
Physical Sciences and Advanced Materials at ORNL

Michelle V. Buchanan

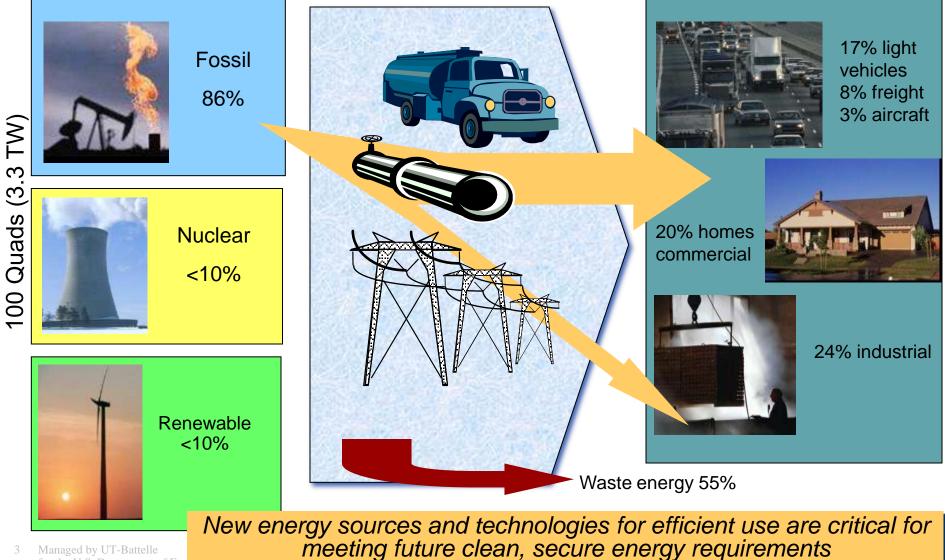
Associate Laboratory Director Physical Sciences

September 13, 2010

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

The Energy Dilemma

- Population growth
- Rampant consumerism
- Emerging economies
- Demand for oil that outstrips supply
- Possible oil supply interruptions
- Increased greenhouse gases



Today's Energy Resources in U.S.

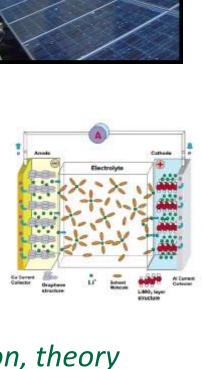
Supply

Distribution

Utilization

Managed by UT-Battelle for the U.S. Department of Ene

ORNL focus on "Science to Energy"


Advanced materials and interfacial processes for energy

- Electrical energy storage
- Solar
- Catalysis
- Separations
- Nuclear (irradiation, materials, separations)

Strategy: Take advantage of

- Unique capabilities in synthesis, characterization, theory
- Close coupling of fundamental and applied science
- Ties with industry and technology transfer

4 Managed by UT-Battelle for the U.S. Department of Energy

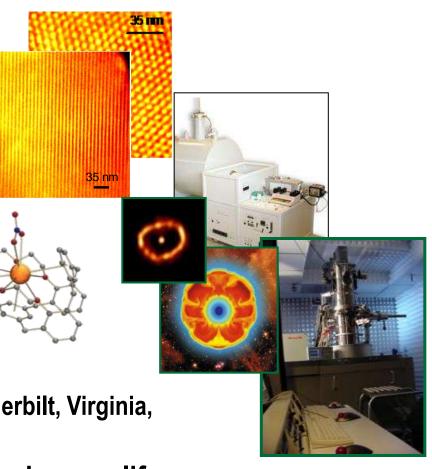
ORNL is unrivaled in advanced materials

DOE's largest materials and condensed matter programs	Special strengths in advanced alloys, correlated electron materials, macromolecular systems, catalysis, synthesis, carbon-based materials, separations
SNS and HFIR offer transforming capabilities	Structure and dynamics, large-scale structures, spins, neutron and neutrino physics
World-class capabilities for nanoscale science	Synthesis, nanoscale characterization, spin-sensitive and other probe spectroscopies
Leadership-class computing	Predictive simulation of materials and molecular interactions
Unmatched characterization capabilities	Electron microscopy, mass spectrometry, local electron probes, physical and chemical properties measurement

DOE's first nanoscience center

World's foremost capabilities for neutron science

Record-setting electron microscopes


Leadership-class computing

Physical Sciences Directorate

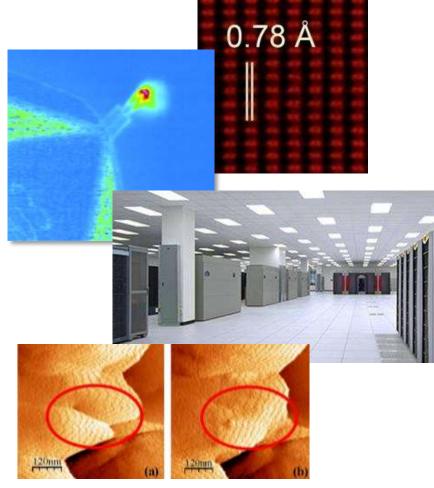
• Home to ORNL core programs in

- Materials
- Chemistry
- Nuclear physics
- Nanoscience
- Isotopes
- Approximately
 - ~500 staff
 - >100 post-docs
 - >40 graduate students
 - ~40 joint faculty (including NC State, Vanderbilt, Virginia, Auburn, UT)
- Highly integrated with computational sciences, life sciences, neutron sciences, energy, and national security research programs at ORNL

Leading capabilities

- Condensed matter physics
- Characterization
 - electron microscopy
 - mass spectrometry
 - scanning probes
- Chemical and Materials Theory
- Heavy ion nuclear physics
- Structural materials
- Synthesis
- Materials processing
- Soft materials: polymers and bio
- Separations
- Radiochemical analysis

ORNL programs in solar PV and electrical energy storage span atomic to system level understanding

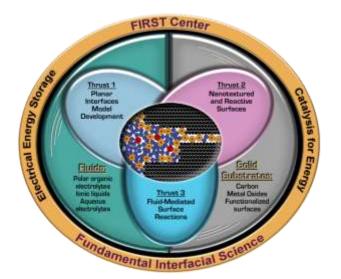

Photovoltaics

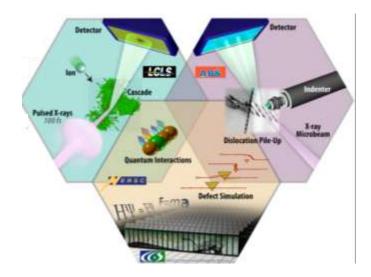
- Inorganic PV materials
- Next generation organic PV
- Large scale processing

Electric energy storage

- Novel electrodes
- Ionic liquid, solid, and polymer electrolytes
- Membranes, coatings

Both areas are supported by state-ofthe-art characterization and computational tools




ORNL Awarded Two BES Energy Frontier Research Centers in FY09

Partners on eight others

Fluid Interface Reactions, Structures and Transport (FIRST)

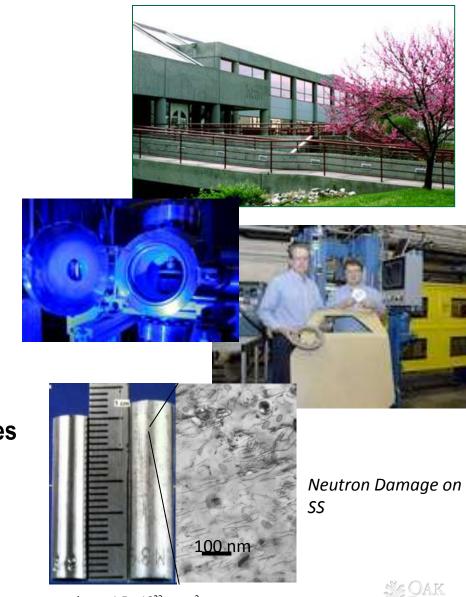
Center for Defect Physics in Structural Materials (CDP)

Study of interfaces in batteries, capacitors, catalysis

Study of defects in materials under extreme conditions

Close coupling of science to applications to technology transfer is a key strength of PSD

- PSD has over half of IP at ORNL
 - -invention disclosures
 - -patents
 - -royalties
- Over half of ORNL's IR-100 awards
- Hundreds of industrial collaborators


Close coupling of science to applications to technology transfer is a key strength of PSD

Applied Materials Portfolio

• EERE (OE, ITP, VT, Solar, etc.)

- New materials, processing
 - Superconductivity
 - Batteries
 - Solar PV
 - Lightweight materials
 - Carbon composites, new materials
 - Industrial materials
- HTML User Facility
- Nuclear Energy
 - Comprehensive materials capabilities
 - PIE, new materials, theory
- Fossil Energy
 - New materials, corrosion
- WFO—broad portfolio 2 Managed by UT-Battelle for the U.S. Department of Energy

control 1.5 x 10²³ n cm⁻² 20% CW 316 stainless steel, 796 K

Nickel Aluminides: From Lab Discovery to Commercialization.

20 mm

Energy Efficienc

to very a program a tuture where erren

Applied R&D Basic Science (OS, FE) (EERE Industrial Technologies **Program**) Ductile Castable Ni₃Al Ni₃Al 13 H **Fe-rich nickel** Joinable aluminide alloy is less Ni₃Al expensive & has

Manufacturing & Commercialization

13 Managed by UT-Battelle for the U.S. Department of Energy

improved sulfidation

ENERGY

resistance:

Science to Solutions: **Superconductor Wires: From Lab Discovery to** Commercialization

Basic Science

(Office of Science)

Grain-to-grain current

Applied R&D

(Office of Electricity Delivery & Energy Reliability)

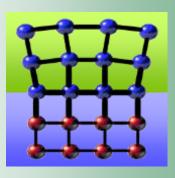
Single crystal-

like template

by the

kilometer (RABiTS[™]):

Manufacturing & Commercialization


- ✓ Licensed to both major U.S. wire manufacturers.
- ✓ Only 2G HTS wire suppliers in the world. FLC

✓ International customers.

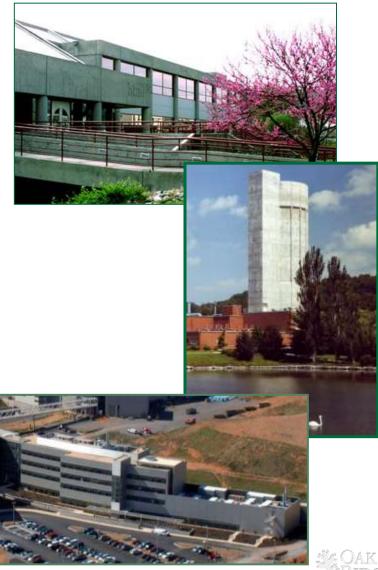
Single crystal film formation:

flow:

Epitaxial buffers for high-performance 2G HTS

wires:

 Core template & buffer technologies of AMSC wire.


- Key buffer component of **SuperPower** wire.

Physical Sciences Divisions operate four DOE user facilities

- Center for Nanophase Materials Science (CNMS)
- High Temperature Materials Laboratory (HTML)
- Holifield Radioactive Ion Beam Facility (HRIBF)
- Shared Research Equipment Program (SHaRE)

Serving > 1000 users / year

Center for Nanophase Materials Sciences

- Science areas include functional materials, soft materials, catalysis, imaging functionality, bio-nano, theory
- 32 laboratories
- 10,000 sq. ft. clean room
- Nanomaterials Theory Institute
- Office space for 190 staff, visitors, and users
- >\$30M in equipment
- Over 400 users in FY09
- Users from universities, industry and national laboratories
- CNMS is recognized for its leadership role in developing ES&H policies for the NanoScience Research Centers

The Center for Nanophase Materials Sciences

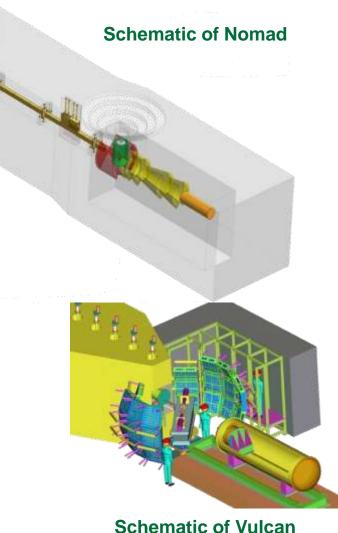
Understand, Design, and Control Functionality in Nanoscale Systems:

Key capabilities:

- Polymer synthesis/characterization
- Specialized scanning probes
- Nanomaterials synthesis/ characterization
- Nanofabrication
- Nano Theory Institute
- Close ties to SNS/HFIR

Shared Research Equipment (SHaRE) User Facility

- BES-SUFD Electron Beam Microcharacterization (EBMC) User Facility with advanced instrumentation and staff expertise to enable world-class materials science research
- SHaRE Research Focus Areas:
 - $-\mu$ m- to sub-Å-scale materials characterization using analytical and high-resolution


Electron Microscopy to understand materials behavior

- Catalysts, interfaces, defect analysis, in-situ microscopy techniques, electron tomography, theory/simulation
- Atomic-scale imaging in 3D using Atom Probe Tomography (ATP)
 - Surfaces, buried interfaces, solute segregation, nanoclusters / precipitates, Laser-LEAP extends range of materials for APT analysis (polymer/ceramics/metals)
- Close ties with ORNL BES Programs and User Facilities
 - Neutron Science (SNS, HFIR)
 - Nanoscience (CNMS)

PSD divisions helped lead the development of new SNS/HFIR instruments

- Neutron physics instrument, **FPNB** (Physics)
- Disordered materials, Nomad (CSD / CNMS)
- Inelastic chopper spectrometer, Sequoia (MSTD)
- Engineering materials diffractometer, Vulcan (MSTD)
- Molecular spectroscopy instrument, Vision (CSD)
- Large molecule diffractometer, LMDI (CSD)
- Small angle neutron scattering, **Bio-SANS** (CSD)

9 Managed by UT-Battelle for the U.S. Department of Energ

Chemical and Material Sciences

- Groundbreaking May 27, 2009
- ARRA funds enabling construction in 2 years rather than 3 years (move spring FY2011)
- Material and labor costs have been favorable; now able to construct extra 20,000 ft²

It's an Exciting Time for Materials R&D at ORNL

- Challenging fundamental scientific issues with strong emphasis on meeting future energy needs
- Vibrant environment
 - Teams of experienced researchers, new hires, collaborating scientists, post-docs and students
 - State-of-the-art-facilities
- Opportunity to expand ORNL's strong history of coupling discoveries based on BES research with energy objectives of DOE's technology programs
- Rapidly expanding work with industry and university partners

