# Charge, Orbital and Spin Ordering in RBaFe<sub>2</sub>O<sub>5+x</sub> Perovskites

Patrick M. Woodward Department of Chemistry <u>Ohio</u> State University

Pavel Karen Department of Chemistry University of Oslo

# Charge, Orbital and Spin Ordering

### Charge Ordering $(T_{co})$

- T >  $T_{CO}$   $\rightarrow$  Delocalized Electrons  $\rightarrow$  Single oxidation state
- T <  $T_{CO} \rightarrow$  Localized Electrons  $\rightarrow$  Distinct oxidation states

### Orbital Ordering $(T_{00})$

- Preferential (anisotropic) occupation of given d-orbitals
- Cooperative Jahn-Teller distortion

### Spin Ordering $(T_N \text{ or } T_c)$

- Long range magnetic ordering

### Mixed Valency (Robin & Day Classification)

- Type III  $\rightarrow$  Metallic e<sup>-</sup> transport  $\rightarrow$  Single oxidation state
- Type II  $\rightarrow$  Activated e<sup>-</sup> transport  $\rightarrow$  Two oxidation states at a given instant, but CO pattern is fluctional
- Type I  $\rightarrow$  Insulating  $\rightarrow$  Two oxidation states, with a regular (long range) CO pattern

### **Examples of Charge Ordering**

Fe<sup>3+</sup>(Fe<sup>2.5+</sup>)<sub>2</sub>O<sub>4</sub> → Fe<sup>3+</sup>(Fe<sup>2+</sup>Fe<sup>3+</sup>)O<sub>4</sub> Verwey (1939) Double Exchange Ferromagnetism





LaCa( $Mn^{3.5+}$ )<sub>2</sub> $O_6 \rightarrow LaCa(Mn^{3+}Mn^{4+})O_6$ Wollan, Koehler & Goodenough (1955) Colossal Magnetoresistance (CMR)

 $\begin{array}{l} & & \textbf{Ba_2(Bi^{4+})_2O_6} \rightarrow \textbf{Ba_2(Bi^{3+}Bi^{5+})O_6} \\ & & & Cox \ \& \ Sleight \ (1976) \\ & & \textbf{High } T_c \ Superconductivity \ in \ Oxides \end{array}$ 



# Charge Ordering in Nd<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3</sub>





#### T = 160 K Valence Mixed State

### T = 60 K Charge Ordered State

#### Synchrotron X-ray Powder Diffraction Data (NSLS-X7A)

A series of weak superstructure reflections arise (1% intensity at the strongest) that indicate doubling of the *a*-axis.

Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, 3528-38 (1999).







*Rev. B* 57, R3189 (1998).

Mater. **11**, 3528-38 (1999).

# Orbital Ordering in Nd<sub>0.5</sub>Sr<sub>0.5</sub>MnO<sub>3</sub>



Upon cooling below 150 K, the *a* & *c*-axes expand and the *b*-axis contracts. This is the signature of orbital ordering

Woodward, Cox, Vogt, Rao, Cheetham, Chem. Mater. 11, 3528-38 (1999).

### Oxygen Deficient Double Perovskites RBaFe<sub>2</sub>O<sub>5+w</sub>

### R = Trivalent Rare Earth Ion

- Nd, Sm, Tb, Ho, Y
- Changing the radius of the R ion, controls the layer spacing

### $M = 1^{st}$ row Transition Metal Ion

- V, Mn, <mark>Fe</mark>, Co, Cu
- Changing M, alters the electron count and covalency of the M-O bonds.

### $\textbf{0} \geq \textbf{w} \geq \textbf{~ 0.7}$

- Excess oxygen resides in R layer
- The upper limit of w is dictated by the ionic radius of R
- w=0  $\rightarrow$  M<sup>+2.5</sup>, w=0.5  $\rightarrow$  M<sup>+3</sup>
- changes the local coordination of the transition metal ion from 5 to 6





- The sample is dehydrated at ~180 °C.
- The sample is then heated at  $\sim 400 \,^{\circ}C$  to drive off the organic content and produce an amorphous precursor.
- The precursor is calcined (800-900 °C) and then sintered at high temperature (1000-1150 °C) in a carefully controlled pO<sub>2</sub> atmosphere.
- The sintered pellets are heated at a lower temperature (600-860 °C) in a controlled atmosphere to attain the desired oxygen content.

### **Powder Diffraction Data Collection**

- Synchrotron X-ray Powder Diffraction
  - NSLS X7A (Dave Cox, Tom Vogt)
  - NSLS X3B (Peter Stephens, Sylvina Pagola)
  - ESRF BM1B (Swiss-Norwegian Beamline)
- Neutron Powder Diffraction
  - NIST BT1 (Brian Toby) YBaFe<sub>2</sub>O<sub>5</sub>
  - ILL D2B (Emmanuel Suard) HoBaFe<sub>2</sub>O<sub>5</sub> & NdBaFe<sub>2</sub>O<sub>5</sub>
  - PSI HRPT (Peter Fischer) TbBaFe<sub>2</sub>O<sub>5</sub>
  - ANSTO MRPD (Andrew Studer) TbBaFe<sub>2</sub>O<sub>5</sub>
- Neutron Thermodiffractometry
  - ILL D20 (Emmanuel Suard) HoBaFe<sub>2</sub>O<sub>5</sub> & NdBaFe<sub>2</sub>O<sub>5</sub>
- Mossbauer Spectroscopy
  - Abo Akademi (Johan Linden)



### DSC

### **Electrical Resistivity**

T>T<sub>PM</sub> Mössbauer shows one Fe<sup>2.5+</sup> signal (Type III MV) T<sub>PM</sub> >T>T<sub>co</sub> Mössbauer signal begins to split Fe<sup>2.5+x</sup> + Fe<sup>2.5-x</sup> (Type II MV) T<sub>co</sub> > T Mössbauer shows Fe<sup>2+</sup> + Fe<sup>3+</sup> (Type I MV, Charge Ordered State)

Karen, Woodward, Santhosh, Vogt, Stephens, Pagola, *J. Solid State Chem.* **167**, 480 (2002).

# TbBaFe<sub>2</sub>O<sub>5</sub> Type III MV Structure

| Temperature | 350 K        |
|-------------|--------------|
| Space Group | Pmmm         |
| ۵           | 3.94453(4) Å |
| b           | 3.93331(4) Å |
| C           | 7.58655(8) Å |

#### **Bond Valences**

| Ba          | 1.98 |
|-------------|------|
| ТЬ          | 2.88 |
| Fe          | 2.52 |
| <b>O(x)</b> | 1.94 |
| О(у)        | 1.95 |
| <b>O(z)</b> | 2.05 |



Fe-O Distances 2×2.0002(6) [O<sub>y</sub>] 2×2.0046(5) [O<sub>x</sub>] 1×1.9977(7) [O<sub>z</sub>]

Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, 214405 (2001).

# TbBaFe<sub>2</sub>O<sub>5</sub> Synchrotron X-ray



Superstructure Reflections indicate a <u>doubled a-axis</u>

#### Space Group = Pmma

Superstructure reflections are stronger when R = Nd

Superstructure reflections are very difficult to observe in neutron powder patterns

Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, 214405 (2001).

# TbBaFe<sub>2</sub>O<sub>5</sub> Neutron Diffraction



### Charge Ordered Model

Rietveld refinements of neutron powder diffraction data confirm charge ordered structure, TbBaFe<sup>3+</sup>Fe<sup>2+</sup>O<sub>5</sub>.

Mixed Valence Model

Karen, Woodward, Linden, Vogt, Studer, Fisher, Phys. Rev. B 64, 214405 (2001).



# TbBaFe<sub>2</sub>O<sub>5</sub> Magnetic Scattering



#### $\ddot{2a} \times \ddot{2b} \times c$ 8.05Å × 7.70Å × 7.55Å



The charge ordering induces a rearrangement of the antiferromagnetic structure!





### Charge & Spin Ordering in YBaM<sub>2</sub>O<sub>5</sub>



**YBaMn<sub>2</sub>O<sub>5</sub>** T<sub>c0</sub> > 300 K (CB) P4/nmm T<sub>c</sub> = 165 K (Ferri)

Millange, *et al. Mater. Res. Bull.* **1999**, *34*, 1. **YBaFe<sub>2</sub>O<sub>5</sub>** T<sub>co</sub> > 308 K (ST) Pmma T<sub>N</sub> = 430, 308 K

Woodward, Karen *Inorg. Chem.* **2003**, *42*, 1121.

**YBaCo<sub>2</sub>O<sub>5</sub>** T<sub>co</sub> > 220 K (ST) Pmma T<sub>N</sub> = 330 K

Vogt, et al. *PRL* **2003**, *84*, 2969.



# Phase Transitions - RBaFe<sub>2</sub>O<sub>5</sub>

- Paramagnetic to Antiferromagnetic (430-450 K)
  - YBaFeCuO<sub>5</sub> Type AFM Order
  - Small Magnetostrictive coupling leads to a subtle Tetragonal to Orthorhombic Distortion
- Premonitory Charge Ordering (290-330 K)
  - Subtle charge localization can be seen in DSC & Mossbauer, but not in diffraction measurements
  - Mixed valency changes from Type I to Type II
- Long Range Charge Ordering (240-290 K)
  - Induces a large orbital ordering transition
  - Orbital ordering stabilizes a stripe CO pattern
  - Stabilizes G-type Antiferromagnetic order (changes the sign of the Fe-Fe direct exchange)



### Phase Transitions vs. R size



As the radius of the R ion increases

 $-T_{CO}$  (MV II $\rightarrow$ MV I) decreases significantly.

 $-T_{PM}$  (MV III $\rightarrow$ MV II) decreases more gradually.

 $-T_{N1}$  changes very little.



Volume change at  $T_{CO}$  (MV II  $\rightarrow$  MV I)







### Orbital Ordering (RE = Nd, Ho)



# Temperature

4.00 R=Ho Magnetons 3.50 -R=Nd 3.00 2.50 - $T_{co}$ (Bohr Tco 2.00 1.50 <sup>=</sup>e Moment 1.00 0.50 0.00 100 200 300 400 500 0 Temperature (K)

Magnetism vs. RBaFe<sub>2</sub>O<sub>5</sub> (R=Tb, Y, Ho) **YBaFeCuO<sub>5</sub> AFM Structure** Fe-Fe Coupling Ferromagnetic

> **G-Type AFM Structure** Fe-Fe Coupling Antiferromagnetic

 $\bigcirc$  T<sub>co</sub>

NdBaFe<sub>2</sub>O<sub>5</sub>

**YBaFeCuO<sub>5</sub> AFM Structure** Fe-Fe Coupling Ferromagnetic

 $\bigcirc \mathsf{T}_{co}$ 

YBaFeCuO<sub>5</sub> AFM Structure Fe-Fe Coupling Ferromagnetic

# Nd Magnetism in NdBaFe<sub>2</sub>O<sub>5</sub>



Nd moment is ~1.2 μ<sub>B</sub> at 2 K, T<sub>N</sub> (Nd) ~ 30 K No rare-earth magnetic order for R = Ho. Nd magnetism is induced by Fe magnetism.

# Structural Tuning in RBaFe<sub>2</sub>O<sub>5</sub>

### As the radius of the R ion increases (R = Ho-Sm)

- The spacing across the R-layer increases
- $T_{CO}$  decreases significantly,  $T_{PM}$  decreases more gradually
- $T_{N1}$  changes very little
- Patterns of charge, orbital and spin order remain constant

### NdBaFe<sub>2</sub>O<sub>5</sub> The large size of Nd has several effects

- Disrupts the ideal pattern of orbital ordering
  - The CO structure has  $P2_1ma$  symmetry rather than Pmma
  - The volume change at  $T_{CO}$  is anomalous
  - The orthorhombic distortion parameter saturates at  $\mathsf{T}_{\mathsf{PM}}$
- Decouples the magnetic and charge order
  - There is no rearrangement of the magnetic structure at  $T_{CO}$
- Destabilizes the long range charge order
  - $T_{CO}$  is much lower than other members of the series