Solar Capabilities Overview

Gerald E. Jellison

ORNL User Week 2010

Solar Energy and Energy Storage: Answering the Energy Challenge

September 14, 2010

ORNL and **PV**

- ORNL was active in PV from late 1970's to 1987
- Principal emphasis: Laser Processing of emitters
- Primary findings of laser annealing for silicon solar cells:
 - Melting Model
 - Better incorporation of electrically active dopants (>solid solubility limit)
 - VERY low density of dislocation loops (better than thermal anneal)
 - Abrupt junctions
- Result: 19.5% cell in 1987 (R. F. Wood, R. D. Westbrook, and G. E. Jellison, "Excimer Laser-Processed Oxide-Passivated Silicon Solar Cells of 19.5% Efficiency," IEEE Electron Device Letters, EDL-8, (1987).).
- No significant PV work from 1987 to 2007.
- Since 2007, ORNL has been getting back into PV, since several of our past projects address similar issues as PV manufacturing.

ORNL Resources for Solar R&D

Fabrication	 Thin film deposition (LPCVD, PECVD, PLD, etc.) Large area deposition (sputtering, slot die, inkjet) Photolithography and etching Oxide coatings and buffer layers 	
Characterization	 High Temperature Material Laboratory Center for Advanced Thin-film Systems Center for Nanophase Materials Sciences Spallation Neutron Source 	
Processing	 Pulsed thermal processing PulseForge photonic processing (Novacentrix) Laser-assisted surface modification 	
Modeling	First principles modeling of "materials by design"DOE Leadership Computing Facility	
Energy Frontier Research Centers	 Center for Defect Physics in Structural Materials Fluid Interface Reactions, Structures and Transport (FIRST) Center 	enter

-0

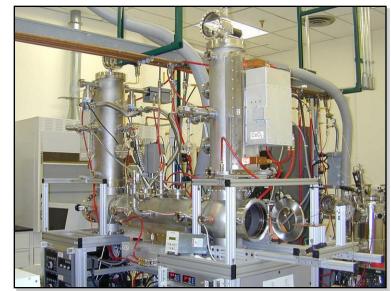
Advanced Materials Processing

Thin Film Deposition:

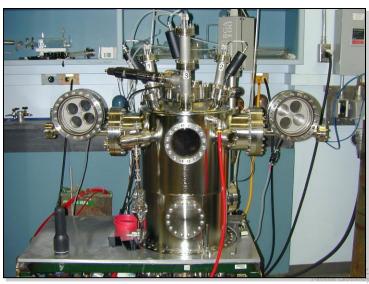
- LPCVD, PECVD, MOCVD
- Pulsed laser deposition
- E-beam evaporation
- RF & DC sputtering
- Slot die & ink jet coating
- Electrodeposition, CBD

Photolithography:

- 365 nm step & repeat system
- Karl Suss MA-6 contact lithography

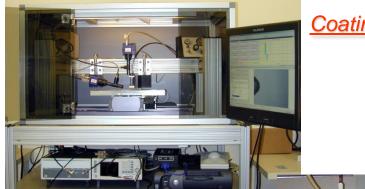

Etching:

- Reactive ion plasma etching (CI, F)
- Wet etch capability

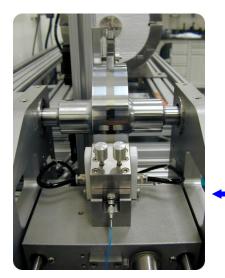

Metrology:

- Hitachi S-4700 SEM, Auger spectroscopy
- Filmetrics F-40 thin film measurement
- Ultrafast Raman spectroscopy, EPR

Multi-layer rf sputtering



3-source e-beam coevaporation

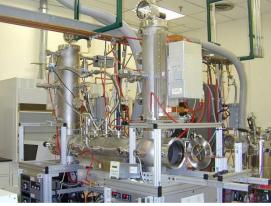

Superconductive and Energy Efficient Materials Group

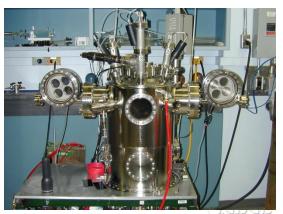
Expertise and capabilities in synthesis and characterization of multilayer coatings

- Long-length thermo-mechanically crystalline metal templates for superconductor wires
- Multilayer coatings for buffer layers, oxide superconductors, and metal overlayers

Solution coating by inkjet printing

Coating Deposition


3-chamber PLD system


Solution coating

by slot die (reel-to-reel)

3-source e-beam co-evaporation (2 systems)

Multi-layer *rf* sputtering (3 systems)

National Laboratory

Superconductive and Energy Efficient Materials Group

Materials Processing and Characterization

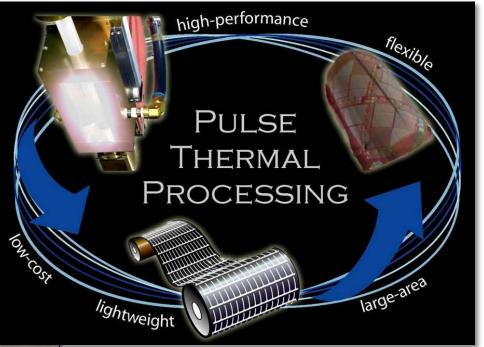
Class 1000, 4-High Rolling Mill

Magnetic-field electrical properties systems (3 total)

SQUID-based Magnetometer with 7 Tesla Field

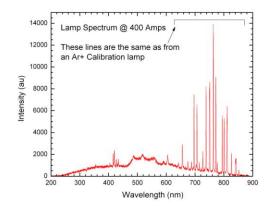
Auger spectroscopy for surface composition

1500°C vacuum thermal processing


Laser scriber (sample patterning)

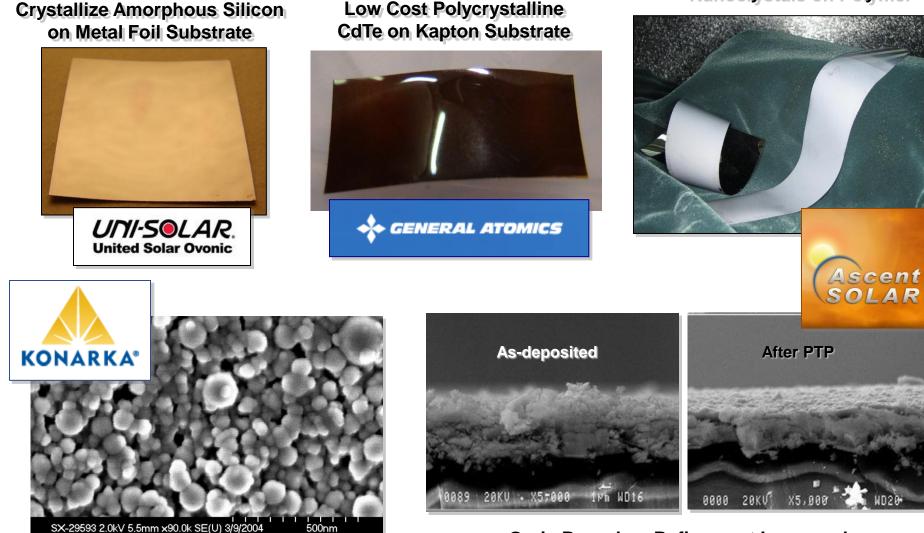
Pulse Thermal Processing / PulseForge

A new technology for high-speed drying, curing, sintering, or annealing of hightemperature materials on plastic and paper substrates.


Characteristics:

- Energy Flux in excess of 20 kW/cm²
- Heating Rates up to 600,000°C/s
- Exposure Time on (ms) and (μs) scale

2009 Winner

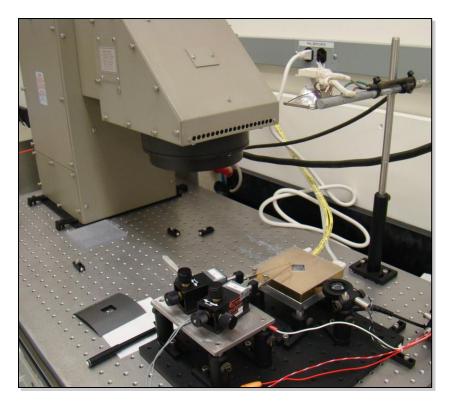


Thin Film Solar Research at ORNL

Collaborative Projects with Industry Partners

Sintered TiO₂ Nanoparticles on Polymer

Grain Boundary Refinement Increased CIGS Thin Film Efficiency by 50%


Texturing of CIGS Nanocrystals on Polymer

Solar Cell Performance Center for Advanced Thin-film Systems (CATS)

Solar Illuminated IV Curve

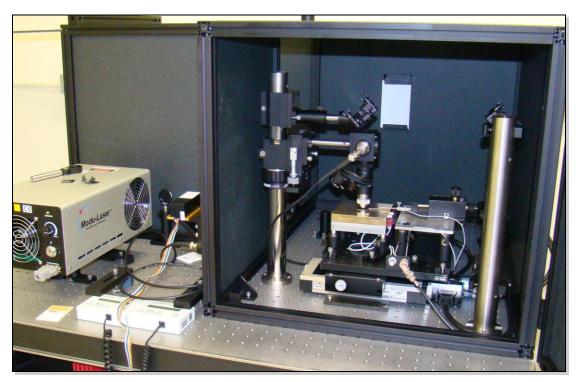
Measures **electrical behavior** of the solar cell until "normal sun" (or AM 1.5 light) conditions.

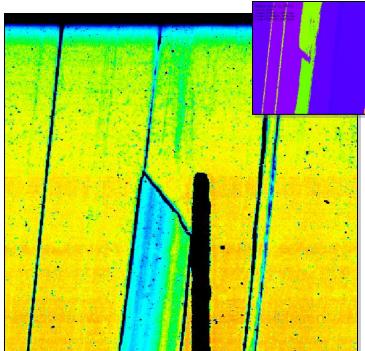
[efficiency, Voc, Isc, Pmax, Fill Factor]

Spectral Quantum Efficiency

Measures **ratio** of collected electron-hole pairs to photons of a given energy shining on the solar cell.

[quantum efficiency as $f(\lambda)$]

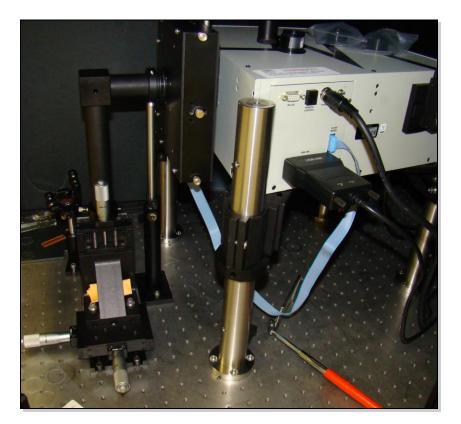



Solar Cell Performance Center for Advanced Thin-film Systems (CATS)

Light Beam Induced Current (LBIC)

Measures performance of solar cell at specific wavelengths of light illumination at high resolution (3 μ m).

[2-D map of cell performance]


Synchrotron X-ray

Compare with microstructural analysis to differentiate between defects that impact performance and those that do not.

Optical Characteristics Center for Advanced Thin-film Systems (CATS)

Photoluminescence (PL)

Produces spectrum of light emissions after excitation at specific wavelength. [band gap information, defect levels]

Horiba Jobin-Yvon Fluorimeter

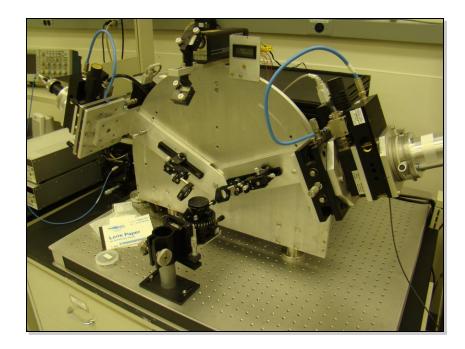
Emission vs. excitation 3D maps that identify fluorescence spectrum from phosphors.

[band gap information]

Optical Characteristics Center for Advanced Thin-film Systems (CATS)

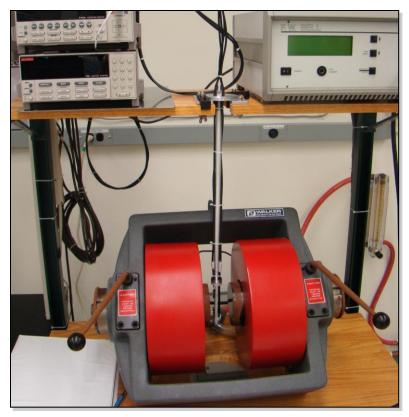
Spectrophotometry

Measures relative amount of light that is transmitted, reflected, or absorbed. Useful for non-specular surfaces

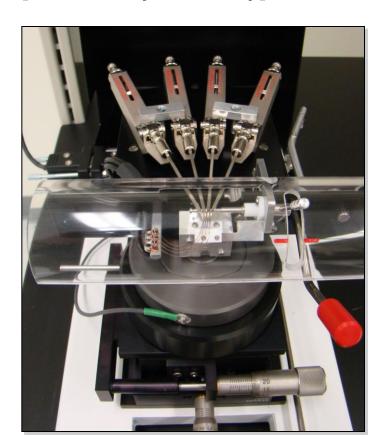

[transmittance, absorption as $f(\lambda)$]

Generalized Ellipsometry

Uses polarized light to measure optical properties of thin films as well as film thickness and roughness.


[absorption coefficient, refractive index]

Electrical Characteristics Center for Advanced Thin-film Systems (CATS)


Hall Effect

I-V measurements in a permanent magnetic field [resistivity, carrier mobility and concentration]

<u> 4 – Point Probe Resistivity</u>

A simpler measure of resistivity/conductivity of bulk materials and some thin films. [conductivity/resistivity]

Water Vapor Transmission Rate Test System (Aquatran Model 1; Mocon)

ORNL has established a Barrier Coating Testing Facility

Accurately measures water vapor transmission rates up to 5 x 10⁻⁴ g/m²-day

Research Collaborations

