

## **The Spallation Neutron Source**

#### **Overview**

Thomas Mason Associate Laboratory Director for the SNS Oak Ridge National Laboratory

June 9, 2004 College Park, MD

# **SNS - Guiding Principles**

- SNS will provide high availability, high reliability operation of the world's most powerful pulsed neutron source (cf white paper)
- It will operate as a User Facility to support peer reviewed research on a Best-in-Class suite of instruments
  - Research conducted at SNS will be at the forefront of biology, chemistry, physics, materials science and engineering
- SNS will have the capability to advance the state of the art in spallation neutron source technology. This includes:
  - R&D in accelerators, target, and instruments to keep SNS at the forefront
  - Planned enhancement of SNS performance through upgrades of the complex and ongoing instrument development as part of the normal operating life of the facility























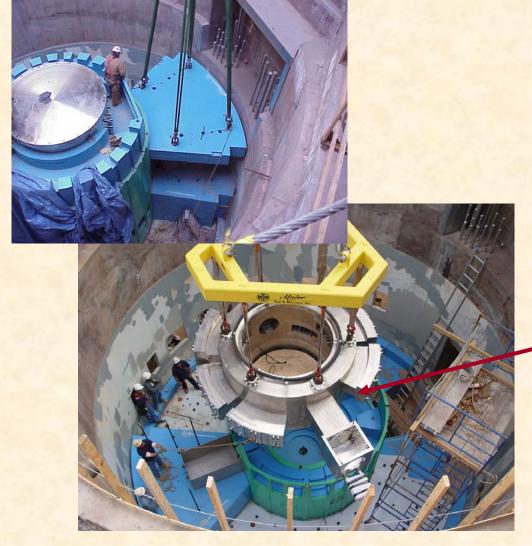




## **The Spallation Neutron Source**

- The SNS will begin operation in 2006
- At 1.4 MW it will be ~8x ISIS, the world's leading pulsed spallation source
- The peak neutron flux will be ~20–100x ILL
- SNS will be the world's leading facility for neutron scattering
- It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL






## **Conventional Facilities**





## **Target Monolith Installation**

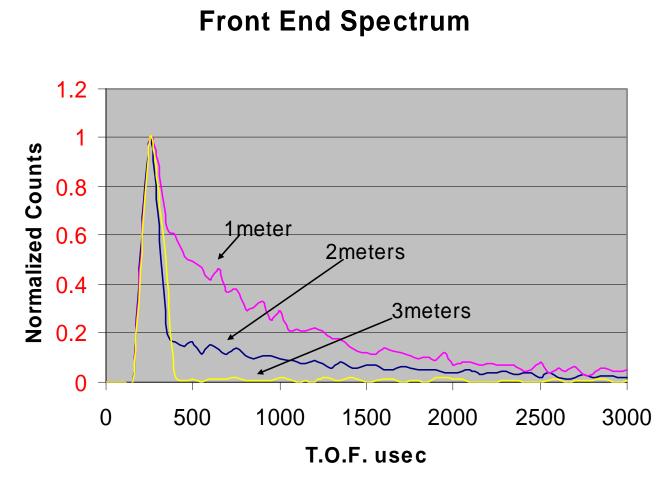


Core Vessel and Shielding

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

UT-BATTELLE

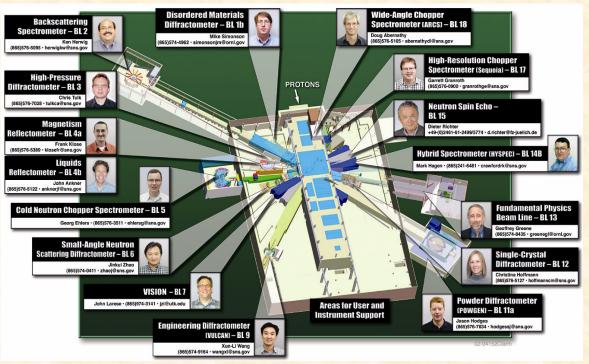
## **Installation Klystron Gallery**






# Warm Linac Installation & Commissioning

- DTL Tank 1 started operation on August 28.
- First beam 2 days later
- Ran up to 1mA
  average current
  - New record for H<sup>-</sup>
  - 7.5 kW
- Measured pulsed neutron spectra!
- DTL 1-3 April 04, 40 MeV


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



IT-BATTEL

## Instruments

- 16 instruments approved
  - Excellent progress with funding
    - DOE including \$75 M SING Project, foreign, NSF
- Working to enhance instrument technology
- International engagement and interest in the instrument suite
- Continuing engagement with scientific community





#### Status of SNS Instruments Backscattering Spectrometer (BL-2)

Study of atomic scale dynamics at high resolution – diffusive and vibrational motions of adsorbed molecules or large molecules

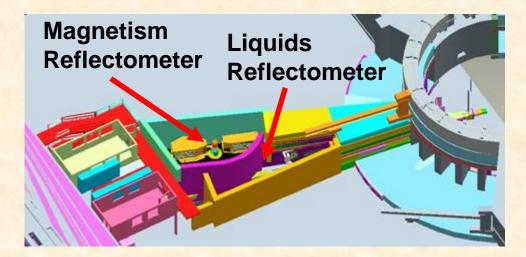
Ken Herwig (SNS Instrument Scientist)

- Core-vessel insert to be delivered April 2004
- Shutter insert to be delivered June 2004
- Neutron guide system glass guide sections have been delivered
- 3 bandwidth choppers received
- Evacuated scattering chamber installation in progress
- Poured-in-place beamline shielding base part of target building general contract
- Satellite building ready for equipment

• 70% design review held April 6-7 Oak Ridge National Laboratory U. S. Department of Energy








#### Status of SNS Instruments – cont'd

#### **Magnetism Reflectometer (BL-4A)**

Magnetic and chemical density profiles in surfaces, thin films and multilayer systems

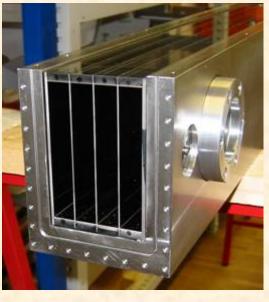
Frank Klose (SNS Instrument Scientist)



#### **Liquids Reflectometer (BL-4B)**

Density profiles normal to the surface at liquid surfaces and liquid interfaces John Ankner (SNS Instrument Scientist) OAK RIDGE NATIONAL LABORATORY

**U. S. DEPARTMENT OF ENERGY** 




#### Status of SNS Instruments – cont'd

#### **Both Reflectometers**

- Core-vessel insert to be delivered May 2004
- Shutter insert to be delivered June 2004
- Neutron guide system fabrication well along

Section of supermirror bender



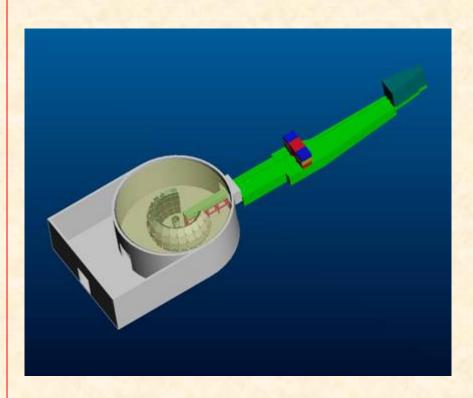
#### Magnetism

- First 2 of 3 bandwidth choppers delivered March 2003
- Goniometer/optical bench procurement awarded – July 2003

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

#### Liquids

- Neutron guide system fabrication well along
- Sample mount/optical bench/ detector mount procurement awarded February 2004


JT-BATTELLE

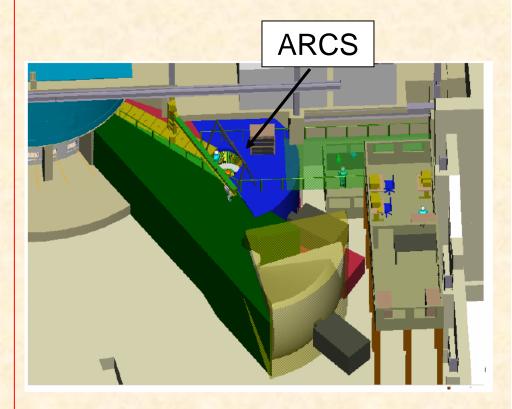
## **Status of Funded IDT Instruments**

#### **CNCS Cold Neutron Chopper Spectrometer (BL-5)**

Atomic-scale dynamics in the 0-20 meV energy range Paul Sokol (Penn State); Georg Ehlers (SNS Instrument Scientist)

- Draft MOA between Penn State and SNS prepared
- Design meeting held at Penn State September 2003
- Core-vessel insert to be delivered – April 2004
- Shutter insert to be delivered June 2004
- Other procurements awarded or in progress at Penn State
- Mid-project review being planned for July-August





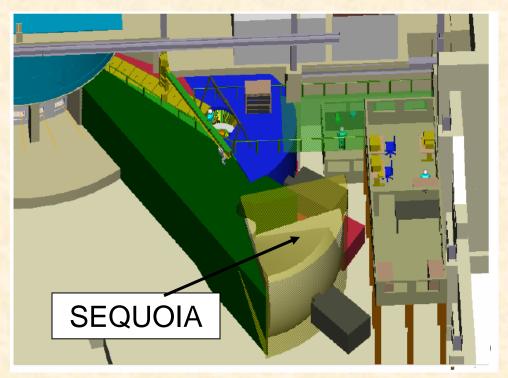

## Status of Funded IDT Instruments – cont'd ARCS Wide-Angle Chopper Spectrometer (BL-18)

Atomic-scale dynamics at thermal and epithermal energies optimized for angular coverage

Brent Fultz (Caltech); Doug Abernathy (SNS Instrument Scientist)

- Core-vessel insert to be delivered April 2004
- Shutter insert to be delivered June 2004
- Prototype detector module and electronics successfully tested
- Detector procurement in progress
- Engineering design well along
- Shielding analyses underway
- Mid-project review being planned for July-August
   Oak Ridge National Laboratory
   U. S. DEPARTMENT OF ENERGY






## Status of SING Project IDT Instruments - cont'd

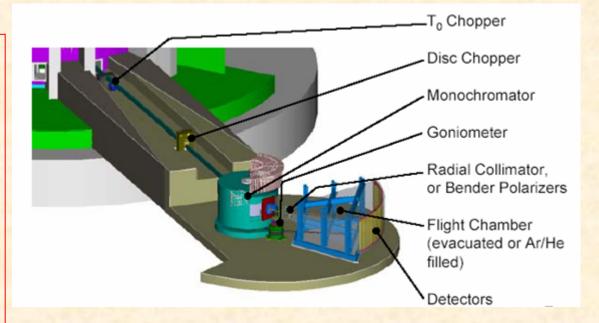
#### **SEQUOIA High-Resolution Chopper Spectrometer (BL-17)**

Atomic-scale dynamics at thermal and epithermal energies, with emphasis on magnetic scattering from single crystals Steve Nagler (ORNL); Garrett Granroth (SNS Instrument Scientist)

- Lead engineer in place
- Draft design/cost/schedule baseline developed
- Core-vessel insert to be delivered – April 2004
- Shutter insert to be delivered June 2004
- Preliminary design review scheduled May 5-6






#### Status of SING Project IDT Instruments - cont'd

#### HYSPEC Hybrid Spectrometer (BL – 14B)

Spin dynamics and motions of atoms in single crystals, with emphasis on polarized neutron studies

Steve Shapiro (BNL); Mark Hagen (SNS Instrument Scientist)

- Conceptual design being refined
- Footprint issues being resolved
- Blank plug insert in core vessel initially
- Concrete in shutter position initially






## **Status of Other Approved IDT Instruments**

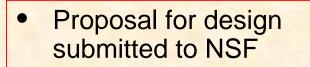
### **NSE Neutron Spin Echo Spectrometer (BL – 15)**

Dynamics on mesoscopic scales, particularly for biomolecules, polymers, and other soft matter systems

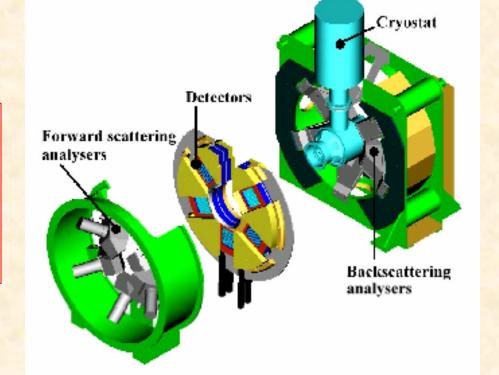
Michael Monkenbusch (Juelich); Michael Ohl (Juelich); Dieter Richter (Juelich); Catja Pappas (HMI)



- Joint Juelich-HMI project proposed to be funded by Germany
- Footprint issues being resolved
- Blank plug insert in core vessel initially
- Concrete in shutter position initially

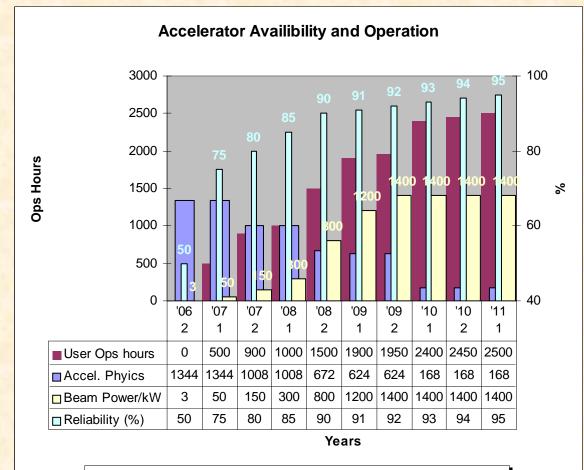






#### Status of Other Approved IDT Instruments – cont'd

#### VISION Chemical Spectrometer (BL - 7 ???)

Vibrational spectroscopy in molecular systems John Larese (Univ. of Tenn.); Bruce Hudson (Syracuse)

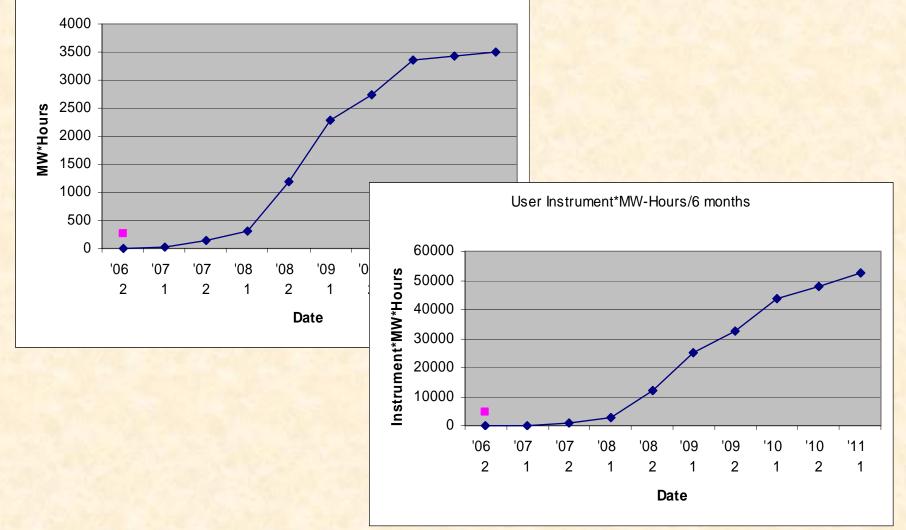



 Beamline assignment tentative – water moderator desired





# **SNS Early Operations: Ramping up Scientific Productivity**

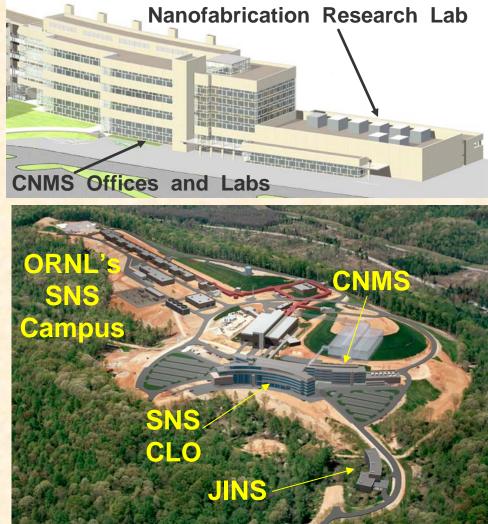



User Ops hours Accel. Phyics Beam Power/kW Reliability (%)





## **Timeline for scientific productivity**






### **Scientific Scope and Vision for CNMS** Center for Nanophase Materials Sciences

- A highly collaborative and multidisciplinary research center
- CNMS: Provides urgently needed capabilities for materials synthesis, nanofabrication, and modeling

The CNMS Concept: Create scientific synergies to accelerate discovery in nanoscale science



## We intend to expand our use of third-party funding

#### **Upgrade electrical distribution system**

- 55 years old
- Reliability is declining and maintenance is expensive

#### Plan

Acquire agreement with third party (e.g., TVA) to design, construct, and operate new system



#### **Provide on-site user housing**

 No convenient housing available for expanding user community

#### Plan

Use third-party commercial developer to design, construct, and operate ... at full cost recovery User Housing Facility



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

IT-BATTELLE

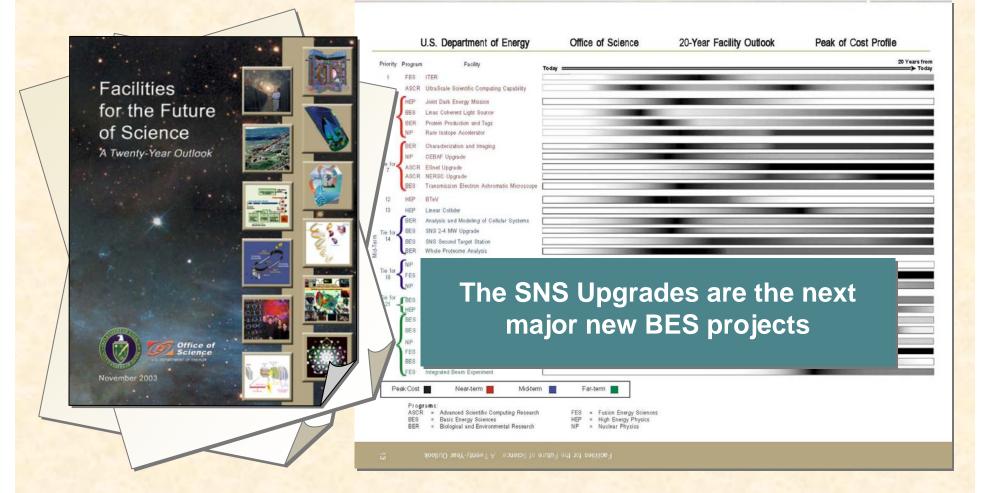
## **Condensed matter theory at SNS**

- The theory group in the Condensed Matter Sciences Division (CMSD) is in a rebuilding mode
  - Recently recruited Elbio Dagotto and Adriana Moreo from Florida State/NHMFL to joint positions with UT Physics Department
  - Anticipate a group of 6 to 9, including students and postdocs
- Computational materials science is an element of the Center for Nanophase Materials Sciences



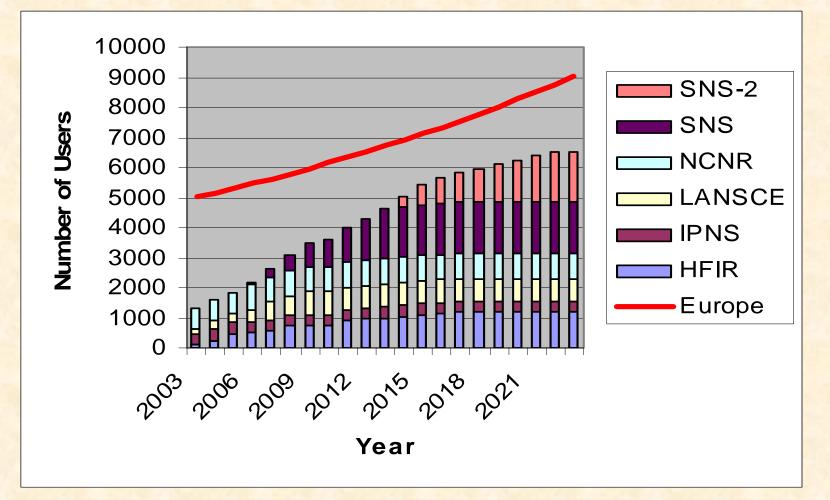





## **SNS 20-year plan**

- SNS will evolve along the path envisaged in the Russell Panel specifications
- In 20 years, it should be operating ~45 best-in-class instruments with two differently optimized target stations and a beam power of 3–4 MW
  - Ultimate target performance is probably the biggest unknown in projecting maximum power obtainable at SNS
- The Power Upgrade and Long Wavelength Target Station should follow a sequence that meshes with deployment of the initial capability and national needs






## DOE Office of Science 20-Year Facilities Plan





## Neutron Scattering 20 Year Outlook





## **Outlook Assumptions**

- Initiatives currently underway are sustained along the lines of the Office
  of Science and Technology Interagency Working Group report
  - Buildout of SNS instrument suite on HPTS
  - HFIR upgrades and user program
  - Enhancement of capabilities and user operations at IPNS and NIST
  - Instrument development and user program growth at LANSCE
- Added to that baseline are the impacts of the SNS upgrade path and a second guide hall at HFIR as described later today
- For comparison user growth in Europe based on current ENSA estimate of user community and 3% growth rate
  - Less than historical value over the past 20 years
  - Can be sustained in the near term by FRM II, ISIS-2, and Millenium Program at the ILL
- This trajectory for neutron capability is realistic and desireable in order to support needs of the materials community in coming years, not to mention eventual need to replace ageing facilities



## **Overall Prospects**

- Funding and technical performance are relatively secure for SNS and CNMS completion as well as buildout of the SNS instrument suite
- Existing neutron sources have ~stable overall funding however science budgets are a concern
- There are good prospects for seeing the operating funds (\$160 M/year) that we need to bring SNS online quickly and insure robust, reliable operations
- State funding for Joint Institutes is arriving as expected
- SNS Upgrades have passed initial scientific review hurdles

