New Perspectives in Energy Storage Materials

Confocal Micro-Raman Microscopy

Jagjit Nanda

Materials Science and Technology Division

nandaj@ornl.gov

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

The Scale of Things

- Complex electrode assembly
- Multiple transport regime
- Spatio-temporal variation

Courtesy : Sreekanth Pannala

Working of a Li-ion full cell

Connecting Fundamental Material Properties to Macroscopic Parameters

• Single particle "State of Charge" (SOC).

"Enabler for full capacity utilization"

• Observation of "Lithium Gradient" in an inhomogeneous medium.

" Transport in a complex electrode assembly"

Confocal Raman-AFM Setup

Spatial Resolution ~ 300 nm Peizo driven mapping stage Multiple excitation wavelength Raman Imaging plus topography

5 Managed by UT-Battelle for the U.S. Department of Energy

Support from Energy Storage, OVT, EERE DOE

High Energy and Power Li-ion Electrodes

Electrode

Secondary particle

5 µm

Primary particle

700 nm

 $\text{LiNi}_{0.80}\text{Co}_{0.15}\text{Al}_{0.05}\text{O}_2~(\text{NCA})$

LiNi _{0.33}Co_{0.33}Mn_{0.33}O₂ (NCM)

xLi₂MnO₃ (1-x)LiMO₂ (Excess Lithia compounds)

Edge

Origin of spectroscopic "SOC"

- A_{1g} oxygen atoms vibrate in opposite directions parallel to c-axis
- E_g oxygen atoms vibrate alternately in opposite directions parallel to Li and transition metal planes.
- SOC proportional to $A_{475cm^{-1}} / A_{550cm^{-1}}$

Micro-Raman Technique

 $A_{470}/A_{550} \sim to SOC$

 $A_{D1}/A_{G} \sim Disorder$

Spectra can be obtained as a function of position on the surface and edge of the electrode material.

Carbon Coverage : Continued

Similar carbon coverage different particle "SOC"

Raman Mapping : What it can do ?

10 Managed by UT-Battelle for the U.S. Department of Energy

Mapping Lithium Deficiency Regions : Li_{1-x}Ni_{0.80}Co_{0.20}Al_{0.05}

11 Managed by UT-Battelle for the U.S. Department of Energy

Severely degraded Sample

(µ11)

Spatial anode maps of A_{D1}/A_{G} -greater value, more graphite disorder (damage)

13 Managed by UT-Battelle for the U.S. Department of Energy

In situ Li-transport in Li-ion full cell

Material transport in battery

Two types of diffusion areas in the battery. The influence of each diffusion process can be evaluated separately by varying the diffusion distance in the solid and in the liquid.

Single Particle Charge-discharge of an in situ edge cell

Cell voltage 3.7 V

electrode

Observing "single particle" state of charge

Dynamical Potentiostatic Condition

SOC $\alpha A_{475cm^{-1}} / A_{550cm^{-1}}$

J. Nanda et. al. Manuscript (2010)

Intensity

Dynamical Potentiostatic Condition

Particle 1

Hardwick et al. Solid State Ionics 177 (2006)

J. Nanda et al. (unpublished)

High Capacity Si-C Composite Anode

In-situ observation of lithiation of silicon-rich region in Si-C composite

Conclusions

- Relative measure of spatial SOC distribution of cathode particle aggregates.
- Raman Intensity versus State of Charge : Skin Depth Effect.
- Micron level mapping of electrodes: Observation of Ligradient.
- Kinetics of lithiation-delithiation at the primarysecondary particle interface

