Outbreak Alert!:

The Role of Outbreak Data in Risk Attribution

Caroline Smith DeWaal *USDA Food Risk Analysis Meeting April 5, 2007*

CENTER FOR Science in the Public Interest

Outbreak Alert

- CSPI started collecting data on FBI outbreaks in 1997 and organizing it by regulatory agency.
- Data from CDC were not available without a FOIA. With our continued requests, CDC started posting yearly linelistings on the internet.
- In 1999, CSPI published the first line-listing of FBI outbreaks organized by food category and by regulatory agency.
- CSPI's methodology for data compilation is published in the July 2006 edition of Food Protection Trends.

Outbreak Alert Methodology

- The CSPI database contains 5,000 FBI outbreaks and covers 15 years of data.
- The database is maintained in Microsoft Access by trained CSPI staff.
- Outbreak Data Selection
 - Meets CDC's outbreak definition: event where 2+ people acquire the same illness after consuming the same contaminated food.
 - Has an identified food and pathogen.
- Ensuring Data Integrity
 - Outbreak data must come from a reliable source, such as the CDC, scientific articles, health department postings, etc.
 - Discrepancies in outbreak reports are clarified by state or local public health officials.

ID:			
Mth:	12 -	Cases:	12
Year:	1990 -	States:	ОН
Category:	Breads and Bakery	 Initial Date: 	12/1/1990
Food:	Bakery	Reference:	1
Agency:	FDA 🔄	Location	Institution
Final Date:			
Vehicle:	Chocolate cake with icing	Comments:	
Cause:	Bacillus	 Date Entered	d: 2002 Initials:
Etiology:	B, cereus	_	

CENTER FOR Science in THE

Public Interest

Source: Outbreak Alert! Center for Science in the Public Interest, 2005

Outbreak Categorization:

Outbreaks are grouped by food vehicle, and placed in one of 13 food categories separated by regulatory agency

FDA-Regulated

- Beverages
- **Breads and Bakery**
- Dairy
- Eggs
- Game
- **Multi-Ingredient Foods**
- Produce
- Seafood

USDA-Regulated

- Beef
- Pork
- Poultry
- Luncheon/Other Meats

Both – Foods Regulated By Both Agencies

ic Interest

Outbreak Categorization:

USDA-Regulated Food Categories and Subcategories

Beef

- Ground Beef
- Beef Dishes
- Other Beef
- Poultry
 - Chicken
 - Turkey
 - Poultry Dishes
 - Other Poultry

Pork

- Ham
- Pork Dishes
- Other Pork
- Luncheon/Other Meats
 - Luncheon
 - Meat Dishes
 - Other Meats

Outbreak Trends:

USDA-Regulated Food Categories and Subcategories

Note: In 1998, CDC began enhanced surveillance efforts to increase FBI reporting.

Population Represented

- Data comes primarily from CDC, which collects data from state and local health departments.
- Data relies on the quality of outbreak investigation and reporting.

Outbreaks per 100,000 State Population

Incomplete Outbreak Data Reporting

- FBI outbreaks are difficult to investigate, as they require laboratory confirmation of pathogens, timely reporting of illnesses, and thorough followup with ill persons to determine common foods and locations.
- In the years 1990-2002, the cause of 64% of outbreaks reported to CDC was unknown.
- State and local epidemiologists diagnose an average of just 36% of the nation's reported outbreaks.

Source: Hargrove, T. "A Russian roulette of food poisoning in American States." *Scripps Howard News Service* Hargrove, T. "States Vary on Diagnosis Rates." *Scripps Howard News Service*.

Limitations of CSPI's database

- Delays in release of CDC data result in untimely data.
- Does not include deaths or hospitalizations.
- Represents a small percentage of actual FBI.
 - Represents about 25%-30% of reported FBI outbreaks, because it excludes outbreaks with unknown food or pathogen.
 - Sporadic cases of foodborne illnesses are omitted, e.g. *Campylobacter* and *V. vulnificus* are underreported.

Database Applications

- Outbreak data provides food and pathogen attribution that are critical to conduct a food/hazard analysis for HACCP.
- CSPI's Outbreak Alert database can:
 - Give the source of an outbreak closest to the time of consumption
 - Identify the frequency of food and pathogen outbreaks
 - Assess food types and pathogens causing outbreaks by location, i.e. states, home- vs. restaurant-prepared foods.

USDA Expert Elicitation

- Panel of 23 experts, mostly from industry, with some experts from academia and federal government.
- Asked experts to rank 24 categories of processed meat and poultry products based on relative risk to human health.
- Did not address severity of illness.
- Lacked boundaries for expert scoring.

Median Rankings: Low Risk Items

- 1 RTE meat fully-cooked without subsequent exposure to the environment
- 1 RTE poultry fully-cooked without subsequent exposure to the environment
- 2 RTE acidified/fermented meat (without cooking)
- 2 RTE acidified/fermented poultry (without cooking)
- 2 RTE dried meat
- 2 RTE dried poultry
- 2 RTE salt-cured meat
- 2 RTE salt-cured poultry
- 3 RTE fully-cooked meat
- **3 RTE** fully-cooked poultry

Source: USDA Table entitled "Relative Risk of Illness per Serving Among 24 Types of Processed Meat and Poultry Products"

Median Rankings: Moderate Risk Items

- 4 Raw intact pork
- 5 Raw intact beef
- 5 Raw intact meat no beef or pork
- 7 Raw otherwise processed meat
- 7 Raw otherwise processed poultry

Median Rankings: High Risk Items

- 8 Raw intact chicken
- **8 Raw intact poultry -** no chicken or turkey
- 8 Raw ground or otherwise non-intact pork
- 9 Raw intact turkey
- 9.7 Raw ground or otherwise non-intact meat no beef or pork
- 10 Raw ground or otherwise non-intact beef
- 10 Raw ground or otherwise non-intact chicken
- 10 Raw ground or otherwise non-intact turkey
- 10 Raw ground or otherwise non-intact poultry no chicken or turkey

Relative Risk of Illness *CSPI's Review of the Expert Elicitation*

- Due to the lack of uniformity between outbreak data reporting and the USDA risk categories, CSPI grouped the risk categories into 3 broad groups.
 - Lowest Risk (Median Ranking 1-3)
 - Ready-to-eat (RTE) meats
 - Moderate Risk (Median Ranking 4-7)
 - Raw, intact meats
 - High Risk (Median Ranking 8-10)
 - All unprocessed poultry; all ground meats and poultry

How Does Outbreak Data Align with the USDA Risk Rankings?

Low Risk: Ready-to-eat meats

- Outbreaks: 91, Illnesses: 2,172
- Examples: Jerky, Chicken Nuggets, Hot Dogs, Deli Meat

Moderate Risk: Raw, intact meat (not poultry)

- Outbreaks: 324, Illnesses: 11,121
- Examples: Steak, Prime Rib, Ham, Veal, Goat

High Risk: Ground meat; Unprocessed poultry

- Outbreaks: 497, Illnesses: 14,809
- Examples: Ground Beef, Chicken, Turkey, Taco Meat

Pathogen Breakdowns by Category

High Risk Meats				
	Pathogen	Outbreaks	Illnesses	
1	Salmonella	146	5404	
2	Escherichia	122	2317	
3	Clostridium	76	4166	
4	Norovirus	44	698	
-5	Staphylococcus	43	701	
6	Bacillus	27	695	
- 7	Campylobacter	20	139	
8	Other Virus	6	394	
9	Shigella	4	101	
10	Other Chemicals	3	116	

	Moderate Risk Meats			
	Pathogen	Outbreaks	Illnesses	
1	Clostridium	103	3496	
2	Salmonella	77	3427	
3	Staphylococcus	69	1888	
4	Escherichia	22	1310	
-5	Norovirus	20	448	
6	Bacillus	13	311	
- 7	Yersinia	9	97	
8	Campylobacter	6	85	
9	Trichinella	3	19	
10	Streptococcus	1	37	

Low Risk Meats				
	Pathogen	Outbreaks	Illnesses	
1	Salmonella	24	651	
2	Norovirus	21	495	
З	Staphylococcus	11	110	
4	Clostridium	8	400	
5	Listeria	7	199	
6	Bacillus	4	40	
7	Other Virus	4	43	
8	Trichinella	4	112	
9	Escherichia	3	79	
10	Shigella	2	4	

Consideration of Frequency & Severity

		Mead Estimates		
Pathogen	FoodNet*	Illnesses*	Hospitalizations	Deaths
Salmonella	14.55	1.3	16,430	553
Campylobacter	12.72	2.0	10,539	99
STEC (all)	1.39	0.06	1,843	52
Shigella	4.67	0.09	1,246	14
Listeria	0.30	0.002	2,298	499

*per 100,000

Sources:

- •Preliminary FoodNet Data on the Incidence of Infection with Pathogens Transmitted Commonly Through Food --
- 10 Sites, United States, 2005; MMWR 2006; 55(14);392-396
- •Mead PS, et al. Food-related illness and death in the United States. EID 1999;5:607-25.

Conclusion

- Outbreak data alone can not be used to rank food risks. Experts should also look at sporadic cases and product testing.
- To determine severity, hospitalizations and deaths from outbreaks and sporadic cases must also be considered.
- Outbreak data rely on thorough investigations and reporting of outbreaks. Foods involved in outbreaks are not reported in terms consistent with USDA's specific risk categories.
- Future outbreak data reporting could be improved with more specifics on implicated foods to contribute to a better understanding of food risk attribution.

Contact Information

Caroline Smith DeWaal Food Safety Director Center for Science in the Public Interest 1875 Connecticut Ave, NW Suite 300 Washington, DC 20009

Phone: (202) 777-8366 Fax: (202) 265-4954 E-mail: <u>cdewaal@cspinet.org</u>

On the internet: <u>www.cspinet.org</u> and <u>www.safefoodinternational.org</u>

nterest