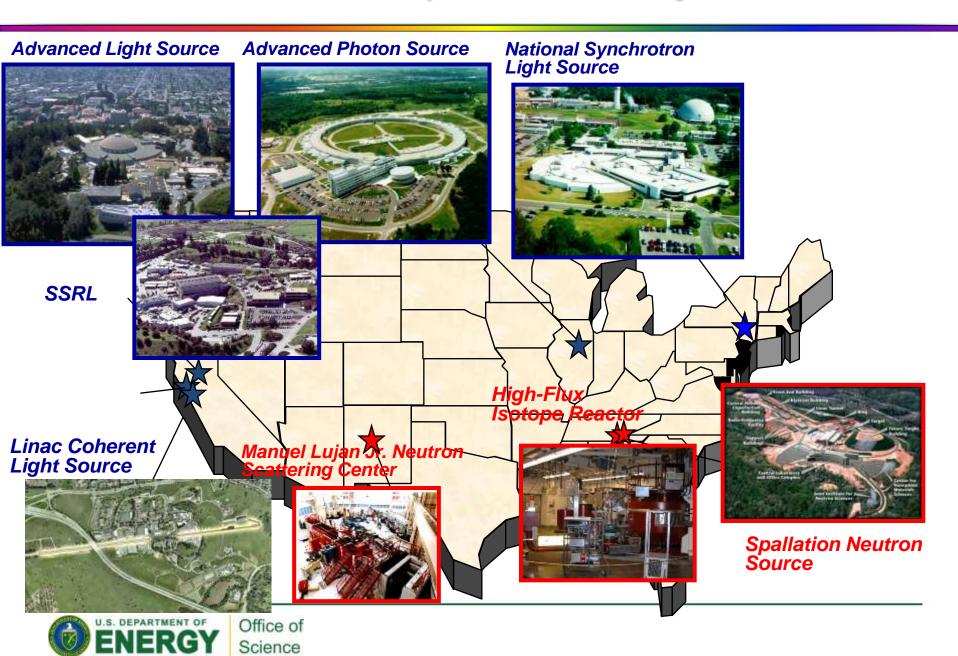
Light sources

Stanford Synchrotron Radiation Lightsource SPEAR3 (SLAC)
National Synchrotron Light Source (BNL)
Advanced Light Source (LBNL)
Advanced Photon Source (ANL)
Linac Coherent Light Source (SLAC) (operational June 2010)

Neutron sources

Manuel Lujan, Jr. Neutron Scattering Center (LANL) High Flux Isotope Reactor (ORNL) Spallation Neutron Source (ORNL)

Electron beam sources


Electron Microscopy Center for Materials Research (ANL) National Center for Electron Microscopy (LBNL) Shared Research Equipment Program (ORNL)

Nanoscale Science Research Centers

Center for Nanophase Materials Sciences (ORNL)
Molecular Foundry (LBNL)
Center for Integrated Nanotechnologies (SNL/A & LANL)
Center for Functional Nanomaterials (BNL)
Center for Nanoscale Materials (ANL)

BES Facilities for X-ray and Neutron Scattering

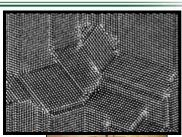
Five Operational NSRCs

Center for Functional Nanomaterials (Brookhaven National Laboratory)

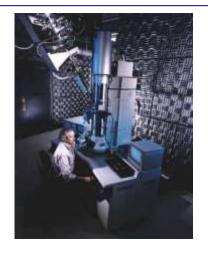
Molecular Foundry (Lawrence Berkeley National Laboratory)

Center for Nanoscale Materials (Argonne National Laboratory)

Center for Nanophase Materials Sciences (Oak Ridge National Laboratory)


Center for Integrated
Nanotechnologies (Sandia & Los
Alamos National Labs)

Electron scattering user facilities



National Center for Electron Microscopy (NCEM) at Lawrence Berkeley National Laboratory: atomic resolution imaging

Electron Microscopy Center (EMC) at Argonne National Laboratory: in-situ studies, including irradiation effects



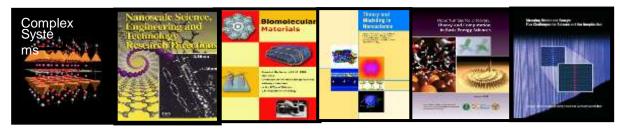
Sub-Angstrom Microscopy and Microanalysis building, under construction

Shared Research Equipment
(SHaRE) Program at Oak
Ridge National Laboratory:
microanalysis and
spectroscopy

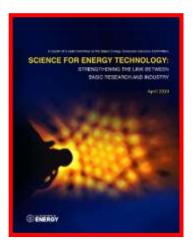
Facilities are reviewed every three years.

 The BES objective is to produce the best science possible at our facilities.

 The user community should have access to the facility using a proposal evaluation system that is fair and stimulate the performance of high quality research.


Basic Energy Sciences User Facilities Hosted 11,974 Users in FY 2009

FY 2000	FY 2001	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	Basic Energy Sciences User Facility
										Synchrotron Radiation Light Sources
2,551	2,523	2,413	2,206	2,299	2,256	2,105	2,219	2,128	2,214	National Synchrotron Light Source (NSLS)
895	907	1,023	867	741	1,007	1,124	1,151	1,147	1,361	Synchrotron Radiation Laboratory (SSRL)
1,036	1,163	1,385	1,662	1,898	2,003	2,158	1,748	1,938	1,918	Advanced Light Source (ALS)
1,527	1,989	2,299	2,767	2,773	3,215	3,274	3,420	3,279	3,537	Advanced Photon Source (APS)
6,009	6,582	7,120	7,502	7,711	8,481	8,661	8,538	8,492	9,030	
•	,	,	,	•	•	,	•	•	,	High-Flux Neutron Sources
_	_	_	_	_	_	_	24	165	307	Spallation Neutron Source (SNS)
153	_	22	51	48	96	42	72	258	358	High Flux Isotope Reactor (HFIR)
230	240	243	229	279	244	211	173	89	_	Intense Pulsed Neutron Source (IPNS)
25	122	164	269	339	221	297	272	261	416	Manuel Lujan Jr. Neutron Scattering Center
408	362	429	549	666	561	550	541	773	1,081	
										Electron Beam Microcharacterization Centers
83	88	103	95	128	154	140	199	153	155	Electron Microscopy Center for Materials
201	212	232	253	241	232	205	183	152	149	National Center for Electron Microscopy
99	97	111	112	109	150	132	159	144	161	Shared Research Equipment Program
383	397	446	460	478	536	477	541	449	465	
										Nanoscale Science Research Centers
_	-	-	-	-	-	139	309	404	317	Center for Nanophase Materials Sciences
-	-	-	-	-	-	-	164	303	209	Molecular Foundry
-	-	-	-	-	-	-	189	272	354	Center for Integrated Nanotechnologies
-	-	-	-	-	-	-	112	196	305	Center for Nanoscale Materials
-	-	-	-	-	-	-	-	106	213	Center for Functional Nanomaterials
						139	774	1,281	1,398	
6,800	7,341	7,995	8,511	8,855	9,578	9,688	9,620	10,995	11,974	TOTALS


BESAC & BES Strategic Planning Activities

Science for Discovery

Science for National Needs

National Scientific User Facilities, the 21st century tools of science

Accelerator
Physics of Future
Light Sources
NIM A

BES Research — Science for Discovery & National Needs Three Major Types of Research Thrusts

Core Research

Support single investigator and small group projects to pursue their specific research interests.

- > Enable seminal advances in the core disciplines of the basic energy sciences—materials sciences and engineering, chemistry, and aspects of geosciences and biosciences. Accelerator and detector R&D is also supported.
- > Build research programs that provide world-class, peer-reviewed research results cognizant of both DOE mission needs and new scientific opportunities. Scientific discoveries at the frontiers of these disciplines establish the knowledge foundation to spur future innovations and inventions.

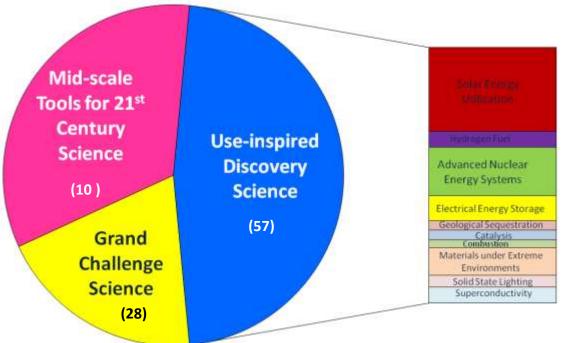
Energy Frontier Research Centers

\$2-5 million-per-year research centers, established in 2009, focused on fundamental research related to energy

- Multi-investigator and multi-disciplinary centers to harness the most basic and advanced discovery research in a concerted effort to accelerate the scientific breakthroughs needed to create advanced energy technologies. Bring together critical masses of researchers to conduct fundamental energy research in a new era of grand challenge science and use-inspired energy research.
- > EFRCs are overseen by program staff, who are managed centrally within BES to ensure a unified management strategy and structure.

Energy Innovation Hubs

\$20 million+ -per-year research centers will focus on integrating basic & applied research with technology development to enable transformational energy applications


- > Hubs comprise a larger set of investigators spanning science, engineering, and other disciplines focused on a single critical national need identified by the Department; each Hub is expected to become a world leading R&D center in its topical area to develop a complete energy system.
- > With robust links to industry, the highly integrated Hubs can bridge the gap between basic scientific breakthroughs and industrial commercialization.

Single-Investigator & Small-Group Research

Grand challenge science: ultrafast science; chemical imaging, complex & emergent behavior **Use inspired discovery science:** research areas identified in BESAC and BES workshop reports **Tools for 21**st **century science:** midscale instrumentation

A total of \$55M was awarded in FY 2009: single investigator awards (\$150 – 300K/yr), small group awards (\$500 – 1500K/yr) for up to three years, and mid-scale instrument (up to \$2M).

95 projects were awarded:

- 72 university awards
- 23 lab awards

Grand challenge science: 22%

Use-inspired discovery science: 47%

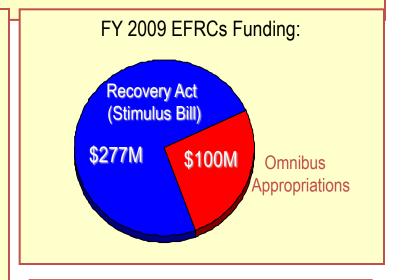
Mid-scale tools: 33%

Additional accelerator and detector R&D awards.

Energy Frontier Research Centers

Tackling Our Energy Challenges in a New Era of Science

EFRC awards provide the recipients with \$2-5 million/year over a five-year award period to pursue collaborative basic research that addresses both energy challenges and science grand challenges in areas including:

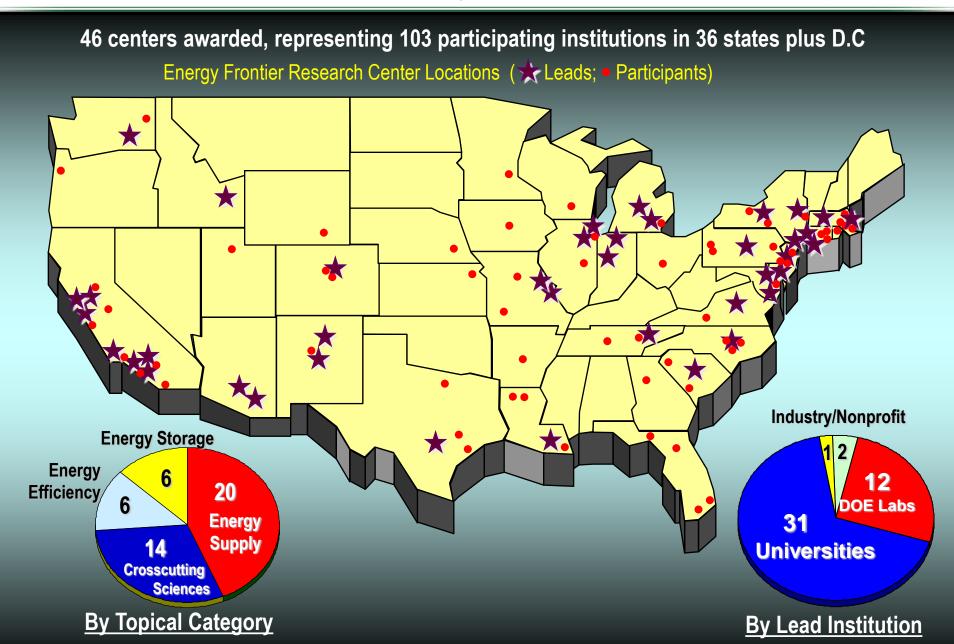

- Solar Energy Utilization
- Bio-Fuels
- Catalysis
- Energy Storage

- Geosciences for Waste and CO₂ Storage
- Advanced Nuclear Energy Systems
- Materials Under Extreme Environments
- Hydrogen

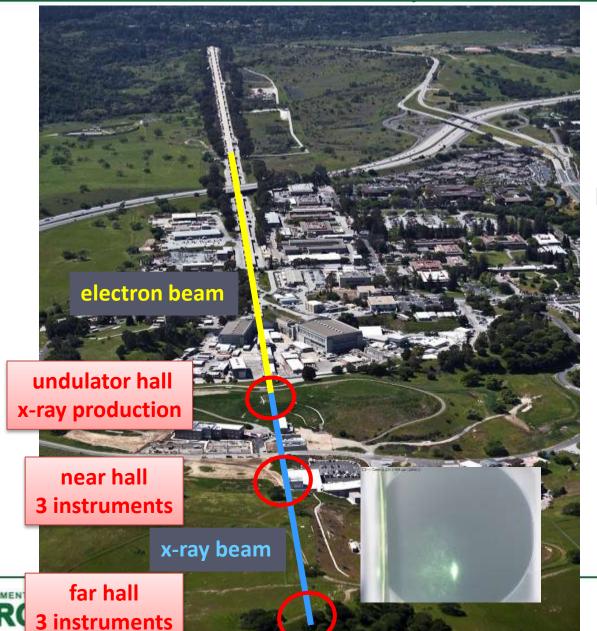
- Combustion
- Superconductivity
- Solid State Lighting

As stated in the Funding Opportunity Announcement for the EFRCs:

- "... the research proposed in the EFRC application must:
- address one or more of the challenges described in the BESAC report Directing Matter and Energy: Five Challenges for Science and the Imagination (http://www.sc.doe.gov/bes/reports/files/GC_rpt.pdf) and
- address one or more of the energy challenges described in the 10 BES workshop reports in the Basic Research Needs series (http://www.sc.doe.gov/bes/reports/list.html).



Total EFRCs = \$777M over 5 years



SC/BES Energy Frontier Research Centers

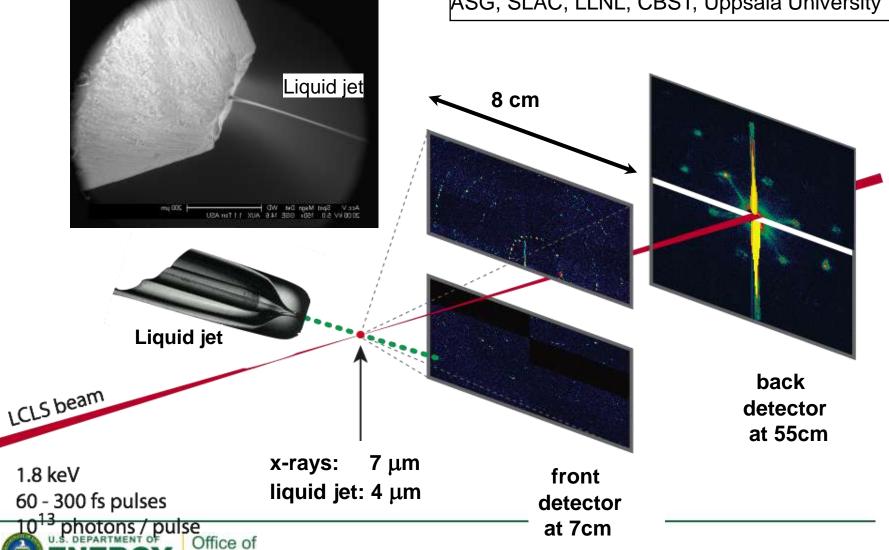
46 EFRCs were launched in late FY 2009 using FY 2009 Appropriations and Recovery Act Funds

Linac Coherent Light Source or "LCLS" at SLAC the world's first x-ray laser

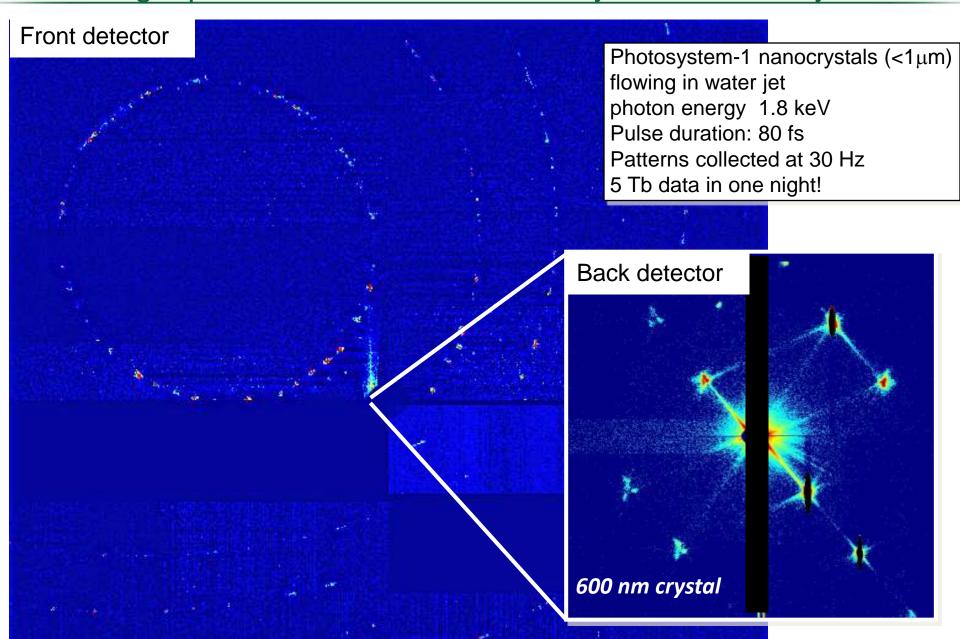
LCLS uses only 1/3 of linac

Detection of X-ray at Far Hall ~ 1 PM PDT 4/22/2010

132 meters of FEL undulators



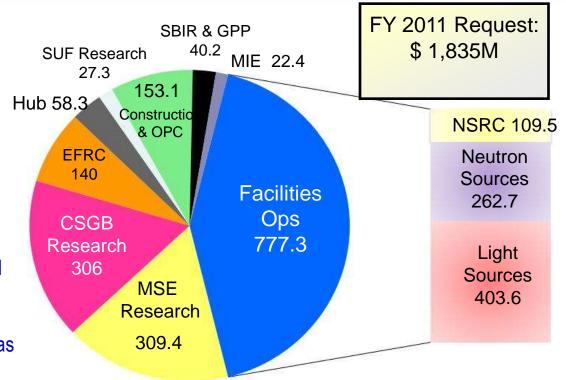
Early studies at LCLS: Nanocrystals in water microjet


John Spence et al. ASU

Science

Spokesperson: **Henry Chapman** et al. collaboration of Center for Free Electron Laser Science DESY Arizona State University, Max Planck CFEL ASG, SLAC, LLNL, CBST, Uppsala University

First results:
Single-pulse diffraction from Photosystem-1 nanocrystals


FY 2011 BES Budget Request

Research programs

- Energy Innovation Hubs
- Energy Frontier Research Centers
- Core research increases for grand challenge science, use-inspired science, accelerator & detector research
- Topical areas include: basic research in ultrafast science, materials synthesis, carbon capture, radiation resistant materials, separation sciences, advanced combustion modeling for engine design, geophysics and geochemistry on CO₂/minerals & rocks interactions, and gas hydrates

Scientific user facilities operations

- Synchrotron light sources
- Neutron scattering facilities
- Nanoscale Science Research Centers

Construction and instrumentation

- National Synchrotron Light Source-II
- Spallation Neutron Source instruments
- SNS Power Upgrade

New BES Research Investments Address Critical Needs

An FY 2011 BES call will cover a broad range of research awards including new EFRCs

About \$66 million will be competed in the BES Program to support additional Energy Frontier Research Centers, single investigators and small group awards in the following areas:

1. Discovery and development of new materials

The FY 2011 solicitation will emphasize new synthesis capabilities, including bio-inspired approaches, for science-driven materials discovery and synthesis. Research will include crystalline materials, which have broad technology applications and enable the exploration of novel states of matter.

2. Research for energy applications

The FY 2011 solicitation will emphasize fundamental science related to:

- Carbon capture, including the rational design of novel materials and separation processes for postcombustion CO₂ capture in existing power plants and catalysis and separation research for novel carbon capture schemes to aid the design of future power plants.
- Advanced nuclear energy systems including radiation resistant materials in fission and fusion applications and separation science and heavy element chemistry for fuel cycles.

Awards will be competitively solicited via Funding Opportunity Announcements following the FY 2011 appropriation.

