Structural Refinement of Disordered Zeolites using the PDF Method

María Martínez, Raúl F. Lobo Department of Chemical Engineering University of Delaware

Inmaculada Peral Center for Neutron Research NIST

Thomas Proffen Los Alamos Neutron Science Center LANL

ACNS

June 6, 2004

Zeolites

- **Crystalline aluminosilicates** with a 4-connected **tetrahedral framework** structure enclosing **cavities** occupied by **large ions and water** molecules, both of which have considerable freedom of movement, permitting ion exchange and reversible dehydration (Smith, 1988)
- Most important class of solid acids
- Important Environmental Applications
 - Catalytic Converters (Diesel and Gasoline)
 - DeNOx Catalyst in Power Plants
 - VOC Removal
- Structure-property relation require detailed atomic information

Zeolite Mordenite

Why so much interest in Zeolites?

• Well-defined molecular structure

- Establish structure-property relationships
- Prediction of properties from structure
- BUT...
 - Disorder is an inescapable fact on zeolitic materials
 - Structure-Property relations are not always simple

Disorder in Zeolites

Framework Substitution

Other atoms besides Si

Extra-Framework Cations

- Partial occupancies, multiple cations

Adsorbed Species

- No translational symmetry
- Lower symmetry than framework

• Framework Disorder

- Static
- Dynamic

Opportunity for the PDF method

Previous Application of PDF Method to Zeolites

- Cs atoms in Siliceous Zeolites
 - Petkov, V. et al., PRL, 2002

 Coordination of CHCl₃ to Acid Sites

- Eckert, J. et al, JACS, 2002

Static Disorder

Two-Dimensional Translational Symmetry

- Disordered stacking of ordered layers
 - ABC-family of Zeolites

One-Dimensional Translational Symmetry

- Disordered arrangement of ordered 'tubes'
 - ZSM-48, SSZ-31 and others
- Zero-Dimensions
- Description must be Statistical

Building ZSM-48 Using 1D Units

ZSM-48: Experiment and Simulation

Objectives

- Determine the suitability of the PDF method to investigate the local structure in selected zeolite systems
- Use zeolite beta as a test case
- Zeolite beta:
 - 9 Si and 16 O atoms in asymmetric unit

Zeolite Beta

- Important alkylation catalyst
- 12-ring (~7.5 Å) 3-D Pore system
- Intergrowth of two polytypes
 Polytype A Polytype B

Polytype B

QuickTime™ and a Animation decompressor are needed to see this picture.

XRD of Beta

Periodic Building Unit of Beta

 Basic building element is the Periodic Building Unit PerBU

Views of the Periodic Building Unit (PerBU)

View down c axis View down a or b axis

 Both polytes A and B can be described from the same PerBU

²⁹Si NMR Spectra of Zeolite Beta

-110 -112 -114 -116 -118

Siliceous Beta (Reported)

Camblor et al. Chem.Comm. 1996

- Highly resolved spectra are obtained
- 9-T sites are distinguished
- PerBU of Polytypes A and B should be the same

Sample Preparation

- From B-Beta
 - B removed in acid media
 - T-vacancies are not healed
- From Zn-Beta
 - Highly hydrophobic sample
 - No defects (by NMR)
 - Preferred sample

²⁹Si NMR Spectra of Zeolite Beta

Camblor et al. Chem.Comm. 1996

Scattering Measurements

- Neutron PDF
 - GLAD, IPNS (good statistics 20 Å⁻¹)
 - NPD, LANL (good statistics up to 30 Å ⁻¹)
- X-ray PDF

– APS, λ=0.1573 Å

- Data treatment with ATLAS, PDFGetX and PDFGetN
- Refinement with PDFFit

Simulated PDF of polytypes of Zeolite Beta (as reported)

NPDF Beta: Energy Minimization

 After energy minimization (GULP) the PDF of both polytypes is nearly identical

 Comparison of experimental measurement and minimized structure match well

NPDF vs. XPDF

- NPDF was not sufficient
- XPDF is better but gives distorted tetrahedra
 - Need to use scattering length ratios at Q=4.4 Å⁻
 ¹f_{Si}/f_O=2.2 gives good fit of first two peaks

Progress of Refinement Polytype A

- Comparison of starting and final models after refinement
 - Initial R_w =33.7%
 - Final R_w =20.3%

Refinement of Polytype B

- Comparison of starting and final models after refinement
- Initial R_w=30% (XPDF)
- Final R_w=20.0 %
- Final R_w=20.8% (NPDF)

Refinement of the NPDF

Refined bond distances

		<si-o> (Å)</si-o>	σ (Å)	<o-si-o>(°)</o-si-o>	σ (°)
Polytype A	Original	1.616	0.0001	109.47	0.01
	Refined	1.609	0.0164	109.43	3.91
Polytype B	Original	1.616	0.0015	109.47	0.08
	Refined	1.609	0.0240	109.41	3.82

Conclusions

- The PDF method can be used for the refinement of the PerBUs of zeolite structures provided:
 - Sample is compositionally simple
 - Both Neutron and X-ray data sets are refined sequentially (or simultaneously)
 - Complexity of the PerBU is about 9-T atoms or less

Application of PDF to Dynamic Disorder

- Zeolite Chabazite
- Large negative thermal expansion coefficient
- Diffraction suggests Si-O-Si linkages are contracting
- Others suggest rocking of rigid tetraherda

Chabazite: RT Experiment and Model

PDF of Chabazite

- Data consistent with rocking of rigid tetrahedra in sample
- Mechanim of contraction still unknown

On going studies...

 Use Rigid-Unid-Modes (RUMs) to analyze the motion of tetrahedra in the zeolite

 Based on the RUMs, predict most stable configurations and determine if these are consistent with PDF data

Acknowledgments

• APS, IPS, LANL

- Sarvjit Shastri
- Chris Benmore
- Valeri Petkov
- Thomas Proffen
- Sven Vogel
- NSF for funding