

#### Unusual phonon softening in $\delta$ -Pu

#### **Rob McQueeney**

Ames Laboratory Dept. of Physics & Astronomy Iowa State University





## Why do we care about Pu?

- Pu is important for national security
- CTBT how do we know nukes still work?
  - Equation-of-state (up to ridiculous P-T)
  - Electronic structure calculations (phase stability)
- Pu is extremely complicated
  - Experimental measurement of fundamental properties is essential





#### Atomic size of the actinides





### **Crystalline Pu phases**





## $\delta$ -Pu: Most important phase

- δ-Pu has ideal metallurgical properties....
  - fcc slip system
  - Ductile
  - Can be stabilized to RT by alloying
- But poorly understood physical properties
  - Small range of pressure-temperature-alloy stability
  - Large elastic anisotropy
  - Negative thermal expansion
  - Large low-temperature heat capacity/susceptibility



#### $\delta$ -Pu: Intermediate valence

- Large volume expansion compared to  $\alpha$ -Pu
- Moderately heavy e<sup>-</sup> mass (65 mJ mol<sup>-1</sup>K<sup>-2</sup>)
- Large T-independent  $\chi$  (5e-4 emu/mol)
- Negative thermal expansion (Invar)
- Unusual thermal parameters (anharmonicity)
- Largest fcc shear anisotropy (c44/c\*~7)
- Sensitive to alloying





# Motivation for phonon work

- Phonons are normal modes of the lattice
- Phonons are a measure of the curvature of the interatomic potential
- Study of phonons can reveal anomalous bonding properties in δ-Pu





### **Experiment setup**

- Polycrystalline <sup>242</sup>Pu<sub>0.95</sub>Al<sub>0.05</sub>
  - 35 grams
  - Flat-disk geometry
  - Large-encapsulation
  - Sample cost \$1,000,000 !!





- Inelastic neutron scattering on Pharos (LANL)
- T=27, 65, 150, 300 K (Displex refrigerator)
- Resonant ultrasound, heat capacity



#### **Pharos spectrometer**









#### Inelastic x-ray scattering (ESRF)



Wong, et al, Nature (2003)



## **Phonon Density-of-States**



- Several features are apparent: T1,T2,L van Hove singularities
- Looks like typical FCC DOS
- Very low energy DOS given by sound velocity

```
McQueeney et al. PRL (2004)
```



## **Phonon softening**



#### Non-Debye behavior & anomalous softening





#### **Thermodynamic Gruneisen**

 $\gamma_{G} = \beta v B_{s} / C_{p} \approx 0.5$ 

#### **Mode Gruneisen**

 $\gamma_L = (\Delta E/E)/\beta \Delta T ~\approx 10$ 

 $\gamma_{\rm G} << \gamma_{\rm L}$  constant volume softening



#### **IXS – INS comparison**





#### Alloy dependence



 $[v_T(5\%)/v_T(2\%)]^3=1.15$ 

More stable alloys have stiffer phonons

## Pu magnetism ?? No evidence from neutron data



## Summary



- T[111] branch softens anomalously with increasing temperature seen in both INS and RUS
- No thermal expansion
- T-dependent potential due to intermediate valence
- T[111] martensitic instability towards bcc ε-Pu
- Alloying stabilizes phonon softening and also  $\delta$ -phase

## Acknowledgments



- Los Alamos National Laboratory
  - Angus Lawson, Albert Migliori, Jason Lashley, Mike Ramos, Barbara Martinez, Sven Vogel
- California Institute of Technology
  - Brent Fultz, Tim Kelley
- Institute for Transuranic Elements-Karlsruhe
  - Gerry Lander

#### • Funding: DOE/OS/BES & DOE/NNSA