Mars Mission Could Accelerate Alzheimer’s in Astronauts

Artist's rendition of astronauts on Mars. (Image: NASA).

Artist’s rendition of astronauts on Mars. (NASA)

Traveling into deep space could accelerate the onset of Alzheimer’s disease, an incurable form of dementia, according to a new report.

The NASA-funded study assessed how cosmic radiation would impact the astronauts throughout their trip in deep space. The effect of cosmic radiation on the human body has been a  concern for the US space agency as it plans manned missions into deep space, such as one to a distant asteroid in 2021, and another to Mars in 2035.

Earth’s magnetic field usually keeps us, and those in low Earth orbit, safe from the perils of cosmic radiation. However, beyond Earth’s protective magnetic fields, space travelers are exposed to a constant barrage of radiation.

With adequate warning, such as in the case of solar flares, steps can be taken to protect astronauts from dangerous forms of radiation. However, other forms of cosmic radiation, which occur without warning, cannot be blocked as effectively.

“Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion,  a professor in the University of Rochester Medical Center (URMC) and senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

Artist's illustration of the shape and function of the Earth's magnetic field that protects us from harmful cosmic radiation (Image: NASA)

Artist’s illustration of the shape and function of the Earth’s magnetic field that protects us from harmful cosmic radiation (NASA)

In the past,  scientists studied the impact of cosmic radiation on a living being’s cardiovascular and musculoskeletal systems, as well as potential risks of contracting various forms of cancer.But the new study,  published in  PLOS ONE, examined the possible effects of space radiation on neurodegeneration, a gradual loss of brain structure or function.

For this study, researchers wanted to find out what role, if any, cosmic radiation plays in accelerating the biological and cognitive indicators of Alzheimer’s disease, especially in those  predisposed to developing the illness.

They specifically wanted to learn more about the impact of radiation from high-mass, high-charged (HZE) particles, which come in many forms and travel through space with the force of exploding stars.

Instead of examining hydrogen protons, which are produced by solar flares, the researchers decided to study iron particles. They say HZE particles, such as iron, when combined with their high rate of speed, are able to go through solid objects, like a spacecraft’s walls and protective shielding.

“Because iron particles pack a bigger wallop, it is extremely difficult, from an engineering perspective, to effectively shield against them,” said O’Banion. “One would have to essentially wrap a spacecraft in a six-foot block of lead or concrete.”

Brain affected by Alzheimer's Disease (left) vs Normal Brain (right) - (Image: US Dept of Veterans Affairs)

Brain affected by Alzheimer’s Disease (left) vs normal brain (right) – (US Dept of Veterans Affairs)

The researchers exposed mice to various doses of radiation, including levels that would be similar to what astronauts would experience during deep space voyages.To evaluate the cognitive and biological impact of the radiation exposure, the mice were then put through a series of experiments in which they had to recall objects or specific locations. Researchers observed that the radiation- exposed mice were much more likely to fail these tests, suggesting neurological impairment, earlier than the symptoms would typically appear.

Along with symptoms of neurological damage, the researchers found that the mice’s brains also showed signs of vascular changes and had a greater than usual buildup of beta amyloid, the protein “plaque” that gathers in the brain and is one of the characteristics of Alzheimer’s Disease.

“These findings clearly suggest that exposure to radiation in space has the potential to accelerate the development of Alzheimer’s disease,” said O’Banion. “This is yet another factor that NASA, which is clearly concerned about the health risks to its astronauts, will need to take into account as it plans future missions.”

Science Images of the Week

This NASA image shows the work site of the Curiosity rover on Mars. The first test of Martian soil by Curiosity shows no definitive evidence that the red planet has the chemical ingredients to support life. (NASA)

NASA’s artist rendering of Voyager 1 at the edge of the solar system. The long-running spacecraft has entered the fringes of the solar system which is thought to be the last layer before the beginning of interstellar space, or the space between stars. Mission chief scientist Ed Stone says Voyager 1 will be the first manmade object to leave the solar system. (AP Photo/NASA)

A 68-mile-diameter crater, large indentation at center, in the north polar region of Mercury which has been shown to harbor water ice, thanks to measurements by the Messenger spacecraft. (AP Photo/NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)

Joe Wasilewski works with a captured Nile crocodile, caught near his Homestead, Fla., home. State wildlife officials have given their agents a rare order to shoot to kill in the hunt for a young and potentially dangerous Nile crocodile loose near Miami. “They get big. They’re vicious. The animals are just more aggressive and they learn that humans are easy targets,” says Wasilewski, a reptile expert and veteran wrangler. (AP)

The Plosky Tolbachnik volcano erupts in Russia’’s Far Eastern Kamchatka Peninsula. The volcano, located on the peninsula’s eastern coast, is erupting for the first time in 36 years. (AP)

In an undated photo, Glenn Storrs, left, helps haul a dinosaur fossil on a contraption made from two hospital gurneys and a motorcycle wheel, dubbed the dino wheel, near Pryor Mountains in Montana. After 10 years of painstakingly unearthing scattered dinosaur fossils at a site along the base of the Pryor Mountains, Storrs believes he has finally figured out how the bones arrived at their final resting place 145 million to 150 million years ago. His theory is that a group of young dinosaurs, probably migrating with adults, died of thirst while searching for a wetter environment.
   (AP Photo/Courtesy of Cincinnati Museum Center via The Billings Gazette)

A shadow self-portrait taken by NASA’’s Opportunity rover on the Martian surface. The solar-powered spacecraft has been exploring a huge crater in the Martian southern hemisphere and has detected what appear to be clay minerals. (AP Photo NASA)

Multiple dust plumes are seen blowing off the coasts of Iran and Pakistan in this NASA handout image taken Nov. 29, 2012. These images document the movement of the plumes southward over the Arabian Sea. (REUTER/NASA/Jeff Schmaltz)

The moon Tethys (in the upper left of the image) is seen next to Saturn in this NASA image taken from the Cassini spacecraft on Aug. 19, 2012 and released Dec. 3, 2012. Saturn’s rings appear to dwarf Tethys (660 miles, or 1,062 kilometers across) although scientists believe the moon to be many times more massive than the entire ring system combined. The view was acquired at a distance of approximately 1.5 million miles (2.4 million kilometers) from Saturn. (REUTERS/NASA)

n this photo made Thursday, Nov. 29, 2012, The Plosky Tolbachnik volcano erupts in Russia on Thursday, Nov. 29, 2012, for the first time in 36 years. (AP)

Science Images of the Week

After spending 4 months aboard the International Space Station, three Expedition 33 crewmembers recently returned to Earth in their Soyuz spacecraft. The spacecraft which made a rare night landing touched down in a remote area of Kazakhstan. (Photo: NASA/Bill Ingalls)

After four months aboard the International Space Station, three Expedition 33 crewmembers returned to Earth in their Soyuz spacecraft, making a rare night landing in a remote area of Kazakhstan. (NASA)

This is a view of Antarctica’s Sheldon Glacier with Mount Barre in the background.  The photo was taken by scientists participating in a new NASA/British Antarctica Survey study that is trying to find out why Antarctic sea ice cover has increased under the effects of climate change over the past two decades. (Photo: British Antarctic Survey)

Antarctica’s Sheldon Glacier with Mount Barre in the background. This photo was taken by scientists participating in a new NASA/British Antarctica Survey studying the effects of climate change on Antarctic sea ice cover. (British Antarctic Survey)

Scientists will soon conduct experiments to hunt for one of nature's most elusive particles, "dark matter."  An important tool to be used in the experiment is the Large Underground Xenon (LUX) detector.  Here’s a top-down view of the copper photomultiplier tube mounting structure, which is a key component of the detector.  (Photo: Lawrence Livermore National Laboratory)

The Large Underground Xenon (LUX) detector is an important tool in scientists’ search for dark matter, one of nature’s most elusive particles.  This is a top-down view of the copper photomultiplier tube mounting structure, a key component of the detector. (Lawrence Livermore National Laboratory)

An adult female walrus sits on an ice floe and poses for photos just off the Eastern Chukchi Sea in Alaska.  (Photo: S.A. Sonsthagen/USGS)

An adult female walrus sits on an ice floe just off the Eastern Chukchi Sea in Alaska. (S.A. Sonsthagen/USGS)

NASA's Solar Dynamic Observatory (SDO) was snapping pictures of the Sun recently when it erupted with two prominence eruptions, one after the other over a four-hour period.  Fortunately the expanding particle clouds heading into space weren’t directed at Earth.  (Photo: NASA)

The Sun recently experienced two prominent eruptions, which occurred one after the other over a four-hour period. Fortunately, the expanding particle clouds shooting into space weren’t directed at Earth. (NASA)

This is a view of the country side in Binghamton, NY as seen from inside a US National Weather Service radar radome (which protects radar components from the elements).  The weather radar was recently taken offline so that repairs could be made.  (Photo: NOAA/NWS)

A view of the countryside in Binghamton, NY as seen from inside a US National Weather Service radar radome (which protects radar components from the elements). The weather radar was recently taken offline so that repairs could be made. (NOAA/NWS)

This is Titan, the world’s most powerful and fastest supercomputer located at the Oakridge National Laboratory in Tennessee.  Titan has computational capability is on par with each of the world’s 7 billion people being able to carry out 3 million calculations per second.   (Photo: Oakridge National Laboratory)

Titan, the world’s most powerful and fastest supercomputer, is located at the Oakridge National Laboratory in Tennessee. Titan’s computational capability is on par with each of the world’s 7 billion people being able to carry out 3 million calculations per second. (Oakridge National Laboratory)

A group of galaxies glow like fireflies on a dark night in this image snapped recently by the Hubble Space Telescope.  (Image: ESA/NASA/Hubble)

A group of galaxies glows like fireflies on a dark night in this image snapped recently by the Hubble Space Telescope. (NASA)

A cluster of lightning over the US National Severe Storms Lab Probe #2 minivan that measures weather statistics as it travels through storms.  (Photo: NOAA)

A cluster of lightning over a US National Severe Storms Lab Probe minivan which measures weather statistics as it travels through storms. (NOAA)

Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory are working to more effectively remove a rare earth element (group of closely related metallic elements) called neodymium from the mix of other materials in a magnet.  Here rare-earth magnet scraps are melted in a furnace with magnesium. (Photo: DOE/Ames Laboratory)

Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory are working to more effectively remove a rare earth element (group of closely related metallic elements) called neodymium from the mix of other materials in a magnet. Here rare-earth magnet scraps are melted in a furnace with magnesium. (DOE/Ames Laboratory)

Science Images of the Week

NASA's Swift satellite recently detected a growing flow of high-energy X-rays from somewhere near the center of our galaxy. The outburst, pictured in this illustration was produced by a rare X-ray nova and announced the presence of a previously unknown stellar-mass black hole. (Image: NASA)

NASA’s Swift satellite recently detected a growing flow of high-energy X-rays from somewhere near the center of our galaxy. The outburst, pictured in this illustration, was produced by a rare X-ray nova and announced the presence of a previously unknown stellar-mass black hole. (Image: NASA)

A school of Kokanee Salmon returns to the streams from which they were hatched. There they select a mate, spawn and die.  As the salmon make their annual fall migration both sexes turn from their usual silver/blue color to a brilliant red. (Photo: United States Forest Service)

A school of Kokanee Salmon returns to the streams from which they were hatched. There, they select a mate, spawn and die. As the salmon make their annual fall migration, both sexes turn from their usual silver/blue color to a brilliant red. (Photo: United States Forest Service)

This image from the right Mast Camera (Mastcam) of NASA's Mars rover Curiosity shows a scoop full of sand and dust lifted by the rover's first use of the scoop on its robotic arm.  (Photo: NASA)

This image from the right Mast Camera (Mastcam) of NASA’s Mars rover Curiosity shows sand and dust lifted by the rover’s first use of the scoop on its robotic arm. (Photo: NASA)

A 700kg crocodile called Rex calmly waits just beneath the water's surface for some food after coming out of a three-month hibernation at the Wild Life Sydney zoo in Sydney, Australia. (Photo: AP)

A 700kg crocodile called Rex calmly waits just beneath the water’s surface for some food after coming out of a three-month hibernation at the Wild Life Sydney Zoo in Sydney, Australia. (Photo: AP)

No, these aren't miniature UFOs but are tiny cube shaped satellites that were released into space from the airlock of the International Space Station's Kibo laboratory. One of these little CubeSats was developed by a group of student interns from San Jose State University and will be used for a communications experiment (Photo: NASA)

No, these aren’t miniature UFOs. The tiny cube-shaped satellites were released into space from the International Space Station’s Kibo laboratory. One of these little CubeSats was developed by student interns at San Jose State University and will be used for a communications experiment (Photo: NASA)

The interior of the neutrino detector at Daya Bay in the People's Republic of China, where a multinational team of researchers from China, the United States, Taiwan, and the Czech Republic are studying neutrino oscillations. Neutrinos are electrically neutral elementary subatomic particles that can travel through great distances of matter without being affected by it.  (Photo: Lawrence Berkeley National Laboratory)

The interior of the neutrino detector at Daya Bay in the People’s Republic of China, where a multi-national team of researchers from China, the United States, Taiwan, and the Czech Republic are studying neutrino oscillations. Neutrinos are electrically neutral elementary subatomic particles that can travel through great distances of matter without being affected by it. (Photo: Lawrence Berkeley National Laboratory)

In a combined image from NASA's Spitzer Space Telescope, the Galaxy Evolution Explorer (GALEX) and the Wide-field Infrared Survey Explorer (WISE), this is the Helix Nebula, which has also been called the “Eye of God.”  At the nebula's heart is a dying star.  In its death throes, the star's outer layers unravel into space and is set aglow by powerful ultraviolet radiation that's being pumped out by it's hot stellar core. (Photo: NASA)

This combined image from NASA is of the Helix Nebula, which has also been called the “Eye of God.” At the nebula’s heart is a dying star. In its death throes, the star’s outer layers unravel into space and are set aglow by powerful ultraviolet radiation pumped out by its hot stellar core. (Photo: NASA)

A monarch butterfly stops for a rest during it's fall migration. The butterfly can journey up to nearly 5,000 km to its winter home in Mexico or Southern California. In the spring they make another epic trip as they return to the north. (Photo: USDA)

A monarch butterfly stops for a rest during its fall migration. The butterfly can journey up to nearly 5,000 km to its winter home in Mexico or Southern California. In the spring, they make another epic trip as they return to areas up north. (Photo: USDA)

This time exposure photo shows the Falcon 9 SpaceX rocket lifting off from the Cape Canaveral Air Force Station in Cape Canaveral, Florida. The rocket with it's Dragon space capsule payload just made its first commercial delivery of supplies to the International Space Station. (Photo: AP)

This time-exposure photo shows the Falcon 9 SpaceX rocket lifting off from the Cape Canaveral Air Force Station in Cape Canaveral, Florida. The rocket, with its Dragon space capsule payload, just made its first commercial delivery of supplies to the International Space Station. (Photo: AP)

Curiosity Makes Its Way to First Mars Experiment

This mosaic from the Mast Camera on NASA's Curiosity rover shows the view looking toward its first science destination, the "Glenelg" area, where three different types of Martian terrain come together. (Image: NASA/JPL-Caltech/MSSS)

This mosaic from the Mast Camera on NASA’s Curiosity rover shows the view looking toward its first science destination, the Glenelg area, where three different types of Martian terrain come together. (Image: NASA)

The Mars rover Curiosity is about to undertake its first major scientific experiment on the Red Planet.Before Curiosity heads off to its primary destination, the foothills of Mount Sharp, scientists want to learn more about the terrain surrounding the rover’s landing site.

The Mars mission team members are  fascinated with the geology of the area, according to Rob Manning, the Mars Science Laboratory’s (MSL) chief engineer.  They’ve noticed  the surface is covered with a type of gravelly material, rocks called cobbles and various collections of compressed soil.

“It may very well be that we’re on a place that has been affected by water in the past, and that’s very exciting because that’s what we had hoped for,”  Manning said.

Photo of the Martian surface that includes a map of the route driven by NASA's Mars rover Curiosity from it's landing site on the first day of its trip to the "Glenelg" area through the 43rd Martian day, or sol, of the rover's mission on Mars (Sept. 19, 2012). The image used for the map is from an observation of the landing site by the High Resolution Imaging Science Experiment (HiRISE) instrument on NASA's Mars Reconnaissance Orbiter. (Image: NASA/JPL-Caltech/Univ. of Arizona)

Photo of the Martian surface, including a map of the route driven by NASA’s Mars rover on its trip to the Glenelg area on the 43rd Martian day of Curiosity’s mission on Mars – Sept. 19, 2012.  (Image: NASA)

Since landing seven weeks ago, Curiosity (as of 9/19/12) has traveled about 91 meters, approximately the length of an American football field. The rover is now traveling in a different direction toward a location called Glenelg, which lies about 400 meters east-southeast of Curiosity’s landing site.

One  type of terrain  scientists want to learn more about is a kind of bedrock which could be suitable for eventual drilling by Curiosity.

The next is an area  marked by many small craters and scientists believe it might represent an older or harder Martian surface.

The third terrain is similar to  the type where the rover landed.  It’s of particular interest to team members because they’d like to determine if it contains rocks with the same kind of texture as those found in an area close to the landing site where blasts from the descent stage rocket engines scoured away some of the surface.

On its way to Glenelg this week, the rover came across an unusual pyramid-shaped rock. The rover team is planning to touch this mystery rock with a spectrometer to determine its basic composition. They’ll also use an arm-mounted camera to take close-up photographs.  This encounter will likely be the first time  the rover  uses its robotic arm to touch a Martian rock.

Curiosity will then continue on its voyage to Glenelg, where the team will choose another rock for the rover’s first analysis of powder drilled from interiors of rocks.

On it's trip to the "Glenelg" area the Curiosity recently came accross this interesting pyramid shaped rock that's about 25 centimeters tall and 40 centimeters wide. The rover team has assessed it as a suitable target for the first use of Curiosity's contact instruments on a rock. (Photo:  NASA/JPL-Caltech)

On it’s trip to Glenelg, Curiosity came across this pyramid-shaped rock, which NASA says will be a suitable target for the first use of the rover’s contact instruments. (Photo: NASA)

Once the rover’s side trip to Glenelg concludes, Curiosity will head toward its primary destination, Mount Sharp, which may take a year or two to reach.

Manning tells us everything on the rover has worked perfectly so far except for one of Curiosity’s wind sensors, which was damaged when Martian pebbles hit it.  Since the rover has other wind sensors, the mission should not be impacted.

In fact, the mission is going so well the rover team is amazed everything is working so much better on Mars than it did while undergoing testing here on Earth.

Manning says the rover experienced problem after problem during testing. After seeing the rover perform so well on the Red Planet, the MSL team has concluded Curiosity would rather be on Mars than on its home planet.

And it’s a good thing because Curiosity’s visit there could be extended.

The rover’s older sibling,  Opportunity, has continued to roam and examine the planet, long after the planned end of its mission. Manning expects Curiosity will do likewise.

There are several factors which justify that optimism. The rover’s power source, according to Manning, is producing more energy than expected. The team also found the Martian climate is better than was anticipated so the unit doesn’t need as much heating as was first thought.  Also, with NASA’s orbiting spacecraft flying overhead, the rover has been able to save a great deal of energy while sending back information, which could allow Curiosity to operate longer.

Curiosity's primary destination, the base of Mount Sharp. (Photo: ASA/JPL-Caltech/MSSS)

Curiosity’s primary destination, the base of Mount Sharp. (Photo: NASA)

If  Curiosity’s time on Mars is extended, Manning expects the rover to continue its voyage up Mount Sharp, which is made up of various layers of material, with the oldest at the bottom of the mountain and the youngest at its peak.

At each of these layers, Manning says that, there will be an opportunity to look back in time into the Martian geological history.  So as long as the rover keeps working and NASA extends its mission, “we will continue going up and explore and explore and there is a chapter, chapter and chapter of books telling us about Mars just ahead of us.”

This weekend on the radio edition of Science World, Rob Manning joins us to provide an update with the latest on Curiosity’s mission.

Check out the right column for scheduled air-times or listen now to the interview below.

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Curiosity Beams Back Stunning Mars Images, Human Voice

This photo of the base of Mount Sharp, represents a chapter of the layered geological history of Mars. (Photo: ASA/JPL-Caltech/MSSS)

This photo of the base of Mount Sharp shows the layered geology of Mars. (NASA)

NASA’s Curiosity rover has beamed back spectacular HD photos of the Martian surface.

Captured by a 100-millimeter telephoto lens and 34-milllimeter wide angle lens, the images show the dark dunes,  layered rock and canyons of Mount Sharp, a mountain inside Gale Crater, where the rover landed.

NASA also released photos of Curiosity at work as it prepares to explore the Red Planet.

In another feat, Curiosity received and beamed back the first human voice transmission to travel from Earth to another planet and back.

The voice was that of NASA Administrator, Charles Bolden. The message was radioed to Mars, where it was received and then retransmitted back to Earth by Curiosity. Here on Earth, the return signal from Mars was picked up by NASA’s Deep Space Network (DSN).

Photo was taken to test the 100-mm Mast Camera on NASA's Curiosity rover. Up close in the image is the gravelly area around the rover's landing site in the distance is Mt. Sharp, Curiosity's eventual destination. (Photo: NASA/JPL-Caltech/MSSS)

Up close is the gravelly area around the rover’s landing site while in the distance is Mt. Sharp, Curiosity’s eventual destination. (NASA)

This image taken by the Mast Camera (MastCam) on NASA's Curiosity rover highlights the interesting geology of Mount Sharp, a mountain inside Gale Crater, where the rover landed. (Photo: NASA/JPL-Caltech/MSSS)

This image highlights the varied geology of Mount Sharp, a mountain inside Gale Crater, where the rover landed. (NASA)

The two donut-shaped tracks make an infinity symbol, and mark the first two drives (08/22/12 & 08/27/12) of NASA's Curiosity rover. The landing site is at the far right. (Photo: NASA/JPL-Caltech)

The two donut-shaped tracks make an infinity symbol and mark Curiosity’s first two drives. The landing site is at the far right. (NASA)

In his message, Bolden noted the difficulties of putting a rover on Mars and congratulated NASA employees and all  involved with the project on the successful landing.  He also commented on how curiosity is what drives humans to explore.

“The knowledge we hope to gain from our observation and analysis of Gale Crater will tell us much about the possibility of life on Mars as well as the past and future possibilities for our own planet. Curiosity will bring benefits to Earth and inspire a new generation of scientists and explorers, as it prepares the way for a human mission in the not too distant future,” Bolden said in his recorded message.

The rover is also busy stretching its legs, recently taking a couple of test drives near its landing spot.

Curiosity is already sending more data from the Martian surface than all of NASA’s earlier rovers combined, the space agency said.

Members of NASA’s Mars Science Laboratory mission listen to a voice message from NASA Administrator Charles Bolden in the mission support area at the Jet Propulsion Laboratory

Neil Armstrong, First Man on the Moon, Dead at 82

Official NASA Apollo 11 portrait of Astronaut Neil A. Armstrong, commander of the Lunar Landing mission. (Photo: NASA)

Official NASA Apollo 11 portrait of Astronaut Neil A. Armstrong, commander of the Lunar Landing mission. (Photo: NASA)

Neil Armstrong, the first man to step onto the surface of the moon, died Saturday  from heart-surgery related complications. He was 82.

It was more than 40 years ago that Armstrong uttered the now-iconic words, “That’s one small step for man, one giant leap for mankind,” forever sealing his place in history.

He spoke the words just before stepping onto the moon, effectively ending the space race between the United States and the Soviet Union.

Neil Alden Armstrong was born on Aug. 5, 1930 in Wapakoneta, Ohio. His love of flying began at age 2 when his father took him to the Cleveland Air Races.

Throughout his childhood, while his family moved from one small Ohio town to another, Armstrong’s interest in flying grew. He read countless fiction and non-fiction books on aviation.

After high school, Armstrong entered a special US Navy program that allowed him to complete his first year and a half at Purdue University before being called up for naval service where he flew a number of missions during the Korean War.

Test pilot Neil Armstrong with the rocket-powered X-15-3 aircraft (Photo: NASA)

Test pilot Neil Armstrong with the rocket-powered X-15-3 aircraft (Photo: NASA)

Following his service in the US Navy, Armstrong earned a bachelor’s degree in aeronautical engineering and became an experimental research test pilot, flying a variety of airplanes and jets, including the famous X-15 rocket powered aircraft.

In June of 1962, Armstrong learned NASA was looking for its second group of astronauts.  He submitted his application, but it arrived about a week after the applications were due.  Fortunately for Armstrong, an old friend working at NASA’s Manned Spacecraft center saw his late-arriving application and slipped it into the group of applications being considered.

On Sept. 13, 1962,  Armstrong was invited to join NASA’s Astronaut Corps as part of   “the New Nine,” the next group of US astronauts following the original Mercury 7 astronauts.

Armstrong first flew into space on March 16, 1966, as command pilot for the two-man Gemini 8 mission. At the time, it was the most complex manned space flight attempted by NASA.  Gemini 8 was the first US space mission to rendezvous and dock with another spacecraft, an unmanned vehicle called the Agena.  Armstrong later served as a back-up command pilot for the Gemini 11 mission.

July 16, 1969 - Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Kennedy Space Center's Launch Complex 39A where their Apollo 11 spacecraft awaited them.  (Photo: NASA)

July 16, 1969 – Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Kennedy Space Center’s Launch Complex 39A where their Apollo 11 spacecraft awaited them. (Photo: NASA)

In April 1967, Armstrong was selected for  NASA’s Apollo program, placing him  among a group of astronauts bound for the moon.

After serving as back-up commander for Apollo 8, the mission that first orbited the moon in 1968, Armstrong was teamed up with fellow astronauts, Edwin “Buzz” Aldrin and Michael Collins for the Apollo 11 mission, which put  the first man on the moon.

On July 16, 1969, Armstrong, – along with crewmates Aldrin and Collins – climbed into the space capsule, nicknamed Columbia. Powered by the monstrous Saturn V launch vehicle, Apollo 11 lifted off from the Kennedy Space Center for its 384,000 kilometer trip to the moon.

Four days later, on July 20, 1969, Armstrong and Aldrin took the lunar module known as the “Eagle,” for a trip from the orbiting command module to the surface of the moon.

About seven hours after the Eagle landed at the Sea of Tranquility, Armstrong  climbed down the Eagle’s ladder and onto the surface of the moon.

The world celebrated as they watched Armstrong and Aldrin do what most thought was impossible – walk on the moon.

Neil Armstrong on the lunar surface, taken by Buzz Aldrin, July 1969 (Photo: NASA)

Neil Armstrong on the lunar surface, taken by Buzz Aldrin, July 1969 (Photo: NASA)

After spending about 21 hours on the lunar surface, the Eagle left the moon to rendezvous with the command module for the trip back to Earth.  Apollo 11’s historic mission ended with a  splash into the North Pacific Ocean on July 24, 1969.

Shortly after the Apollo 11 flight, Armstrong announced  he would not return to space.

About a year after his history-making moment, Armstrong earned a master’s degree in aerospace engineering from the University of Southern California. He resigned from NASA in 1971.

After NASA, Armstrong taught  at the University of Cincinnati (Ohio), served on the board of directors of several major corporations and was chairman of the EDO Corporation, which designed and manufactured products  used in defense, intelligence, and commercial industries.  He retired from EDO in 2002.

Armstrong was selected to serve on panels investigating both the Apollo 13 accident in 1970 and, later, the 1986 space shuttle Challenger disaster.

A few weeks ago, Armstrong underwent surgery to relieve blocked coronary arteries. He died Saturday from complications related to the procedure surgery.

Buzz Aldrin, who piloted the Apollo 11 lunar module,  said of Armstrong’s passing, “I am very saddened to learn of the passing of Neil Armstrong today. Neil and I trained together as technical partners but were also good friends who will always be connected through our participation in the Apollo 11 mission. Whenever I look at the moon it reminds me of the moment over four decades ago when I realized that even though we were farther away from Earth than two humans had ever been, we were not alone.”

Video montage produced by NASA in 2009 for the 40th anniversary of the Apollo 11 trip to the moon and back.

A statement released by Armstrong’s family after his death, summed it up this way,  ”[he was a] reluctant American hero [and had] served his nation proudly, as a navy fighter pilot, test pilot, and astronaut… While we mourn the loss of a very good man, we also celebrate his remarkable life and hope that it serves as an example to young people around the world to work hard to make their dreams come true, to be willing to explore and push the limits, and to selflessly serve a cause greater than themselves.”

Science Photos of the Week

Photo of Aurora Australis or the Southern Lights, taken from the International Space Station, flying an altitude of approximately 240 miles. The ISS's Canadarm2 robot arm is in the foreground. (Photo: NASA)

Photo of Aurora Australis, or the Southern Lights, taken from the International Space Station flying at an altitude of approximately 240 miles. The ISS’s Canadarm2 robot arm is in the foreground. (Photo: NASA)

Chemists from New York University (NYU) and St. Petersburg State University in Russia have discovered a wholly new phenomenon for crystal growth--a crystal that continually changes its shape as it grows. (Photo: John Freudenthal and Alexander Shtukenberg, New York University)

Chemists from New York University and St. Petersburg State University in Russia, have discovered a wholly new phenomenon for crystal growth – a crystal that continually changes its shape as it grows. (Photo: John Freudenthal and Alexander Shtukenberg, New York University)

NASA’s Chandra X-ray Observatory discovered an extraordinary outburst by a black hole in the spiral galaxy M83, located about 15 million light years from Earth. (Photo: NASA/CXC/Curtin University/R.Soria et al.)

A jeweled beetle Chrysina gloriosa. The enlarged image in the background shows the insect's light-reflecting structures. (Photo: Georgia Tech; photo by Gary Meek)

A jeweled beetle Chrysina gloriosa. The enlarged image in the background shows the insect’s light-reflecting structures. (Photo: Georgia Tech; photo by Gary Meek)

A cloud forms as this F/A-18 Hornet aircraft speeds up to supersonic speed. Aircraft flying this fast push air up to the very limits of its speed, forming what's called a bow shock in front of them. (Photo: Ensign John Gay, USS Constellation, U.S. Navy)

A cloud forms as this F/A-18 Hornet aircraft speeds up to supersonic speed. Aircraft flying this fast push air up to the very limits of its speed, forming what’s called a bow shock in front of them. (Photo: Ensign John Gay, USS Constellation, U.S. Navy)

NOAA divers cut a Hawaiian green sea turtle free from a derelict fishing net during a recent mission to collect marine debris in the Northwestern Hawaiian Islands. (Photo: NOAA)

NOAA divers cut a Hawaiian green sea turtle free from a fishing net during a recent mission to collect marine debris in the Northwestern Hawaiian Islands. (Photo: NOAA)

This image combines two sets of observations of the sun on from the Solar Dynamics Observatory (SD) on July 12, 2012 to give an impression of what the sun looked like shortly before it unleashed an X-class flare (Photo: NASA)

This image combines two sets of observations of the sun from the Solar Dynamics Observatory (SDO) on July 12, 2012 to give an impression of what the sun looked like shortly before it unleashed an X-class flare (Photo: NASA)

A 3-D nanostructure grown by controlled nucleation of silicon carbide nanowires on Gallium catalyst particles as seen by a scanning electron microscope. . (Photo: Ghim Wei Ho and Prof. Mark Welland, Nanostructure Center, University of Cambridge)

A 3-D nanostructure (between molecular and microscopic in size) as seen through a scanning electron microscope. (Photo: Ghim Wei Ho and Prof. Mark Welland, Nanostructure Center, University of Cambridge)

The Soyuz TMA-05M spacecraft is rolled out by train on its way to the launch pad at the Baikonur Cosmodrome in Kazakhstan July 12, 2012. This spacecraft, launched July 15 took astronauts to the International Space Station (Photo:NASA/Carla Cioffi)

The Soyuz TMA-05M spacecraft is rolled out by train on its way to the launch pad at the Baikonur Cosmodrome in Kazakhstan July 12, 2012. This spacecraft, launched July 15, took astronauts to the International Space Station (Photo: NASA/Carla Cioffi)

This image snapped by the NASA/ESA Hubble Space Telescope reveals an exquisitely detailed view of part of the disc of the spiral galaxy NGC 4565, nicknamed the Needle Galaxy, because, when seen in full, it appears as a very narrow streak of light on the sky. (Photo: ESA/NASA)

This image, snapped by the NASA/ESA Hubble Space Telescope, reveals a detailed view of part of the disc of the spiral galaxy NGC 4565, nicknamed the Needle Galaxy, because, when seen in full, it looks like a very narrow streak of light on the sky. (Photo: ESA/NASA)

 

NASA Checks Out Potentially Hazardous Asteroids

New results from NASA's NEOWISE survey find that more potentially hazardous asteroids, or PHAs, are closely aligned with the plane of our solar system than previous models suggested. (Image: NASA/JPL-Caltech)

NASA finds there are more potentially hazardous asteroids (PHA)s, closely aligned with the plane of our solar system than previous models suggested. (Image: NASA/JPL-Caltech)

First, the good news. There are fewer asteroids near Earth than previously estimated.  Now the bad news. A new NASA survey also finds there may be more than twice as many aligned with Earth’s orbit than thought, which could increase the odds of an asteroid coming close enough to us to cause concern.

The findings from NASA/JPL’s Near Earth Object Wide-field Infrared Explorer (NEOWISE) project also reveal new information about the origins and possible dangers these space objects might pose.

Potentially hazardous asteroids, or PHA’s, are a subset of a larger group of near-Earth asteroids,  which come within eight million kilometers of us and are big enough to pass through Earth’s atmosphere, causing a great amount of damage.

To get a count on how many of these possible troublemakers are out there, NASA used one of its space telescopes to make an assessment of our solar system’s population of PHA’s.

WISE, an unmanned satellite carrying an infrared heat-sensitive telescope, was launched in December 2009 and spent a little over a year imaging the entire sky to provide data on asteroids, the coolest and dimmest stars, and the most radiant galaxies.

Approximately 4,700 PHAs, give or take about 1,500, with diameters larger than 100 meters, were found, according to NEOWISE principal investigator Amy Mainzer.

Most of the asteroids in our solar system never get close to Earth.  They’re found in what’s called the Asteroid Belt, which is between the orbits of Mars and Jupiter.

Scientists think these asteroids may have been fragments that were trying to come together to form a planet when the solar system was forming.  However,  the overwhelming gravitational influence of Jupiter was so strong, it kept the planet from forming.

But, occasionally, if there is an interaction with one of the giant planets, some of the asteroids may be forced to wander away from the main belt and into near-Earth space – causing concern for those of here on terra firma.

To make their tally, Mainzer along with her colleagues at JPL examined approximately 107 PHA’s with WISE telescope data, providing them with a representative sample of the total population of these potentially dangerous objects.

From that sample, Mainzer’s team was able to calculate the total number of PHA’s in the solar system.

This diagram illustrates the differences between orbits of a typical near-Earth asteroid (blue) and a potentially hazardous asteroid, or PHA (orange). (Image: NASA/JPL-Caltech)

This diagram illustrates the differences between orbits of a typical near-Earth asteroid (blue) and a potentially hazardous asteroid (PHA) (orange). (Image: NASA/JPL-Caltech)

Of course, the big question remains how likely is it that one of these potentially-hazardous asteroids actually could strike Earth.   Mainzer, looking back at Earth’s history, points out that major asteroid strikes very rarely happen.  Scientists estimate that such a major hit happens every 100 million years or so.  The last mammoth asteroid collided with Earth about 65 million years ago, causing, scientists think, the extinction of most life on our planet, including the dinosaurs.

Mainzer says astronomers have already discovered most of the significant asteroids out there.  However, she warns, there are many smaller asteroids, which haven’t been discovered yet.  The NEOWISE study indicates that only between 20 and 30 percent of these have been discovered so far.

To keep us safer from asteroid impacts, Mainzer says the most important thing that we can do is actually go look for them.  “Because, if you don’t know where they are, you have no idea how to really deal with any risk,” she says.

Mainzer and her colleagues are currently working on a proposal to build and carry out an advanced survey mission.  Called the Near Earth Object Camera (NEOCam), this proposed mission would locate many more asteroids to provide a more accurate picture of the total asteroid population.

Dr. Amy Mainzer joins us on this week’s radio edition of Science World.  Check out the right column for scheduled air-times or listen to the interview with Dr. Mainzer below.

Audio clip: Adobe Flash Player (version 9 or above) is required to play this audio clip. Download the latest version here. You also need to have JavaScript enabled in your browser.

Other stories we cover on the “Science World” radio program this week include:

 

SpaceX Marks New Commercial Era in Space Exploration

Yesterday’s successful launch of SpaceX‘s Falcon 9 rocket and Dragon reusable spacecraft from Cape Canaveral in Florida, marked what NASA administrator Charles Bolden called “the beginning of a new era in exploration.”

Now that the Dragon is in space, technicians are testing its capability of rendezvousing and docking with the International Space Station, where it is set to deliver experiments, payloads and supplies later this week.

Artist rendering of the Dragon Spacecraft with Solar Panels deployed (Image: SpaceX)

Artist rendering of the Dragon Spacecraft with Solar Panels deployed (Image: SpaceX)

Before that happens, Dragon will perform a flyby of the space station this Thursday.  From a distance of approximately 2.41 kilometers from the ISS, technicians will validate the operation of the spacecraft’s sensors and flight systems necessary for a safe rendezvous.

If everything checks out, the Dragon capsule will be cleared to rendezvous and berth with the ISS on Friday, May 25.  The ISS crew will use the space station’s robotic arm to capture Dragon and install it on the bottom side of the Harmony node of the ISS.

Until recently, spaceflight has mostly been a function of major governments.

Modern private spaceflight began in 1980 with the European Space Agency’s creation of Arianespace, which produces, operates and markets the Ariane series of launch vehicles.  Since 1984, Arianespace has conducted more than 240 commercial space launches.

Private involvement of spaceflight can also be traced back to the 1962 U.S. Communications Satellite Act, legislation which provided a pathway for corporations to own and operate their own satellites. However, those satellites were still sent into space by government-owned launch vehicles.

Since retiring its space shuttle program last year, NASA – the US space agency – has partnered with companies to deliver crew and cargo to the ISS.

Artist rendering of Orbital's Cygnus spacecraft approaching the International Space Station. (Image: Orbital)

Artist rendering of Orbital's Cygnus spacecraft approaching the International Space Station. (Image: Orbital)

Two private companies, SpaceX, and Orbital Sciences are currently partnered with NASA’s Commercial Orbital Transportation Services (COTS) program to deliver cargo to the ISS.

Along with the SpaceX Dragon reusable spacecraft, Orbital Sciences is developing a vehicle that will also deliver supplies and other material to the ISS.  Its Cygnus spacecraft is an expendable space capsule and is expected to launch its demonstration mission to the ISS sometime later this year.

A program called Commercial Crew Development (CCDev) has been established and is being run by NASA to attract companies that would develop privately-operated crew vehicles to ferry crew members to and from the ISS and other destinations in low-Earth orbit.

SpaceX, Boeing, Blue Origin and Sierra Nevada Corporation (SNC) are among the companies NASA is considering for this program.  NASA hopes to launch the first CCDev missions that will transport ISS crew members in 2017.

 

  • Page 1 of 2
  • 1
  • 2
  • >

About Science World

Science World

Science World is VOA’s on-air and online magazine covering science, health, technology and the environment.

Hosted by Rick Pantaleo, Science World‘s informative, entertaining and easy-to-understand presentation offers the latest news, features and one-on-one interviews with researchers, scientists, innovators and other news makers.

Listen to a Recent Program

Broadcast Schedule

Broadcast Schedule

Science World begins after the newscast on Friday at 2200, Saturday at 0300, 1100 and 1900 and Sunday at 0100, 0400, 0900, 1100 and 1200.

Science World may also be heard on some VOA affiliates after the news on Saturday at 0900 and 1100. (All times UTC).

Contact US

E-Mail
science@voanews.com

Postal Mail
Science World
Voice of America
330 Independence Ave., SW
Washington, DC 20237
USA