Thermal Undulations of Bio-Membranes Studied by Neutron Spin-Echo

Dobrin P. Bossev,^{1,2} Nicholas Rosov²

¹University of Maryland College Park, MD 20742

²NIST, Center for Neutron Research Gaithersburg, MD 20899

> Internet: http://www.ncnr.nist.gov/

The cell membrane: thermal undulations

Essential Biological Functions

- Immune response
- Cell metabolism
- Neurotransmission
- Photosynthesis
- Cell adherence
- Cell growth and differentiation

Thermal undulations

- Immune response contact time
- Cell adherence undulation forces
- Cell mobility

Thermal undulations

Bending elasticity

Factors affecting the bending elasticity Temperature: Liquid to Crystalline transition

Factors affecting the bending elasticity Presence of cholesterol

R. R. Gabdoulline, J. Phys. Chem., 100:15942, 1996

Distribution of the polar group orientations (P - N axis)

Computer simulations & bending elasticity DPPC

Bending elasticity in the presence of cholesterol

DPPC + 10% cholesterol

Hofsäß, E. Lindahl, O. Edholm, Biophysical Journal, 84: 2192, 2003

Why is NSE ideal for this purpose?

Goal: Thermal undulations \Leftrightarrow **Bending elasticity**

Thermal undulations: (highly localized)

Videomicroscopy (large *T* & *L* scales)
NMR transverse relaxation times (wide *T* scale, relaxation model?)

NSE T scale ~ 0.01 - 100 ns L scale ~ 1 - 10 nm

NSE basics

- NSE is a quasielastic method: small deviation from the elastic scattering
- Energy transfer: *@* = 10⁻⁵ 10⁻² meV
- Goals: Micellar systems in solution
 - Undulations of lipid membranes and thin films
 - Intra-molecular diffusion of proteins and polymers
 - Dynamics of polymer melts and glasses
 - Other thermal fluctuations of the soft matter

• **Principle:** Neutron precession in magnetic field. First proposed by Mezei in 1972. Yields the intermediate scattering function in the time domain *I*(*Q*,*t*):

$$I(Q,t) = \int_{-\infty}^{\infty} S(Q,\omega) \cos(\omega t) d\omega$$

• Fourier time range: 0.01 to 200 ns

 $S(\omega)$

Ô

 $\hat{\mathbf{O}}$

NSE walkthrough

В

 ω_{I}

 $N = S \times B$

 $\omega_I = gB$

Neutrons posses spin and magnetic moment. Larmor frequency of precession in magnetic fields depends on **B** only $(g = 1.83 \times 10^8 \text{ s}^{-1}\text{T}^{-1})$

B = 0.5 T, L = 2 m $\varphi \sim 1 \times 10^6 rad$

Lipid bilayers in aqueous environment

Model system:

<u>Vesicles</u>

- Good scatterers
- Low concentration
- Mechanically stable

Ingredients

- 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), $t_{trans} = 24$ °C
- 1,2-Dimyristoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DMPG) DMPC
- Cholesterol
- NaCl, CaCl₂

Vesicles compositions & preparation

For all samples	- total lipids = 2 wt.%, DMPG/DMPC = 5 mol.%			
L	- DMPC and DMPG in D ₂ O			
LC33	- cholesterol/total lipids = 33 mol.%			
LC50	- cholesterol/total lipids = 50 mol.%			
LNaCl	- NaCl added to L at 50 mM			
LCaCl ₂	- CaCl ₂ added to L at 30 mM			
Method	- Extrusion through a filter (200 - 400 nm pores)			
Background	- D ₂ O			
Resolution	- carbopack (elastic scatterer)			

Dynamic Light Scattering (DLS)

 $R \approx 100 \text{ nm}$

The decay of I(Q,t) measured by NSE $I(Q,t) = \int_{-\infty}^{\infty} S(Q,\omega) \cos(\omega t) d\omega$

 $\frac{I(Q,t)}{I(Q,0)} = \exp\left[-\left(\Gamma t\right)^{\frac{2}{3}}\right]$

Zilman-Granek theory for thermal undulations

Dynamic structure factor

Membrane plaquette

 $S(\vec{Q},t) = \left\langle \sum_{i,j} e^{i\vec{Q}[\vec{R}_i(t) - \vec{R}_j(0)]} \right\rangle \qquad \vec{R}_i(t) = \vec{r}_i(t) + z_i(t)$ perpendicular

Helfrich bending Hamiltonian (small deformations, $\nabla h \ll 1$)

 $H = \frac{1}{2} \kappa \int d^2 r \left[\nabla^2 h(\vec{r}) \right]^2$

$$z_i(t) = h(\vec{r}_i(t), t)$$

amplitude

lateral

 $S(\vec{Q},t) = \frac{1}{a^4} \int d^2r \int d^2r' e^{i\vec{Q}_{\parallel}(\vec{r}-\vec{r}')} e^{-\frac{Q_z^2}{2} \langle [h(\vec{r},t)-h(\vec{r}',0)]^2 \rangle}$ static dynamic $\langle [h(\vec{r},t)-h(\vec{r}',0)]^2 \rangle = \Phi_0(\vec{r}-\vec{r}') + \Phi_0(\vec{r}-\vec{r}',t)$ $I(Q,t) = I(Q,0) \exp\left[-(\Gamma t)^{\frac{2}{3}}\right], \quad \Gamma = 0.025 \gamma_k \sqrt{\frac{k_{\rm B}T}{\kappa}} \frac{k_{\rm B}T}{\eta} Q^3$

A. G. Zilman, R. Granek, *Phys. Rev. Lett.*, 77:4788, **1996**A. G. Zilman, R. Granek, *Chemical Physics*, 284:195, **2002**

Relaxation rate of *I*(*Q*,*t*) as a function of *Q*

Bending elasticity

Sample	t/°C	$\eta_{ m D2O} imes 10^3$ /N s m ⁻²	$\kappa/k_{\rm B}T$ this work	$\kappa/k_{\rm B}T$ ref.	method
L	35	0.871	15.3 ± 0.31	13 – 31 (30 °C)	NMP
	35	0.871	13.2 ± 0.20	13 – 31 (30 °C)	VM
	45	0.714	12.9 ± 0.18	13 – 31 (40 °C)	
LC33	20	1.25	129.7 ± 5.3	150 (20 °C)	
	35	0.871	48.1 ± 1.3	96 - 98 (30 °C)	VM
	45	0.714	42.4 ± 0.91	73 (40 °C)	
LC50	35	0.871	94.9 ± 3.2	146 (30 °C)	VM
	45	0.714	96.7 ± 5.3	88 (40 °C)	

Temperature

Cholesterol

NaCl

CaCl₂

Summary

- NSE probes short time and length scales:
- Convenient for studies on thermal fluctuations of bio-membranes

Temperature:

- Liquid-to-crystalline transition increases κ by an order of magnitude
- At $T > T_c$ temperature effect is weak

Cholesterol:

- At $T < T_c$ cholesterol has negligible effect on κ
- At $T > T_c \kappa$ increases proportionally to the cholesterol concentration
- Cholesterol smears the sharp liquid-to-crystalline phase transition

Electrolytes:

- Presence of 50 mM NaCl increases κ by a factor of 1.5
- Presence of 30 mM CaCl₂ increases κ by a factor of 4 and shifts T_c to lower values

Suggestions for future studies:

- Other electrolytes, pH etc.
- Effect of other constituents in the lipid bilayers (e.g proteins, other lipids)

Acknowledgements: Dr. Dan Neumann @ NCNR, NIST

NSE at NCNR, Gaithersburg, MD

NSE at NCNR, is currently the only operating NSE in North America. NCNR is a user facility

http://www.ncnr.nist.gov