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Abstract

This paper presents assumptions and identification results for eBay type
auctions. These results are for private value auctions covering three ma-
jor issues; censoring bias, auction heterogeneity and dynamic bidding. The
first section of the paper presents two identification results for second price
open call auctions with private values and unobserved participation (eBay
type auctions). The second section presents identification results for eBay
type auctions that have either observed bidder heterogeneity, observed and
unobserved item heterogeneity or unobserved auction heterogeneity. In par-
ticular it is shown that a traditional demand estimation model is identified.
The third section presents identification results when bidders face an infinite
sequence of eBay type auctions for a single item.
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1 Introduction

EBay and eBay type auctions are an economic phenomena. EBay is fast

becoming a major distribution channel in everything from Beanie Babies to

Humvees (Lucking-Reiley (2000); Cohen (2002)).1 EBay has also become

a rich source of data for economists, other social scientists and even com-

puter scientists (Bajari and Hortacsu (2004); Resnick et al. (2003); Zhang

et al. (2002)). While eBay may have been built on collectibles, mass pro-

duced items have become eBay’s best sellers (Cohen (2002)). For example

cars are eBay’s most important item with $6.7B in annual sales reported in

Q3 2003, followed by computers at $2.1B and consumer electronics at $1.9B

(Zeithammer (2004a)). In order to use data from eBay or eBay type auctions

to estimate the demand for cars, MP3 players or computer monitors, it is

necessary to identify the distribution from which each bidder’s value for the

item is drawn. This paper presents non-parametric identification results for

second price open call auctions with private values and unobserved participa-

tion. These results cover homogenous auctions, auctions with heterogenous

bidders, auctions with observed heterogeneity, auctions with unobserved het-

erogeneity, and auctions with bidders facing a sequence auctions. It is shown

that the traditional demand estimation model (Berry et al. (1995)) is iden-

tified given such data. The proof of the result suggest a non-parametric

estimator in the tradition of Guerre et al. (2000).

The first section presents two new results for homogenous auctions based

on Athey and Haile (2002) and Song (2003). Unless otherwise stated the pa-

per follows Song (2003) and assumes homogenous private value auctions in

which bidders are observed at a Bayesian Nash equilibrium.2 The first result

states if the number of potential bidders has a particular functional form,

then the value distribution is non-parameterically identified. The second re-

sult states that if all bidders bid at their “last opportunity” to do so (unless

they are censored) and the timing of “last opportunities” is independently

1My colleague, Laura Hosken, even bought her wedding dress on eBay!
2See Bajari and Hortacsu (2003) for analysis of common value eBay auctions. Such

auctions are probably a better description of collectible auctions.
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and identically distributed then the value distribution is identified. While the

first result is based on a fairly restrictive assumption, it gives a simple func-

tion that is straight forward to estimate. The second result shows that this

assumption on the distribution of potential number of bidders is not neces-

sary for identification. The second section presents results that generalize the

first result to auctions with heterogenous bidders and heterogenous auctions

(both observed and unobserved). The third section of the paper presents

assumptions and identification results for auctions in which the bidding is

interdependent.

The results presented in the first section build on results in Athey and

Haile (2002) and Song (2003). Athey and Haile (2002) show that in open call

second price auctions with independent private values and a known number of

bidders, the value distribution is identified from the observation of one order

statistic. For example in second price auctions the price is the N − 1 : N

order statistic. That is, the price is all that is needed to identify the value

distribution.3 While this result shows that the value distribution can be

identified despite bids being censored, it does not account for the possibility

that the existence of the bidder may also be censored. Song (2003) presents

a solution to this second censoring problem. Her result is that the value

distribution can be identified from the observation of two order statistics.

This result works well in the case where the N : N and N − 1 : N order

statistics are observed as is the case if eBay provides the data (Adams and

Bivins (2004); Zeithammer (2004a)). However, it is unusual to observe the

actual highest bids from eBay data and other bidders may have their highest

bid censored. Song (2003) presents an identification result for this case,

however the estimator based on this result is biased.

This paper follows the structural assumptions of Song (2003) and presents

two alternative identification results for the case where the existence of bid-

ders is censored. Estimators based on either result will be unbiased, however

the assumptions are more stringent than those presented in Song (2003).

The first section present Monte Carlo estimates to compare the different ap-

3See Rezende (2002) for a straight forward estimation procedure for this case.
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proaches. The section’s second result uses information on the timing of bids

to identify demand. Zhang et al. (2002) assume that a Poisson distribu-

tion determines the entry probability and the timing of bids. There are two

concerns with their approach. First, it is fairly obvious looking at bidding

behavior on eBay that bids are congested towards the end of the auction

(Adams et al. (2004)), which suggests the Poisson distribution is not a rea-

sonable representation of bidding behavior. Second, the authors assume that

each bidder only bids once at their “last opportunity” which casual obser-

vation also suggests is not true.4 The results presented below indicate that

an estimator with less restrictive assumptions can be used to estimate the

demand for items on eBay.

The second section of the paper presents results for heterogenous auc-

tions. Athey and Haile (2002) present results for “asymmetric” auctions,

that is auctions in which bidders draw their values from different distribu-

tions. Again, however, these results are for auctions in which the number of

bidders is known. This paper presents results for asymmetric auctions where

the number of bidders is unknown.5 The section also presents results for

auctions of differentiated goods. The paper shows that the joint value distri-

bution over multiple items can be identified under certain conditions. The

paper further shows that hedonic models are identified and provides assump-

tions sufficient to identify hedonic models with unobserved item heterogene-

ity. Bajari and Bankard (2004) presents non-parametric identification results

for transactions data with unobserved characteristics. The final result of the

section considers auctions with unobserved heterogeneity. Krasnokutskaya

(2003) presents identification results for first price auctions and discusses

other work on this issue. Athey and Haile (2002) present results for second

price auctions with a known number of bidders. Froeb et al. (2001) present

a parametric estimator for second price auctions with a common unobserved

shock.

4A Poisson assumption on entry and a non-parametric assumption on the “last oppor-
tunity” may be more reasonable. Song has preliminary work on such an estimator.

5Froeb et al. (2001) show that power-related parametric distributions can be used to
estimate value distributions for asymmetric bidders.
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The third section of the paper considers the issue that bidders may shave

their bids to account for the option value of winning a future auction. There

is a substantial literature on bidding behavior in sequential auctions.6 How-

ever, there is an important difference between traditional sequential auctions

and eBay auctions. In a traditional sequential auction such as an FCC spec-

trum auction, winning bidders leave the sequence of auctions and are not

replaced, so the number of bidders and value distribution of the remaining

bidders changes over time. On eBay, however, there is constant entry of new

bidders into the sequence of auctions. Two recent papers analyze dynamic

bidding behavior on eBay (Arora et al. (2002); Zeithammer (2003)), however

both papers assume that the bidder faces a finite set of future auctions. In

the finite model, bidders in their final auction bid their value for the item

as the option value is 0, while bidders in earlier auctions shave their bids

to account for the option value of a future auction.7 This paper assumes

that bidders face a infinite set of future auctions. In this context, the paper

presents a set of alternative assumptions sufficient to identify the distribu-

tion of bidder valuations that is independent of the option value of winning

a future auction. It is shown that the problem can be represented as a dy-

namic decision making problem under uncertainty. The argument is similar

to the argument presented in Jofre-Bonet and Pesendorfer (2003) although

identification comes from assumptions on the savings behavior of the bidders

and interest rate regimes.

The paper proceeds as follows. Section 2 presents the model and iden-

tification results for the single homogenous auction case. The section also

presents a Monte Carlo comparison between the model presented below and

the model presented in Song (2003). Section 3 presents identification results

that generalize the results in Section 2 to cases where the auctions are het-

erogenous. Section 4 presents the model and identification results for the

infinite sequence of auctions case. Section 5 concludes.

6See Arora et al. (2002) or Deltas (1999) for a discussion of this literature.
7Zeithammer (2004b) presents a model in which bidders strategically account for the

effect that there bids have on future auctions. Assumptions used in this paper will rule
out this possibility.
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2 Homogenous Auction Model

This section presents two identification results. First, it is shown that for a

given distribution over the number of potential bidders, the value distribution

is identified. The second result is an alternative to the first, showing that

the value distribution can be identified with additional assumptions on the

distribution of the timing of bids and on the equilibrium bidding behavior.

2.1 The Model and Notation

The model and notation closely follow Song (2003). It is a single eBay

auction for a single item. There are N “potential” bidders in the auction,

with pn = Pr(N = n), and M observed bidders. As stated above this model

is of a symmetric private information auction (Assumption 1), where each

bidder knows the probability distribution over the number of bidders in the

auction (Assumption 2). Assumption 3 is made for simplicity.8

Assumption 1 Each potential bidder’s valuation V i is an independent draw

from F (.), where V i ∈ [v, v̄].

Assumption 2 Each potential bidder knows pn, F (.) and their own value

V i.

Assumption 3 There is no minimum bid and there is no minimum incre-

ment.

Finally, the auction lasts for the interval of time [0, τ ] and each bidder

is assumed to have a “last opportunity” to bid, although they don’t have to

bid at that “last opportunity” (Assumption 4).

Assumption 4 Each potential bidder i is assumed to have a “last opportu-

nity” to bid, ti ∈ [0, τ ], which is a random variable, such that the distribution

of ti is denoted Gi(.).

8Adams et al. (2004) presents the formula for the case where there is an observable
minimum bid.
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Let Ct be the “cut off” price at time t. As eBay is a second price auction,

Ct = B
(M−1:M)
t , where B

(M−1:M)
t is the second highest bid as of time t. Song

(2003) shows that in a Bayesian Nash equilibrium of this game, it must be

that for every bidder whose value for the item is greater than Ct at their last

opportunity to bid, will bid their value (Bi
ti = V i), if they have not already

done so.

In each auction, I assume that the amount of the lowest of the two highest

bids, B(M−1:M)
τ or the price, is observed. Note that from above, the price in

an eBay auction equals the value of the potential bidder with the second

highest value. I will denote this value V2. For the second result of the section

I also require that both the number of observed bidders (M) is observed as

well as the time of the latest of the two highest bids, which is denoted t2.

In regards to entry into the auction, that decision is endogenous in that

only bidders with a positive expected value of entering will enter the auc-

tion. This doesn’t really mean anything as the cost of entry for each bidder

is either assumed to be 0 or infinity and is exogenously determined.9 So

the probability distribution over the number of potential bidders (pn) is de-

termined exogenously. This assumption contrasts to the entry assumption

in Bajari and Hortacsu (2003), who use endogenous entry and a zero-profit

condition as part of their identification strategy.

2.2 Results

The following assumption is critical to the main result presented in this

section. The distribution allows for any number of bidders in the auction

but it places most of the weight on the least number of bidders. The number

of bidders is also allowed to vary with the length of the auction.10 The

assumption is used because it allows the probability distribution over the

9Think of a bidder logging on to eBay at a particular date and time and either having
an auction in which to bid (cost of entry is 0) or not having such an auction (cost of entry
is infinity).

10EBay auctions can last for 3, 5, 7 or 10 days.
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price to have a simple functional form.11

Assumption 5 Let Pr(N = n) = (1 − τjp)τn
j pn, where τj is the length of

auction j, tj ∈ [τ , τ̄ ] and p ∈ (0, 1
τ̄
).

Given this assumption the following proposition presents the main result

of this section of the paper.

Proposition 1 Given Assumptions (1 - 4) and Assumption 5, if the distri-

bution of {V2} and the length of the auctions are observed, and there is at

least two different auction lengths, then F (.) is identified.

Proof. The proof has three steps. Step 1. Given N , the probability of

observing V2 is

Pr(V2|N = n) =
n!f(V2)(1− F (V2))F

n−2(V2)

(n− 2)!
(1)

which is the probability that V2 occurs times the probability that it is the

2nd highest bid. By Assumption 5, Pr(N = n) = (1− τjp)τn
j pn. Therefore12

Pr(V2|N ≥ 2, τj) = (1− τjp)f(V2)(1− F (V2))(2 + 6τjpF (V2) + 12τ 2
j p2F 2(V2)+

... + n(n− 1)τn−2
j pn−2F n−2(V2) + ...)

= (1− τjp)f(V2)(1− F (V2))(
∑∞

n=2 n(n− 1)τn−2
j pn−2F n−2(V2))

= 2(1−τjp)f(V2)(1−F (V2))

(1−τjpF (V2))3

(2)

Step 2. Let [v, v̄] be segmented in to K equal disjoint sets such that the

union is equal to the original set. Let vk = v + k−1
K

(v̄ − v) and

fK(vk) =
∫ vk+1

v=vk

f(v)dv = F (vk+1)− F (vk) (3)

and

FK(vk) =
k−1∑

h=1

fK(vh) (4)

11Adams et al. (2004) shows that distribution of observed number of bidders for new
digital camera auctions on eBay is consistent with this assumption.

12Thanks to Joel Schrag for pointing out some of these steps.
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Define V2k similarly, such that V2k ∈ {v1, v2, ..., vK}. Note that v1 = v.

Note further that as K → ∞, FK(.) → F (.). Let xk denote the observed

(large sample) probability of V2k. So rewriting Equation (2) for the case of

V2k and noting that the marginal probability of observing vk is fk(vk) and

the cumulative probability of observing vk is FK(vk) we have the following

equation.

xk =
2(1− τjp)fK(V2k)(1− FK(V2k))

(1− τjpFK(V2k))3
(5)

Step 3. First we have

x1 = 2(1− τjp)fK(v) (6)

So consider two sets of auctions with different lengths, τ1 and τ2, we have

x11 = 2(1− τ1p)fK(v) (7)

and

x12 = 2(1− τ2p)fK(v) (8)

Rearranging we have
x11

2(1− τ1p)
=

x12

2(1− τ2p)
(9)

and so

p =
x12 − x11

τ1x12 − τ2x11

(10)

and

fK(v) =
x11

2(1− τ1p)
(11)

and rearranging Equation (5)

fK(V2k) =
2(1− τjp)xk(1− FK(V2k))

(1− τjpFK(V2k))3
(12)

Using Equation 4, by induction fK(.) is identified. Letting K → ∞, F (.) is

identified. Q.E.D.

Proposition 1 states that if the potential number of bidders has a par-

ticular functional form, the distribution of prices and two different auction
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lengths are observed, then the value distribution is identified. The proof

shows that given a particular probability distribution over the number of po-

tential bidders the value distribution unconditional on the number of bidders

is also identified and has a relatively simple functional form.

Pr(V2|N ≥ 2, τj) =
2(1− τjp)f(V2)(1− F (V2))

(1− τjpF (V2))3
(13)

As one would expect the functional form is a slightly more complicated ver-

sion of the standard censoring model. If one is willing to assume that a log

normal distribution is parsimonious representation of the underlying distri-

bution then the formula suggests a simple maximum likelihood estimator

(Greene (2000)). Alternatively, the three steps of the proof suggest a non-

parametric estimator in the tradition of Guerre et al. (2000).

The second result of this section shows that there is a third way to identify

demand from eBay auctions, and that this third way doesn’t rely on some

arbitrary distributional assumption. However, additional assumptions are

still used to prove the result. In particular, the following assumption states

that every bidder’s last opportunity to bid is independently and identically

distributed.

Assumption 6 Let Gi(.) = G(.) for all i.

Assumption 7 If given the opportunity to do so, all bidders make a bid at

their “last opportunity” to do so.

Assumption 7 states that we are going to restrict the set of BNEs to those

in which all bidders bid at their last opportunity to do so, if they have that

opportunity. Song (2003) shows that such equilibria exists although this is a

more restrictive structural assumption than what is presented in Song (2003).

As discussed above, there is a very large tendency for eBay bidders to bid

at the end of the auction (see Adams et al. (2004) for example), and so I

don’t believe it is an overly restrictive assumption. Below, I present a lemma

which suggests that bidders will always bid late in equilibrium (Lemma 2).
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Proposition 2 Given that Assumptions (1 - 4) and Assumptions 6 and 7

hold, and {M}, the timing of the highest and second highest bids, the auction

length and {V2} are observed, then F (.) is identified.

Proof. Step 1. As neither the second highest nor the highest bidder is

censored, by Assumption 7 we observe the distribution of the timing of bids

for the second highest and the highest bidder. By Assumption 6 we observe

G(.). Step 2. Let t2 denote the latest of the bids from the two highest

bidders. We can write the probability that there will be two bidders and a

particular set of bids and timing of bids in the following manner.

Pr(M = 2, t2, V2|N ≥ 2) = 2g(t2)G(t2)f(V2)(1− F (V2))

×(
∑∞

n=2 pn(n− 1)nF n−2(V2)(1−G(t2))
n−2)

(14)

Note that pn is undefined and is just Pr(N = n). We know that G(τ) = 1,

so13

Pr(M = 2, τ, V2|N ≥ 2) = 4p2g(τ)f(V2)(1− F (V2)) (15)

Note that g(τ) is observed from Step (1). Following similar reasoning to

the proof of Proposition 1, we create K equal and disjoint sets such that

the union of the sets is equal to [v, v̄] and define fK and FK . Noting that

F (v) = 0 from Equation 15 we have

x1 = 4g(τ)p2fK(v) = 4g(τ)p2fK(V21) (16)

where x1 is observed and we can solve for p2fK(V21). Second we have

p2fK(V2k) =
xk

4g(τ)(1− FK(V2k))
(17)

and

FK(V2k) =
k−1∑

h=1

fK(V2h) (18)

By induction we can solve for p2fK(V2k) as a function of observables for all

k. As the marginal probabilities must some to 1,

K∑

k=1

p2fK(V2k) = p2

K∑

k=1

fK(V2k) = p2 (19)

13I am assuming that this is true as t2 → τ , or that 00 = 1.
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Letting K →∞ we have the result. Q.E.D.

Proposition 2 provides a third identification result for auctions in which

the number of potential bidders is unknown. Unlike Proposition 1 the result

here is not based on some relatively arbitrary functional form assumption.

Rather it is based on the assumption that the timing of bids is independently

and identically distributed and on structural assumption that in equilibrium

all bidders bid at their last opportunity if their valuation is above the cutoff

price at their last opportunity. While this structural assumption is more

restrictive than the structural assumptions presented in Song (2003) there is

an observed tendency for bidders to bid late in eBay auctions as well as some

theoretical justification (see Lemma 2).

The next section compares a version of the estimator based on Proposition

1 with a version of the estimator presented in Song (2003).

2.3 Monte Carlo

This section undertakes a Monte Carlo comparison between the estimator

presented in Proposition 1 and the estimator presented in Song (2003).

For simplicity it is assumed that f is known to be normally distributed

N(µ, σ2).14 The auctions are generated assuming two different distributions

over the number of potential bidders. First, it is assumed that Pr(N = n) =

(1 − τjp)τn
j pn (Assumption 5) where p = 0.9 and τj = 1. Second, I assume

Bernoulli distribution of entry (N is distributed Binomial with 100 trials and

p probability of success) where p = .02. Finally, an exponential distribution

with λ = 2 is assumed for the timing of the bids (G(.)).

The Song model is a simplified version of the model presented in Song

(2003) and the Adams model is a simplified version of the model presented

in Proposition 1. Note that for the Song model auctions with fewer than

14That is, the simulations just estimate µ, σ and p. Song (2003) presents Monte Carlo
results for her semi-parametric estimator under alternative distributional assumptions on
the Monte Carlo data. Note that Adams et al. (2004) presents estimates from both models
from actual eBay data.
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Assumptions Variable Actual Reps Mean SD Min Max

Song

drop if µ 2.00 1000 2.02 .09 1.59 2.25

t2 < .4 σ .50 1000 .50 .04 .39 .63

No drop µ 2.00 1000 2.23 .03 2.12 2.31

σ .50 1000 .49 .02 .44 .55

Adams

µ 2.00 1000 2.00 .08 1.70 2.21

σ .50 1000 .50 .01 .46 .56

p .90 1000 .90 .03 .79 .96

Table 1: Monte Carlo Estimates with pn = (1− p)pn

3 bidders are dropped. This is because Song’s approach requires that two

order statistics are observed and in most cases this will be the high bids

from the second and third highest bidders. Auctions in which the latest

of the highest bids of the two highest bidders occurs early in the auction

may also be dropped. For Song’s model to give an unbiased estimate of the

distribution it must be that the bids of the third highest potential bidder are

observed. However, it may be that the third highest potential bidder has

their highest bid or their existence censored. Song shows that this censoring

bias is more likely to be a problem the earlier in the auction the two highest

bidders bid. Song presents a method for choosing the optimal number of

auctions to throw away given the trade off between bias and efficiency. Here

the cut off is chosen arbitrarily. For the Adams model, auctions with fewer

than 2 bidders are dropped.

Table 1 presents the results assuming that the probability distribution

over the number of potential bidders follows Assumption 5. In the case

of the Song model, the table presents results with different restrictions on

the auctions that are used to do the estimation. The top set of results

is based on a restriction that only auctions in which the latest of the two

highest bidders bids after 0.4 are used. This restrictions reduces the data
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Assumptions Variable Actual Reps Mean SD Min Max

Song

drop if µ 2.00 1000 2.01 .06 1.78 2.18

t2 < .4 σ .50 1000 .50 .04 .43 .55

No drop µ 2.00 1000 2.08 .03 2.00 2.16

σ .50 1000 .49 .02 .43 .55

Adams

µ 2.00 1000 2.00 .07 1.79 2.26

σ .50 1000 .47 .01 .45 .50

p .02 1000 .59 .10 .03 .81

Table 2: Monte Carlo Estimates with pn = (1− p)100−npn

set by between 60% and 80%. The results show that Song’s estimator gives

a slightly biased estimate of µ, 2.02 rather than 2, however the estimator is

relatively inefficient. The second set of results is based results in which no

restriction is made about which auctions can be used. We see that in this

case the estimator is biased upwards but the estimate of µ is made with a lot

more precision. Comparing the results to the estimator based on Proposition

1, the estimates for µ are not biased while being a little more efficient than

Song’s less biased estimator.

Table 2 presents results from Monte Carlos under a different assumption

on the number of potential bidders in each auction. It is assumed that

pn = .98100−n.02n. Note that while this distribution is different from the

one presented above, it still places most of its weight on there being a small

number of bidders in each auction. The results show that even though the

distributional assumption does not hold, the estimator presented above still

gives an unbiased estimate for µ. However that estimate is slightly less

efficient than the less biased estimator based on Song (2003). Note also that

the Adams estimator gives a biased estimate for σ and this estimate is more

biased than the two Song estimates for σ. Finally, note that the estimate for

p from the Adams model is nonsense, which is not surprising given that the
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distributional assumption is incorrect.

3 Heterogenous Auctions

This section presents results which generalize Proposition 1 to situations

where the auctions heterogenous, including heterogenous bidders (asymmet-

ric auctions), heterogenous items, and unobserved auction heterogeneity.

3.1 Heterogenous Bidders

The next two results generalize the first result to the case where bidders

have observable characteristics. The major issue here is that the level of

observation is an auction, not a bidder. Thus it is necessary to infer infor-

mation about the population of bidders from observing just the identities of

the winning and second highest bidders.

Assumption 8 Let V i
A be distributed FA(.) for all bidders such that i has

observable characteristic A. Let V j
B be distributed FB(.) for all bidders such

that j has observable characteristic B.

Assumption 8 states that bidders can be one of two types and conditional

on their type their valuations are independently and identically distributed.

The following proposition states that the identification result presented above

can be generalized to this case.

Proposition 3 If Assumptions (1 - 4) and Assumptions 5 and 8 hold, then

if the distribution of {V2}, the identity of the highest bidder and the second

highest bidder and the length of the auctions are observed, and there are at

least two different auction lengths, FA(.) and FB(.) are identified.

Proof. By Assumption 8 we have F (v) = qFA(v) + (1 − q)FB(v) where

q is the unconditional probability that bidder i has characteristic A. By
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Assumption 5, from Proposition 1, F (v) is identified from the observation of

{V2}. Therefore, rewriting Equation (13) for this case

Pr(V2, 1 ∈ A, 2 ∈ B|N ≥ 2, τj) = x1 =
2(1− τjp)(1− q)fB(V2)q(1− FA(V2))

(1− τjpF (V2))3

(20)

where the highest bidder is of type A and the second highest bidder is of

type B. Let

Pr(V2, 1 ∈ A, 2 ∈ A|N ≥ 2, τj) = x2 =
2(1− τjp)qfA(V2)q(1− FA(V2))

(1− τjpF (V2))3

(21)

Therefore
x1

x2

=
(1− q)(fB(V2))

qfA(V2)
(22)

Substituting in f(V2) and solving for qfA(V2)

qfA(V2) =
x2f(V2)

x1 + x2

(23)

By adding up we have ∫ v̄

v
qfA(v)dv = q (24)

Q.E.D.

Proposition 3 states that if bidder i is of one of two types, those types are

observable, and conditional on type the value distribution is independently

and identically distributed, then the value distribution conditional on type

is identified. The result follows in straight forward manner from Proposition

1. As the bidder’s type is observed, the unconditional probability that a

particular price is observed is a function of the unconditional probability

that the bidder is of a particular type and the value distribution given the

bidder’s type. This result is useful if the data allows the econometrician to

observe bidder characteristics such as zip code, reputation score or bids in

previous auctions. The following corollary generalizes this proposition.

Assumption 9 Let bidder i have observable characteristic A ∈ A, then V i
A

is independently and identically distributed FA(.).
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Assumption 9 states that the observable characteristics could have any

general form. That is, it could be a dummy variable like gender or continuous

variable like income.

Corollary 1 If Assumptions (1 - 4) and Assumption 5 and 9 hold, then if

the distribution of {V2}, the length of the auctions and the identity of the

bidders are observed, and there at least two different auction lengths, then

FA(.) is identified for all A ∈ A.

Proof. The proof has four steps. Step 1. Let A be split into K equal

and disjoint sets such that
⋃K

k=1 Ak = A, and the unconditional probability

that bidder i has characteristic Ak is qk. Now consider two sets A1 and its

complement. By Proposition 3, FA1 and q1 are identified. Step 2. Consider

the union of A1 and A2, denoted A12 and its complement. Again from Propo-

sition 3, FA12 and q1 + q2 are identified. So from Step (1) q2 is identified and

as FA12 = q1FA1 + q2FA2 , FA2 is identified. Step 3. By induction FAk
and qk

are identified for all k ∈ {1, 2, ..., K}. Step 4. Let K →∞ and we have that

FA(.) is identified for all A ∈ A. Q.E.D.

Corollary 1 states that if the bidder has an observable characteristic and

that characteristic has a general form, i.e. is either discrete or continuous,

then the value distribution conditional on the observable characteristics is

identified. The result follows in straight forward manner from Proposition 3.

Again, this result is useful if the auction data also includes other information

about the bidder.

3.2 Heterogenous Items

The result presented in this section generalizes the first result to the case

where we observe bidding across auctions for heterogenous items. The first

result shows that when the number of items is small it is possible to identify

the joint value distribution. The last three results show that a model in

the tradition of Berry et al. (1995) can be identified. That is, items can be
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mapped into characteristic space with an unobserved item characteristic and

the function is allowed to vary with observed characteristics of the bidders.

Consider two simultaneous auctions, one for item A and the second for

item B. Previous results show that under certain assumptions it is possible

to identify Fj(.) where j ∈ {A, B}. The following corollary states that it is

possible to identify the joint value distribution, F (., .).

Assumption 10 Let Pr(Nj = n) = (1− τjkpj)τ
n
jkp

n
j , where j ∈ {A, B} and

pj ∈ (0, 1
τ̄
).

Assumption 10 generalizes Assumption 5 to this case. Note that bidders

may bid in both auctions without restriction but they don’t have to. The

following assumption is made for simplicity.15

Assumption 11 Let bidder i’s bids across auctions be independent.

Corollary 2 Given Assumptions (1 - 4) and Assumptions 10 and 11, if the

distribution of {V2A, V2B} is observed, the length of the auctions for each set

of auctions, and one bidder is observed to bid in both auctions such that she

has neither the highest or second highest bid in either auction, and there are

at least two auction lengths for each set of auctions, then F (., .) is identified.

Proof. Consider only the set of auctions in which one bidder is observed

to bid in both auctions without being the highest or second highest bid in

either, then the conditional probability is

x1 = (1− τAjpA)(1− τBkpB)fA(V2A)(1− FA(V2A))fB(V2B)(1− F (V2B))

×F (V2A, V2B)(
∑∞

n=3 n(n− 1)τn−3
Aj pn−3

A F n−3
A (V2A)

×((
∑∞

n=3 n(n− 1)τn−3
Bk pn−3

B F n−3
B (V2B)))

(25)

By Proposition 1, FA(.), FB(.), pA and pB are identified, so F (., .) is identi-

fied. Q.E.D.

15See the last section for a discussion of the case where bids across auctions are inter-
dependent.
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Traditionally the demand for differentiated products is estimated by as-

suming that product choices can be mapped into observed and unobserved

product characteristics and using hedonic regression models (Berry et al.

(1995)). The major argument for doing this is that there are often so many

different products that it is not possible to identify the demand for each

product without using information about the demand for similar products.16

The following results suggest that a similar model can be used with eBay

type data.

Assumption 12 Let V i
j be distributed F (., Xj) where Xj is a J dimensional

vector of observed item characteristics.

Assumption 12 states that the value distribution is some general function

of the set of observed characteristics of the item Xj. An example would be

a random coefficients model (Berry et al. (1995); Nevo (2000)). Note that in

Berry et al. (1995) and more recently Bajari and Bankard (2004) there is a

unobserved component of the product characteristics, this issue is discussed

below. As above, the probability distribution on the number of potential

bidders can vary across items.

Assumption 13 Let Pr(Nj = n) = (1 − τjkpj)τ
n
jkp

n
j , for all j items, such

that pj ∈ (0, 1
τ̄
).

Corollary 3 If Assumptions (1 - 4) and Assumptions 12 and 13 hold, then

if {V2} and Xj are observed for all items j, and the auction length is observed

for two different auction lengths for all items j, then F (., Xj) is identified.

Proof. By Proposition 1, given Xj, F (.|Xj) is identified. Therefore, for

all Xj, F (., Xj) is identified. Q.E.D.

Corollary 3 shows that it is straight forward to generalize Proposition 1 to

a hedonic model. The rest of the section considers a model with unobserved

item heterogeneity.

16Part of the identification strategy in this literature is to use this variation in product
characteristics.
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Assumption 14 Let V i
j = vij + ξj where vij is distributed F (., Xj) and

ξj ∈ [ξ, ξ̄], Xj is a J dimensional vector of observable characteristics of

the item, and ξj is a characteristic of the item observed by the bidder and

unobserved by the researcher.

Note that ξj is constant across auctions for the same item. That is it rep-

resents some unobserved characteristic about the car or MP3 player rather

than some unobserved characteristic that is auction specific. The next sec-

tion discusses identification when there is unobserved auction heterogeneity.

An important simplification in Assumption 14 is that unobserved item het-

erogeneity enters the value function additively. This assumption makes iden-

tification straightforward, but one may be concerned that it is unnecessarily

simple (Bajari and Bankard (2004)).

Proposition 4 If Assumptions (1 - 4) and Assumptions 13 and 14 hold,

then if {V2} and Xj are observed for all items j, the auction length for at

least two lengths for all items j, then F (., Xj) and ξj are identified.

Proof. Step 1. Let G(., Xj) be the distribution of vij +ξj. For a given item

j by Corollary 3, Gj(., Xj) is identified. Step 2. Let there be two items j and

k such that Xj = Xk, then for some a > b such that Gj(a,Xj) = Gk(b,Xj),

a − b = ξj − ξk. When this difference is equal to ξ̄ − ξ, ξj = ξ̄ and ξk = ξ,

and so F (., Xj) and ξj are identified. Q.E.D.

Proposition 4 shows that Corollary 3 can be generalized to the case of

unobserved item heterogeniety. Identification comes from comparing the dis-

tributions for items with similar observed characteristics.

The final result shows that the model can be generalized to include ob-

served characteristics of the bidders. In the example of estimating the de-

mand for cars, this may be gained from demographic information obtained

from observing the zip codes of individual bidders.

Assumption 15 Let V i
j = vij + ξj where vij is distributed F (., Xj, Zi) and

ξj ∈ [ξ, ξ̄], Xj is a J dimensional vector of observable characteristics of the
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item, Zi is an I dimensional vector of observable characteristics of the bidder

and ξj is a characteristic of the item observed by the bidder and unobserved

by the researcher.

Proposition 5 shows that a model in the tradition of Berry et al. (1995)

can be identified using eBay type auction data.

Proposition 5 If Assumptions (1 - 4) and Assumptions 13 and 15 hold,

then if {V2}, Xj, Zi, the auction lengths are observed for all j and the identity

of the highest bidder and the second highest bidder are observed, and there

are at least two auctions lengths for all items j, then F (., Xj, Zi) and ξj are

identified.

Proof. Let G(., Xj, Zi) be the distribution of vij + ξj. For a given item j

using a similar argument to Corollary 3, Gj(., Xj, Zi) is identified by Corol-

lary 1. The rest of the proof follows directly from the proof of Proposition

4. Q.E.D.

The proof of Proposition 5 is similar to the proof of Proposition 4 except

that in this case the proof generalizes Corollary 1.

A major objective of this paper is to show that eBay type auction data can

be used to estimate the demand for differentiated goods and suggest a method

for such estimation. Proposition 5 shows that a traditional demand model is

identified using such data. Such a model can account for a large number of

items with bidder preferences allowed to vary generally with observed item

characteristics.

3.3 Unobserved Auction Heterogeneity

This section considers auctions in which individual bidders observe informa-

tion about the value of the item that is unobserved by the researcher. The

main result is a proposition that shows it is possible to identify the value dis-

tribution if the researcher observes the same bidders bidding in a large num-

ber of auctions. This section presents assumptions and data requirements
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for identifying demand with both unobserved auction heterogeneity and un-

observed number of bidders. The first result states that if the distribution

has two mass points an equal distance from 0, then the value distribution

is identified if at least one bidder i is observed bidding in two simultaneous

auctions. The second result states that as the number of auctions that bidder

i is observed to bid in gets large, then for any distribution for the unobserved

heterogeneity (Γ), the value distribution is identified.

Assumption 16 Let V i
j = V i − yj, where yj ∈ [y, ȳ] is observed by bidder i

and distributed Γ(.).

Assumption 16 states that there is some unobserved heterogeneity that is

additive to the value of the item and the same for every bidder in a particular

auction. Note that in this section j refers to the auction rather than the

item. The following assumption states that the distribution of the unobserved

heterogeneity has a simple symmetric two mass point distribution.

Assumption 17 Let Γ(.) be such that y ∈ {−a, a} where Pr(y = a) = γ

and a > 0 and γ ∈ (0, 1)

This assumption and the assumption (below) that the researcher observes

at least one bidder bid in two simultaneous auctions, is enough to identify the

value distribution. The assumption that the two auctions are simultaneous

and the bid in each auction is independent of the bid in the other auction,

is made for simplicity. The next section considers identification issues when

bids are not independent.

Assumption 18 Let each bidder i bid on 2 simultaneous auctions such that

her bids across auctions are independent.

Definition 1 Let At be the set of auctions such that at least one bidder i is

not censored at their last opportunity to bid after t in both auctions and is

not the highest bid in the auctions.

Note that the second highest bidder is never censored. Given these as-

sumptions the following proposition illustrates the basic result of the section.
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Proposition 6 Let Assumptions (1 - 4) and Assumption 5, 16, 17 and 18

hold, then if the distribution of prices {B21, B22}, the bidder’s identities, the

auction lengths, and the amount of the bids (other than the winning bid) are

observed, and there is more than one auction length, then considering the set

of auctions At, as t → τ , F (.) is identified.

Proof By Assumption 17, there is some subset of At such that |Bi
t1 −

Bi
t2| > 0. As t → τ , |Bi

t1 − Bi
t2| = |V i

1 − V i
2 | = 2a, and so we observe {V2}

as if V i
1 > V i

2 , then B21 = V2−a. By Proposition 1, F (.) is identified. Q.E.D.

The proposition states that if the distribution of the unobserved auction

heterogeneity is relatively simple and at least one bidder is observed to bid in

two auctions then the value distribution can be identified. The result follows

from the observation in Song (2003) that bidders who have are not censored

at their last opportunity will bid their value for the item. In this case we

observe the difference between the two valuations.

The next result shows that it is possible to identify demand under a more

general assumption on the distribution of unobserved heterogeneity, however

the requirements on the data are correspondingly larger.

Assumption 19 Let each bidder i bid on J simultaneous auctions such that

her bids across auctions are independent.

Proposition 7 Let Assumptions (1 - 4) and Assumptions 5, 16 and 19 hold,

then if the distribution of prices {B21, B22, ..., B2J}, the auction lengths, the

identities of the bidders and all the bids except the highest are observed, and

there is more than one auction length, then as J → ∞ and considering the

set of auctions At as t → τ , F (.) is identified.

Proof. Step 1. Let the set [y, ȳ] be split into J equal and disjoint sets of

length aJ . Let yj = y + (j− 1)aJ . Step 2. Let each bidder bid in J auctions.

There is a subset ofAt such that for at least one bidder i the J auctions can be

ordered, |Bi
t1 > Bi

t2 > ... > Bi
tJ |. As t → τ , |Bi

tj−Bi
tj+1| = |V i

tj−V i
tj+1| = aJ ,

V i = Bi
tj + ȳ − jaJ and so V2 = B21 + ȳ − aJ . As J →∞, by Proposition 1,
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F (.) is identified. Q.E.D.

The proposition states that as the number of auctions in which the re-

search observes a particular individual bidding gets large, the underlying

value distribution can be identified even with fairly general assumptions on

the distribution of unobserved heterogeneity. The results presented in this

section suggest that there is a trade-off between assumptions on the unob-

served heterogeneity and the requirements on the data.

4 An Infinite Sequence of Auctions

Another major concern with using bidding on eBay to estimate demand is

that bidders may shave their bids in order to account for the option value

of winning a future auction. This section models bidding in such an envi-

ronment and presents assumptions sufficient to identify the underlying value

distribution. Knowing the underlying value distribution may be important

for policy analysis and merger analysis. The first part considers a bidder fac-

ing an infinite sequences of identical auctions while the second part considers

the case where the items are similar but differentiated but the bidder is still

only looking to buy one item from the sequence of auctions.

When bidding for a single item sold in a sequence of auctions, the cost of

winning a particular auction at time t includes both the opportunity cost of

the money and the cost of giving up the opportunity of winning the item in

some future auction. The “right” to bid in a future auction can be thought of

as an option. If a bidder only wants one item then by winning the auction she

gives up this option. Thus when buying a single item in a sequence of auctions

the consumer surplus from winning the item in a particular auction (t) is

equal to the value of the item V i less the price paid for the item, B
(M−1:M)
t ,

less the value of the option (the opportunity cost of winning) (Dixit and

Pindyck (1994)). The value of this option is denoted Oi
t and below it is shown

to be a function of the bidder’s time preference, δi, the value of the item (V i),

the probability of winning a particular future auction (Pr(Bi
t+s > B

(M−1:M)
t+s ))
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the expected price conditional on winning (E(B
(M−1:M)
t+s |Bi

t+s > B
(M−1:M)
t+s ))

and the option value of winning that auction (Oi
t+s).

4.1 Homogenous Auctions

The following set of assumptions are made in order to simplify the game and

turn it into a dynamic decision making problem under uncertainty.17 Let

A denote the set of all auctions and I the set of all potential bidders. The

following assumption is that each bidder faces a known discrete infinite set

of future auctions.

Assumption 20 Let each bidder i faces at time t a known infinite sequence

of auctions, Ai
t = {Ai

t, A
i
t+1, A

i
t+2, ...} ⊂ A where i ∈ I.

However, while the particular bidder knows which set of auctions she is

bidding on, the only information that she has about her competing bidders

is the probability distribution pnt.

Assumption 21 Ai
t is known to i but unknown to j 6= i.

Assumptions 21 and 22 are made so that nothing about future competi-

tors is learned from who bids what and who wins what in past auctions.

While these assumptions seem somewhat arbitrary the sheer number of auc-

tions and bidders on eBay suggests that it is difficult for bidders to learn

about the bids and participation in future auctions from the behavior and

outcomes of past auctions.

Assumption 22 If bidder i wins auction Ai
t then she leaves the sequence,

and is replaced by some bidder inew such that V inew is distributed f(.) and

Ai
t+1 = Ainew

t+1 .

17Jofre-Bonet and Pesendorfer (2003) show in a somewhat general setting how dynamic
auction games with Markov Perfect equilibria can be turned into a dynamic decision
making problem. Zeithammer (2004a) shows that bidders in actual auctions seem to
behave as if the problem is a dynamic decision making problem rather than a dynamic
game. One explanation is that there is just too much new entry and too many new auctions
for the bidder in one auction to have a “pivotal” effect on the outcome of a future auction.
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The assumptions contrast to the assumptions made in Zeithammer (2004b).

In that paper, bidders know about future auctions and behave strategically

by making bids that affect the expected value of winning future auctions.

Zeithammer (2004b) calculates the equilibrium of the dynamic game for the

2 period and 3 period case. The simplifying assumption made above turns

the problem into a dynamic decision making problem. It is further assumed

that these auction do not overlap in time. There may be a concern that

some auctions are occurring simultaneously and a bidder may have to choose

between them, however this issue is assumed away for simplicity.18 Each

auction, Ai
t, is as presented in the previous section and in Song (2003).

Assumption 23 Let ptn = pn, Ft(.) = F (.), and Gi
t(.) = Gi(.) for all t ∈

{1, 2, ...}.
Assumption 23 states that the model is stationary. This assumption

simplifies the analysis and distinguishes the problem from models analyzed

in the literature (Deltas (1999)).

Lemma 1 Given Assumptions (1 - 4) and Assumptions (20 - 23), in any

Bayes Nash equilibrium of the “super” game, Bi
t = Bi = V i −Oi.

It is straight forward to see that given that nobody learns anything about

participation in future auctions from observing bidding and outcomes in past

auctions and that the exogenous parameters are all stable over time (Assump-

tion 23), then it must be that in equilibrium Bi
t = Bi.19 It follows from above

that the actual value of winning the auction is V i−Oi. It then follows from

Song (2003) that in every BNE, Bi = V i − Oi, where Bi is assumed to be

the bid of the bidder when the bidder has an opportunity to bid at her last

opportunity. Note that I use Bi and V i −Oi interchangeably.

18Zeithammer (2004a) shows that even though auctions may end sequentially there is a
sense in which they are actually simultaneous. In particular, if the existence of a future
auction is revealed prior to the end of the current auction it may be optimal for the bidder
not to bid on the current auction. This would occur if the bidder’s “net value” for the
item, ie their value for the item less their option value, is less than 0.

19I’m not assuming Markov Perfect equilibria but just claiming that in every Bayes Nash
equilibria of this game the bidding functions are stationary.
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Definition 2 Let H(.) be the distribution of Bi
t which is on the support [b, b̄].

Above and in Song (2003) it is shown that H(.) can be identified from

observing the auction prices and certain other data. Let δi define bidder i’s

preferences over time. Given this result and assuming δi is constant over

time, the option value can be written in the following recursive manner

Oi(Bi) = δi Pr(Bi > B(M−1:M))E(Bi −B(M−1:M)|Bi > B(M−1:M))

+δi(1− Pr(Bi > B(M−1:M)))Oi(Bi)
(26)

By winning the auction at time t the bidder gives up the value of the winning

the auction at time t + 1 which is the probability of winning the auction

(Pr(Bi > B(M−1:M))) by the expected value of winning the auction given

that the bidder won (E(Bi−B(M−1:M)|Bi > B(M−1:M))). There is also some

probability that they lose the next auction in which case their continuation

value is equal to the option value. This equation can be rearranged to give

Oi(Bi) =
δi Pr(Bi > B(M−1:M))E(Bi −B(M−1:M)|Bi > B(M−1:M))

1− δi(1− Pr(Bi > B(M−1:M)))
(27)

In this case if δi is known it is straight forward to determine Oi(Bi). Let H2(.)

denote the distribution of B(M−1:M) (the price), which is observed. Given this

we can rewrite the option value as a function of observed variables.20

Oi(Bi) =
δiH2(B

i)
∫ Bi

b (Bi −B(M−1:M))h2(B
(M−1:M))dB(M−1:M)

(1− δi(1−H2(Bi)))
(28)

It is often argued that real people cannot do the types of calculations that

economists assume of them. In this case, eBay or some other service could

provide a web based option calculator to calculate the bidder’s option value

and thus their optimal bid.21 The following proposition gives the main result

of the section.

20See Jofre-Bonet and Pesendorfer (2003) for a similar argument.
21I note that traders use such calculators in pricing options via the Black-Scholes for-

mula, and that computer scientists are working on developing similar types of calculators
for bidding in on-line auctions.
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Proposition 8 If Assumptions (1 - 4) and Assumptions (20 - 23), H(.)

is identified, H2(.) is observed and δi is known, then F (.) is identified and

F (V i) = F (Bi+Oi(Bi)) = H(Bi), where Oi(Bi) is defined by Equation (28).

Proof From Lemma 1 we have that Bi
t = V i−Oi(Bi) or V i = Bi+Oi(Bi).

From Equation (28) O(Bi) is a function of Bi, H2(.) and δi. Q.E.D.

The proposition states that if δi is known and stationary then it is straight-

forward to determine V i from the observation of Bi and the observed distri-

bution of prices (H2(.)). Each bidder discounts her bid by her option value.

If her discount factor is known, her option value can be calculated given

her proposed bid (Bi), her discount factor (δi) and the distribution of prices

(H2). The problem of course is that in general δi is not observed.22

Assumption 24 Let δi = δ = 1 + r

Corollary 4 If Assumptions (1 - 4) and Assumptions 20 - 23 and Assump-

tion 24 hold, H(.) is identified, H2(.) is observed and r is constant and ob-

served, then F (.) is identified and F (V ) = F (B + O(B)) = H(B).

Proof. By Assumption 24, δi = 1 + r, as r is observed, we have the result

from Proposition 8. Q.E.D.

Corollary 4 states that if the interest rate (r) is known and it is assumed

that every bidder’s discount factor is exactly equal to 1 + r, then the value

distribution is identified. This result comes straight from Proposition 8 as

the discount rate is known. If we assume that capital markets are perfect and

each bidder is optimizing on an interior solution with respect to their choices

over borrowing and saving, then it would be reasonable for the interest rate

to determine every bidder’s discount factor. The following result shows that

if we have more information then it is possible for the value function to be

22See Rust (1994) for a discussion of the problem of identifying the decision maker’s
time preference in a dynamic decision making problem under uncertainty.
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identified under less restrictive assumptions on each bidder’s time preferences.

In particular, if there is variation in the interest rates it is possible to identify

time preferences that are an approximation around the interest rate. The

following example shows that if interest rates follow simple Markov process

with two mass points, it is possible to identify preferences up to a linear

approximation.

Assumption 25 Let r be distributed by a Markov process such that Pr(rt+1 =

r1|rt = r2) = Pr(rt+1 = r2|rt = r1) = q where q ∈ (0, 1)

Assumption 26 Let δi = 1 + r + β(1 + r).

Assumption 26 states that each bidder’s time preferences is a linear ap-

proximation around the interest rate. The following corollary states that

given the variation in the interest rates and the time preferences of the bid-

ders it is possible to identify both the value distribution (F (.)) and the time

preference parameter (β).

Corollary 5 If Assumptions (1 - 4) and Assumptions (20 - 23) and As-

sumption 25 and 26 hold, Hr1(B(r1)) and Hr2(B(r2)) are identified and

H2r1 and H2r2 are observed, then F (.) and β are identified, and F (V ) =

F (B(r1) + O(B(r1)) = Hr1(B(r1)) where O(B(r1)) is defined below.

Proof. Given the distribution of r we can write option value in a recursive

fashion.

O(B(r1)) = (1 + r1 + (1 + r1)β)

×(q(Hr1(B(r1))E(B(r1)−B(M−1:M)|B(r1) > B(M−1:M))

+(1−Hr1(B(r1)))O(B(r1)))

+(1− q)(Hr2(B(r2))E(B(r2)−B(M−1:M)|B(r2) > B(M−1:M))

+(1−Hr2(B(r2)))O(B(r2))))
(29)

Similarly for O(B(r2)). We have

E(B(r1))− E(B(r2)) = O(B(r1))−O(B(r2)) (30)
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Noting that the LHS is observed. It is tedious but straight forward to solve

for β as a function of observables from O(B(r1)), O(B(r2)) and Equation

(30). Q.E.D.

Corollary 5 states if the interest rate follows a simple Markov process

and the distribution is known and observed by the bidders, then the value

distribution can be identified when every bidder’s discount factor is a simple

linear function of the interest rate. The variation in bids caused by the

changing interest rates can be used to identify the representative bidder’s

time preferences. It seems reasonable to expect that the more interest rate

regimes there are, the more flexible the time preference function that can be

identified.

The corollary shows that the richer the data the more flexible the assump-

tions on the approximation of the bidder’s preferences over time. One useful

feature of eBay data is that particular bidders can be tracked over time (see

Arora et al. (2002) for an example of how this data can be used). If there

is data on bidder characteristics such as their zip code or their reputation

score, then it may be possible to use similar methods to identify demand

when time preferences vary across observable characteristics of the bidder.

4.2 Differentiated Products

This section considers a bidder facing an infinite sequence of auctions for a

single item, where the items offered in each auction are differentiated. In

this case, Zeithammer (2004a) points out that knowledge of specific future

auction affects bidding behavior. In particular, if a bidder learns that her

preferred item will be sold in the next auction she may not bid in the current

auction as the continuation payoff may be higher than the expected payoff

of winning the current auction.

Consider the following model. The following assumption states that the

bidder faces a sequence of auctions with two items ({C,D}) available in the

sequence. Let V i
c denote the bidders value for item C where V i

c is distributed

Fc(.) and similarly for item D. Note that only item is available at a time and
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the bidder will leave the sequence once she wins an auction. For example

if the items are cars the bidder will leave the sequence once she wins a car,

irrespective of whether it is car C or car D.

Assumptions 27 and 28 generalize the model presented in the previous

section.

Assumption 27 Let each bidder i face a sequence of auctions Ai
t = {Aijt

t , A
ijt+1

t+1 , ...}
where i ∈ I and item jt ∈ {C,D}.

Assumption 28 The ex ante probability that the item in any auction At is

C is pc, with pd = 1− pc.

Assumption 29 states that the bidder may learn about the item to be

auctioned in the next auction at any time during the current auction. The

probability that she learns of the item’s type at time s is denoted q(s).

Assumption 29 In each auction At, the probability the item type in auction

At+1 is revealed prior to s ∈ [0, τ ] is q(s), such that q(τ) ≤ 1.

Lemma 2 If Assumptions 21 and 22 and Assumptions 27, 28 and 29 hold,

V i
c 6= V i

d and the bidder’s discount rate is close enough to 1, then in every

Bayes Nash equilibrium, each bidder bids her value in each auction either

after the item in the next auction is revealed or at her last opportunity, if she

is not censored.

A well known result in decision making under uncertainty is that if future

information may affect the decision maker’s optimal choice then in expecta-

tion the decision maker is strictly better off waiting for that information to

be revealed before making the choice (Mirman et al. (1993)). In this case new

information affects the option value of winning the current auction and thus

the optimal bid. As discussed above there is preponderance for eBay bidders

to have their high bids bunched towards the end of the auction. This re-

sult suggests that one explanation is that bidders are waiting for information

about the items that will be available in future auctions.23

23See Roth and Ockenfels (2002) and Bajari and Hortacsu (2003) for a discussion of
other explanations.
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CU CC CD DU DC DD

CU pc(1− q(ti)) q(ti)p2
c pcq(t

i)pd pd(1− q(ti)) pdq(t
i)pc q(ti)p2

d

CC (1− q(ti)) q(ti)pc q(ti)pd 0 0 0

CD 0 0 0 (1− q(ti)) q(ti)pc q(ti)pd

DU pc(1− q(ti)) q(ti)p2
c pcq(t

i)pd pd(1− q(ti)) pdq(t
i)pc q(ti)p2

d

DC (1− q(ti)) q(ti)pc q(ti)pd 0 0 0

DD 0 0 0 (1− q(ti)) q(ti)pc q(ti)pd

Table 3: Transition probabilities

Given this result the bidder’s problem has six states with the transition

probabilities given in Table 3. The six states are CU which denotes that

the bidders is currently in an auction for item C and the item in the next

auction unknown (the bidder has not yet observed a signal). Similarly CC

denotes a current auction for item C and it is known that the next auction

is an auction for item C. The transition probabilities are determined by the

ex ante probability that the item will be C (pc) and the probability that

the bidder observes a signal of the item to be auction off in the next auction

prior to her “last opportunity” (q(ti)). We can write down the bidder’s option

value of winning a particular auction in the following recursive manner.

Oi(Bi
CU) = δi(

∑
K pkHk(B

i
k)E(Bi

k −B(M−1:M)|Bi
k > B(M−1:M))

+(1−Hk(B
i
k))O

i(Bi
k))

(31)

where K = {CU,CC,CD, DU,DC, DD}, pk denotes the transition prob-

ability described above, and Hk(.) is the distribution of bids conditional on

the state. The following proposition states that given certain assumptions we

can identify the underlying conditional value functions from data generated

by bidders facing such a decision making problem.

Proposition 9 If Assumptions 21, 22 and 24 and Assumptions 27, 28 and

29 hold, Hk(.) is identified and H2k is observed for all k ∈ K, then Fj(.) is

identified for each j ∈ {C, D} and FC(V ) = FC(BCU+O(BCU)) = HCU(BCU)

and similarly for FD(.).
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Proof. Given Lemma 2 and the discussion presented above, the proof is

similar to the proof of Corollary 5. Q.E.D.

As long as it is possible to observe the distribution of prices conditional

on the six states of the world, we can identify the underlying value function

for each state (using methods described in Song (2003) and in the previous

sections). Once we have these and we know the time preference of the bidders

it is just a matter of using the option value functions and some algebra to

determine the underlying conditional value distributions.

5 Conclusion

There are three major issues with using eBay data to estimate the demand

for an item. The first is that some bids and bidders are censored because

potential bidders enter an auction after the price has risen above their willing-

ness to pay. The second issue is that there may be observed and unobserved

heterogeneity across bidders, items and auctions. The third issue is that an

eBay bidder does not face a single auction for a single item, but rather faces

a sequence of auctions for a single item. This paper looks at each issue in

turn.

The first section develops on ideas presented in Song (2003) and Athey

and Haile (2002), and suggests an alternative method for identifying demand

in single eBay auctions. Athey and Haile (2002) shows that in certain auc-

tions demand can be identified from observing the price and the number of

bidders. Unfortunately, in general eBay auctions it is not possible to observe

the number of bidders. Song (2003) shows that for a certain set of eBay auc-

tions it is possible to identify demand even when the number of bidders is

unknown if the distribution of two order statistics are observed. However, in

many cases it is not possible to observe two order statistics in eBay auctions.

This paper presents two alternative approaches. The first assumes a partic-

ular distribution on the number of potential bidders. The second makes an

additional structural assumption. It is shown that under these additional
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assumptions, the distribution of values is identified.

The second section generalizes the results of the first section to the case

where there is auction heterogeneity. The paper shows that a traditional

demand model is non-parametrically identified using eBay type data. The

model allows for general functional form relationships between observable

characteristics of the item and the bidder and unobserved item heterogeni-

ety. The proof of the proposition suggests a method for non-parametrically

estimating the model. Athey and Haile (2002) show that when the number

of bidders is known the underlying value distribution can be identified when

there is unobserved auction heterogeneity. The section presents assumptions

and requirements on the data for identification in this case where the number

of bidders is unknown.

The third section considers an eBay bidder facing an infinite sequence of

auctions for a single item. Following Dixit and Pindyck (1994), Zeithammer

(2004a,b), Arora et al. (2002) and others, it is shown that winning an eBay

auction can be thought of as “killing” an option to bid on a future auction

for the same item. The implication is that the value of the item won is equal

to its actual value less the value of the item’s option. We can thus reinterpret

the value of the item in a single auction in this way. Following Song (2003)

it is still a BNE for all bidders to bid their value for the item in each auction

(if they have the opportunity to bid at their last opportunity). Thus the

distribution of values for the item in a particular auction is identified following

Song (2003) and the results in the first section. The section shows that

given certain data requirements and certain assumptions on each bidder’s

preferences over time, the value distribution for the item that is independent

of any particular auction can be identified.
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