Material Perspectives for Organic Photovoltaics

Kunlun Hong

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831

hongkq@ornl.gov

865-574-4974

Outline

- **%** CNMS Macromolecular Group
- **H** Organic Photovoltaics
 - \diamond Why organic photovoltaics?
 - $\Leftrightarrow \qquad \text{How does it work?}$
 - $\diamond \qquad \text{What are the challenges (and opportunities)?}$
- **H** Our effects on conjugated polymers
- **H** Outlook

Center for Nanophase Materials Sciences

- 1. One of 5 DOE nanoscience centers
- 2. Integrates Nanoscale Science with 3 Synergistic Research Thrusts:
- **%** Neutron Science

Use unique capabilities of neutron scattering to understand nanoscale materials and function

Synthesis Science

Science-driven synthesis: nanoscale synthesis as enabler of new functionality

Theory and Modeling

Use theory and modeling to understand and design new nanomaterials

Macromolecular Nanomaterials Group

Design & control nanoscale assembly of macromolecular materials to achieve novel properties & functionality.

- **#** Dedicated in synthesis and characterization of well-defined polymers
 - Anionic polymerization: towards branched, block, graft polymers and copolymers
 - Controlled radical polymerizations: RAFT, ATRP, NMRP
 - □ Capabilities in synthesis of bio-inspired, optoelectronic polymers.
 - **%** Self-assembly in confined spaces and in solution
- **#** Additional expertise includes
 - **O** Synthesis of deuterated monomers and their polymers
 - **I** Fine characterizations of polymers

Custom Glass Blowing

Polymers with Various Architectures

Why Organic PV

Heliatek

	Pros	Cons
Inorganic PV	High efficiency	High cost Materials shortage
Organic PV	Low cost, Flexible, light- weight; Easy processing (Low T/printing)	Low charge mobility Life time (3-5 years) Low efficiency
Hybrid PV	High charge mobilities	Low η (charge separation)

Nontraditional Photovoltaics (Journal publications since 2005)

2010: up to 09/03 Source: SciFinder (CAS services)

Nontraditional Photovoltaics (Patent published since 2005)

Year 2010: up to 09/03

Source: SciFinder (CAS services)

Strong growth continues worldwide for major classes of materials used in polymer/organic photovoltaics

OPV Mechanism

Vational Laborator

OPV Architectures

Single layer; double layer, BHJ, tandem cell...

Bulk Heterojunction configurations: *Bicontinuous interpenetrating network of donor and acceptor*

Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies", Wiley-VCH (2008)

Self-assembled nanoscale material with charge-separating junctions everywhere!

The Power of New Materials

PTB6 (PCE:2.26%)

PTB3 (PCE: 5.53%)

TEM of PTB3 & PTB6; Yu et al J. Am. Chem. Soc. **131**, 7795(2009)

PTB3: R1: 2-ethylhexyl, R2: n-octyl PTB6: R1: n-butyloctyl, R2: n-octyl

The Power of Engineering

interpenetrating network

Bias(V)

0.4

0.5

0.3

0.2

0.1

0.0

Heeger A. et al. SPIE, <u>6336</u> U139-U148 (2006)

0.6

Conjugated Polymers Activities at CNMS

Lamellar Structures of Drop-Cast Films (a P3HT copolymer w/ 67%P3HT)

Toluene, 0.2%, 180°C 1hr

P3HT (020) = 0.38 nm

200 nm

Nanowire Structures (Drop-Cast Films)

A P3HT copolymer w/ 67%P3HT (Toluene, thicker film, 180°C 1hr) P3HT-copoymer (85% P3HT) (Trichlorobenzene, 1%, 180°C 1hr)

Enhanced hole mobility (0.065 cm²/Vs) as compared to 100% P3HT (0.041 cm²/Vs)

Bright Future for OPV

Polymer photovoltaiv: Present status--- 8.13% What can we expect to achieve?? --- <u>Eff $\approx 20\%$ </u>

New Architecture --- optical spacer --- 50% improvement

Current materials' band gap too large --- missing half the solar spectrum; Opportunity: Potential for 50% improvement using polymer with smaller band gap

Increase open circuit voltage ---Opportunity: Potential for 50% improvement

Materials! Materials!! Materials!!!

Summary and Outlook

• OPV has a bright future!

Material development holds the key!!!!

Challenges abound (they are also opportunities)

Acknowledgement

- → Dr. Xiang Yu (CSD) and Jun Yang (CNMS);
- → Drs. Ilia Ivanov; Kai Xiao; Jihua Chen (CNMS)
- → Stimulated discussions with Prof. Deli Wang (UCSD);
- → The research conducted at CNMS is sponsored at ORNL by the Division of Scientific User
 Facilities, U.S. Department of Energy.

THANKS FOR YOUR ATTENTION!

