The National Antimicrobial Resistance Monitoring System (NARMS)

Dr. David G. White Center for Veterinary Medicine U.S. FDA

Food Safety Summit on Attributing Illness to Food April 5th, 2007

NARMS

The National Antimicrobial Resistance Monitoring System (NARMS) is a national collaborative network between the FDA, CDC and USDA as well as public health laboratories in all 50 states and local health departments in three major cities

- NARMS was developed to monitor changes in susceptibility/resistance of select zoonotic bacterial pathogens and commensal organisms recovered from animals, retail meats and humans to antimicrobial agents of human and veterinary importance
- NARMS monitors susceptibility/resistance phenotypes using three testing sites including:
 - **FDA/CVM** (retail meat and poultry)
 - **CDC** (humans)
 - USDA (animal/slaughter)

NARMS/Retail Meats Sampling

10 FoodNet sites

Similar sampling scheme

- Random sampling of stores
- Each site purchases 10 packages each of chicken breasts, pork chops, ground turkey, and ground beef
- All ten sites culture meat and poultry rinsates for Salmonella and Campylobacter
- In addition, four sites (GA, MD, OR and TN) culture rinsates for *E. coli* and *Enterococcus*
- Isolates are sent to FDA-OR for confirmation of identification and antimicrobial susceptibility testing

Retail Food Study Sites; FoodNet laboratories

NARMS Retail meats sampled

Salmonella and Campylobacter

	<u>2002</u>	2003	2004	2005	2006		
Chicken breast	616	897	1172	1194	1068		
Ground turkey	642	857	1165	1195	1056		
Ground beef	642	880	1186	1196	1070		
Pork chop	613	899	1176	1196	1062		
Total	2513	3533	4699	4781	4256*		
2002	2002, 6 states; 2003, 8 states; 2004, 2005 and 2006, 10 states						

NARMS/Retail food preliminary data Salmonella 2002 - 2006

2003, 8 FoodNet sites, n = 212 2004, 10 FoodNet sites, n = 324 2005, 10 FoodNet sites, n = 353 2006, 10 FoodNet sites, n = 290*

Total Number of *Salmonella* and Serotypes Isolated in 2004

	# Poultry Samples	<i># Salmonella</i> Isolates	<i># Salmonella</i> Serotypes
Human	NA	1798	>100
Chicken Breast	1,172	157 (13.4%)	15
Ground Turkey	1,165	142 (12.2%)	21

NA = not applicable

Top 5 Serotypes among Human and Retail Poultry Isolates, 2004

Rank	Human (N=1798)		Chicken (N=1	Breast 57)	Ground Turkey (N=142)		
1	Typhimurium*	386 (21.5%)	Typhimurium*	49 (31.2%)	Heidelberg	37 (26.1%)	
2	Enteritidis	272 (15.1%)	Kentucky	42 (26.8%)	Saintpaul	24 (16.9%)	
3	Newport	189 (10.5%)	Heidelberg	31 (19.7%)	Reading	16 (11.3%)	
4	Javiana	106 (5.9%)	Hadar	8 (5.1%)	Schwarzengrund	16 (11.3%)	
5	Heidelberg	94 (5.2%)	Schwarzengrund	5 (3.2%)	Hadar	11 (7.7%)	

*S. Typhimurium includes Typhimurium var. 5-

Other top 10 serotypes that are common among human and retail poultry isolates:

Human and Chicken Breast

Human and Ground Turkey

S. Enteritidis

S. Montevideo

S. Saintpaul

NARMS Slaughter Salmonella Data

	Top serotypes by Source for Salmonella slaughter isolates (All years)								
	SOURCE								
Rank	Cattle n=6815		Chicken n=10,605		Swine n=3,839		Turkey n=3,147		
	Serotype	Pct	Serotype	Pct	Serotype	Pct	Serotype	Pct	
1	Montevideo	13.4	Kentucky	35.5	Derby	25.8	Heidelberg	20.7	
2	Anatum	8.9	Heidelberg	20.3	Typhimurium var 5-ª	11.2	Hadar	16.6	
3	Newport	7.6	Typhimurium var 5-ª	6.1	Infantis	6.5	Senftenberg	8.2	
4	Muenster	7.1	Typhimurium	4.9	Johannesburg	6.3	Reading	7.3	
5	Typhimurium	5.6	Enteritidis	4.3	Anatum	6.1	Saintpaul	6.5	
6	Typhimurium var 5- ^a	5.5	Hadar	4.0	Heidelberg	3.9	Agona	5.0	
7	Kentucky	5.1	Monophasic	3.1	Reading	3.9	Schwarzengrund	4.4	
8	Cerro	4.0	Thompson	2.3	Saint Paul	3.0	Muenster	3.8	
9	Mbandaka	3.9	Schwarzengrund	2.2	Typhimurium	2.8	Arizona	2.7	
10	Agona	3.8	Montevideo	2.2	Agona	2.7	Typhimurium	2.6	

^a=previously copenhagen

Antimicrobial Resistance Phenotypes among Salmonella Isolates: NARMS, 2004

Gentamicin and Ceftiofur Resistance among Salmonella by Source, NARMS 2004

N = 2097 isolates; Human, n = 1798; Chicken breast, n = 157; Ground turkey, n = 142

GEN^R = 57 isolates; TIO^R = 106 isolates

Gentamicin and Ceftiofur Resistance among *Salmonella* Typhimurium by Source, NARMS 2004

N = 437 isolates; Human, n = 386; Chicken breast, n = 49; Ground turkey, n = 2

GEN^R = 9 isolates; TIO^R = 41 isolates

Gentamicin and Ceftiofur Resistance among Salmonella Heidelberg by Source, NARMS 2004

N = 162 isolates; Human, n = 94; Chicken breast, n = 31; Ground turkey, n = 37

GEN^R = 20 isolates; TIO^R = 14 isolates

NARMS/PulseNet

- Salmonella and Campylobacter isolates undergo further molecular characterization
 - **PFGE** analysis
 - Follow CDC guidelines for PFGE analysis
 - Data is shared with PulseNet
 - CVM PulseNet database has more than 7,000 data entries, including
 - 4,015 Salmonella
 - 432 E. coli
 - 2,646 Campylobacter
 - 69 Vibrio
 - Isolates can be used for future research projects
 - biosource tracking experiments
 - Virulence studies
 - Antimicrobial resistance studies

NARMS Executive Reports

First Executive NARMS report released - summarizes 2003 data from FDA, USDA, CDC in single report Link on CVM's Web site - www.fda.gov/cvm Working on 2004 report

Evaluating the Safety of Antimicrobial New Animal Drugs with Regard to Their Microbiological Effects on Bacteria of Human Health Concern, GFI #152

- Part of human food safety evaluation on antimicrobial use impacts on resistant pathogenic, zoonotic bacteria (e.g. *Salmonella, E. coli, Campylobacter*, etc.).
 - October 23, 2003
- Human exposure through ingestion of animal-derived food
- Approach applies to therapeutic and non-therapeutic antimicrobial drugs intended for food-producing animals
- Qualitative risk assessment approach
 - Based on OIE Ad Hoc Group on Antimicrobial Resistance process

Possible risk management steps range from denying the drug approval application to approving the application under various use conditions that assure the safe use of the product

Acknowledgements

FDA

- Dr. Beth Karp
- Dr. Elvira Hall-Robinson
- Dr. Heather Harbottle
- Dr. Patrick McDermott
- Dr. Terry Proescholdt
- Dr. Robert Walker
 Dr. Antoinette Walker
 Dr. Marleen Wekell

CDC

Lauren Stancik-Rosenthal Felicita Medalla Dr. Tom Chiller Dr. Fred Angulo Dr. Ezra Barzilay Dr. Jean Whichard

FDA lason Abbott erry A aren Blickensta **Peggy Carter** Patti Cullen Linda English **Sharon Friedman** Althea Glenn Susannah Hubert **Stuart Gaines Shawn McDermott** Sadaf Qaiyumi Amanda Stearns FoodNet EIP funded sites **CDC PulseNet** USDA

Dr. Paula Fedorka-Cray

Thank You

For the invitation to this valuable meeting

Appreciate this chance to participate

Go to the CVM Website for the most current information
<u>www.fda.gov/cvm</u>