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The adjustment of product market prices to changes in demand plays an important role in 

business cycle fluctuations. A greater degree of price inflexibility in response to market demand 

changes may lead to larger swings in real output and employment when an economy is subjected 

to aggregate demand shocks. Indeed, Rotemberg (1982) finds evidence of sluggish price 

adjustment in aggregate U.S. price data. 

Recent research on product market price adjustment has focused on firms' market power 

and how this power may be exercised differentially over the business cycle. For example, 

studies by Greenwald et al. (1984), Gottfries (1991), Klemperer (1995), and Chevalier and 

Scharfstein (1996) have emphasized the role of capital-market imperfections. When capital-

market imperfections exist, the incentives for firms to make investments may be reduced because 

firms may not reap the profits associated with the investment. One form of investment is a low 

price that builds a firm's market share by attracting more customers in the future. During a 

recession, firms may raise prices, forgoing any attempt to raise future market share, because the 

probability of default is high. Chevalier and Scharfstein (1996) find support for this hypothesis in 

data drawn from the supermarket industry. Another strand of the literature has emphasized the 

role of collusion. Rotemberg and Saloner (1986), Rotemberg and Woodford (1991, 1992) and 

Bagwell and Staiger (1997) show that a firm participating in a collusive group may have more 

incentive to defect during a boom period, because the short term gains from defection are 

relatively large. Thus, an optimal collusive mechanism may involve lower prices (or markups 

over marginal cost) during booms than during recessions, in order to eliminate the incentive to 

defect. l 

We propose an alternative model of oligopoly pricing that has implications for variations 

1 If marginal cost is increasing with output then optimal collusion may involve countercyclical markups over 
marginal cost coupled with procyclical price levels. Bagwell and Staiger (1997) show that the structure of an 
optimal collusive mechanism is sensitive to the autocorrelation of demand shocks. Positively correlated demand 
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in prices and industry efficiency over the business cycle. We refer to this as a non-collusive 

oligopoly model to distinguish it from collusive theories of oligopoly behavior over the business 

cycle. Our model emphasizes the role of long run production capacity investments that must be 

made before demand conditions are known. After capacity investments are made, firms learn 

about the level of product demand and choose prices. The pricing incentives for firms differ 

depending on the level of demand. If demand is high, then the short run competitive (market 

clearing) price is a pure strategy Nash equilibrium. However, if demand is low, then capacity 

constrained firms have an incentive to deviate from the short run competitive price. The typical 

result is that firms adopt mixed strategies for prices that involve a markup over the short run 

competitive price and that generate excess production capacity. 

Our non-collusive oligopoly model predicts that output prices are procyclical, as do many 

other theories. The key prediction that distinguishes the model from other theories is that output 

prices are predicted to have greater variance during low demand periods than during high 

demand periods. Two other implications of our non-collusive oligopoly model are noteworthy. 

First, price adjustments are sluggish in the downward direction, relative to perfectly competitive 

prices. If demand changes from high to low then oligopoly firms reduce prices by an amount 

less than the change in the competitive price, since oligopoly firms charge a markup over the 

short run competitive price when demand is low. A second (and related) implication is that 

existing capacity is utilized efficiently when demand is high but may be utilized inefficiently 

when demand is low. Oligopoly price markups above the short run competitive price can lead to 

less output and employment than is efficient when demand is low. 

In Section I we formalize the idea that ex ante capacity investments coupled with ex post 

price setting lead to price variation over the business cycle. We begin with a formal two-stage 

shocks can yield procycIical markups over marginal cost and procyclical price levels. 
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duopoly model of investment and pricing in which product demand may be either high or low. 

This model can be viewed as an extension of Kreps and Scheinkman (1983) to allow for demand 

uncertainty. As long as the difference in demand between high and low levels is limited, 

equilibrium prices conditional on low demand involve a markup over the short run competitive 

price and positive variance. Later in Section I, we embed the two-stage model in a dynamic 

business cycle setting in which demand alternates stochastically between fast-growth (boom) 

phases and slow-growth (recession) phases. This formulation provides the structure for our 

empirical tests. This specification also corresponds to Bagwell and Staiger's (1997) 

specification of demand changes in their analysis of optimal collusive mechanisms. 

The empirical analysis in section II does not attempt to estimate price markups directly.2 

Instead, the analysis investigates an implication of our non-collusive oligopoly model for 

observed prices. The dynamic version of the model predicts that price changes are more variable 

during recessions than during booms, because firms employ mixed strategies during recessions. 

Another prediction resulting from the mixed strategy equilibrium is that the distribution of price 

changes differs in recessions. These implications are tested using a type of time series switching 

regime filter employed by Hamilton (1989). We examine seventeen manufacturing industries at 

the two- and three-digit Standard Industrial Classification (SIC) level. A separate time series 

model is estimated for each industry. Fourteen of these industries have substantially higher price 

change variances and distinctly different forms of the price change distribution when production 

is in a recessionary state. 

Before beginning our analysis, we briefly review the relevant empirical evidence on price 

markups. Domowitz, Hubbard, and Petersen (1987) examine the empirical evidence on cyclical 

responses of prices and price-cost margins. With a panel data set of industries at the four-digit 

2 The estimation of price-cost margins or of markups over a competitive price involves potential measurement 
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SIC level spanning 1958-1981, they find that more concentrated industries have more procyclical 

margins. As they note, these estimates may be biased upward (downward) if marginal cost is 

greater (less) than measured average variable cost. Consistent with the Rotemberg and Saloner 

predictions, Domowitz et al. further find that industries with high price-cost margins have more 

countercyclical price movements. However, Domowitz et al. use industry-level changes in 

capacity utilization as a proxy for business cycle movements. Low capacity utilization at the 

industry level may simply be a result of high prices, rather than the result of a downward shift in 

demand. Bresnahan (1989) also points out the limitations of cross-industry comparisons of 

competition when assessing cyclical variations of margins and prices. 

To avoid the problems of using accounting data for estimating the price-cost margin, 

Domowitz (1992) takes an approach that examines total factor productivity. He adjusts the 

Solow residual to allow firms to price above marginal cost and then permits the price-cost 

margin to vary with the level of aggregate demand as measured by capacity utilization in 

manufacturing. Domowitz's point estimates indicate that there is a negative correlation between 

the margin and aggregate demand movements; however, the standard errors are large enough so 

that the null hypothesis of acyclicality cannot be rejected. 

Bresnahan and Suslow's (1989) study of the aluminum industry does not reveal any 

evidence of oligopoly market power. They develop an econometric model of short run supply, 

capacity constraints, and long-lived capital. Employing a switching regression model, they find 

evidence of two regimes in their reduced form quantity-produced and quantity-shipped 

equations. The implication is that in the high demand regime, prices are determined by the 

vertical portion of a supply curve when production is constrained at capacity. Output is 

unconstrained in the second regime, output falls well short of capacity, and prices are determined 

problems, as explained below. 
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by linear average variable costs. The aluminum industry is part of one of the industry groups 

considered in our empirical analysis. Our empirical results for this industry are largely 

consistent with theirs; we find no evidence of price markups above the competitive price in 

recessions for this industry. However, this industry is the exception rather than the rule among 

the industries that we examine. 

Wilson (1997) reports evidence from laboratory experiments on oligopoly pricing. The 

experiments are similar to Davis and Holt's (1994) posted offer pricing experiments except that 

Wilson considers the effects of a demand shift rather than the effects of a supply/capacity 

change. The results are broadly consistent with the model's predictions. When demand is high, 

prices are near the short run competitive level. When demand is low, prices remain above the 

short run competitive level and prices are more variable than when demand is high. When 

demand is low prices fail to conform precisely to the equilibrium mixed strategy predictions. 

Prices appear to follow a disequilibrium process similar to an Edgeworth cycle process. 

I. The Theoretical Model 

We develop a duopoly model of capacity investment and pricing. The level of demand is 

uncertain when firms make investment decisions but is known before firms make pricing 

decisions. The initial formulation involves a simple two-stage game with a step demand 

function.3 Later in this section we embed the two-stage game in a dynamic, business cycle 

setting that provides the basis for the econometric analysis. 

Two-Stage Model 

We assume there are two levels of demand, "low" and "high". Let a E {f!,a} represent 

the total mass or number of customers, with 0 < a < a. The probability that demand is low is 

3 Reynolds and Wilson (1997) analyze more general models of this type, including formulations with a downward 
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e E (0,1). All consumers are assumed to have a common value, v, for one unit of the product; 

the market demand is then a step function with height v and length a. 

The marginal cost of capacity in the first stage is c. Firm one chooses capacity x and firm 

two, capacity y. The marginal cost of production is constant in stage 2, and is normalized to 

zero. The parameter v can be interpreted as the value of the good minus the short run marginal 

production cost. We assume that both firms know v and c, with v> c > 0. 

The level of demand is observed before firms set prices in stage two. A subgame in stage 

two is defined by the triple, (x,y,a). There are three cases to consider. First, suppose that x+y ~ a. 

This is region A in the graph of capacity pairs in Figure 1. If the capacities are in region A, then 

a price equal to v is a dominant strategy for each firm. Note that v is also the short run 

competitive price when capacities are in A. 4 A firm's subgame payoff (revenue) is simply v times 

its capacity. Second, suppose that x;;::: a and y;;::: a. Each firm has enough capacity to serve the 

market by itself and the pricing sub game corresponds to a situation of Bertrand price 

competition. This is region B in Figure 1. The unique subgame Nash equilibrium (NE) has both 

firms setting price equal to zero (the short run competitive price) and each firm earns zero in the 

subgame. The final case is represented by region C in Figure 1. Total capacity exceeds the size 

of the market, but at least one firm is too small to serve all consumers by itself. In this case there 

is no pure strategy equilibrium for the pricing sub game (except for the trivial case in which one 

firm's capacity is zero). A subgame Nash equilibrium involves mixed strategies for prices. 

Reynolds and Wilson (1997) derive equilibrium price distributions and expected revenues for 

this case. Equilibrium prices exceed the short run competitive price of zero. 

The expected revenue for firm one in a subgame equilibrium is given by the following 

sloping demand. However, the simple formulation of the present paper yields the principal empirical implications 
that we search for in the data. 
4 If total capacity is less than a then v is the unique competitive price. If total capacity equals a then v is the upper 



function (see Reynolds and Wilson (1997)): 
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Expected revenue for firm two is given by r(y,x,a). The function r(·) is continuous in each of its 

arguments. 

In stage one firms choose capacities. The level of demand is uncertain in stage one. 

Expected profits as a function of capacities are 

lZ"(x,y) = Br(x,y,g) + (1- B)r(x,y,a) - ex 

for firm one and lZ"(y,x) for firm two. 

The following two assumptions are utilized. 

Assumption AI: (1- B)v > e 

Assumption A2: .1 a> a 2-

Al is a condition that makes it attractive for firms to invest so that total capacity is sufficient to 

serve all consumers when demand is high. Without A I, firms would not (collectively) invest in 

capacity beyond g, and excess capacity would never emerge. A2 limits the difference in 

demand levels; high demand is no more than 50 percent above low demand. In the absence of a 

condition like A2, an equilibrium may involve a Bertrand-type outcome with prices equal to 

short run marginal cost when demand is low. 

Under Al and A2 a pure strategy equilibrium in capacity choices exists. The derivations 

appear in Appendix A. There are two principal types of reaction function configurations. If 

B::;; a(1- e I v) I (3a - 2g), then reaction functions are as in Figure 2A. There is a continuum of 

bound on the interval of competitive prices. 
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equilibria, which includes a symmetric capacity pair. If e> a(l- c / v) / (3a - 2f!), then 

reaction functions are as in Figure 2B. Again, there is a continuum of equilibria. However, the 

equilibrium set does not include a symmetric capacity pair because reaction functions have a 

discontinuity involving a "jump" across the 45 degree line. 

The main results may be summarized as follows. 5 There is a continuum of equilibria. 

Equilibrium capacities sum to a, the level of high demand. If demand is high, then in stage two 

both firms set price v, which is the upper bound of the set of short run market clearing prices. 

There is no excess capacity. If demand is low, then in stage two both firms adopt mixed 

strategies for prices, with prices above the short run market clearing price of zero. Prices have 

positive variance and excess capacity emerges. An illustration of equilibrium price distributions 

for a low demand realization is provided in Figure 3. The figure illustrates the skewness of 

pricing distributions that is a feature of equilibrium mixed strategies in Bertrand-Edgeworth 

models. 

We use the term price markup to indicate the difference between a firm's price and the 

(maximum) short run competitive price.6 Equilibrium prices are procyclical while equilibrium 

price markups are countercyclical in the simple two-stage game. 

The predicted variation of prices when demand is low may seem to be at odds with the 

notion of price rigidity that was noted at the beginning of the paper. After all, New Keynesian's 

explain that the difficulties posed by imperfect competition are due to inflexible prices rather 

than to excessive price variation. In spite of this apparent contradiction, there is in fact a form of 

5 The two-stage model is fOlTIlUlated as a duopoly. However, the basic results on markups and price variability 
continue to hold for markets with more than two firms, as long as the market does not become too competitive. For 

example, suppose that there are n ~2 equal sized firms, with total capacity equal to a. If n + l<a I(a - fl), then 
when demand is low, equilibrium prices are draws from a mixed strategy distribution; prices involve a positive 
markup over short run marginal cost and prices have positive variance. 
6 Our usage of the term markup may be somewhat unconventional. The markup term is often used to indicate the 
difference between price and short run marginal cost. In our setting, short run marginal cost is not defmed for 
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price rigidity in the our model. The rigidity can be understood by noting that when demand 

changes from high to low, equilibrium prices decrease by less than short run competitive prices. 

A Dynamic, Business Cycle Formulation 

In an analysis of business cycle fluctuations, Hamilton (1989) formulates a model of the 

growth rate of aggregate U.S. output. This formulation involves an unobserved state variable 

that indicates whether the economy is in a low-growth or a high-growth state, and a Markov 

process governing transitions between states. Hamilton develops an estimation procedure for 

this model and finds that it provides a good characterization of aggregate business cycle 

fluctuations.? This type of two-state growth process is also utilized in Bagwell and Staiger's 

(1997) theoretical analysis of collusive pricing over the business cycle. 

We adapt Hamilton's business cycle model to formulate a model of demand fluctuations 

in a single market. Let at denote the market size in period t. St is the "state" at date t and takes 

on the value of one or two. The evolution of the state variable is governed by a Markov chain 

process with, Pi} = Prob[st = jiSt-I = i], i,j E {1,2}. The size of the market follows a state 

dependent trend at+1 = 'SI+1 at where 'I > '2 > o. In percentage terms, demand growth 

betweentand t+l is, In(at+I)-ln(at)=ln(,s ). 
1+1 

There are two stages within each time period. Capacities are chosen in the first stage of 

each period. In stage one of period t, at-l and St-l are known, but at is unknown. So, if St-l = i, 

then Pi2 is the probability of low growth (or contraction if '2 < 1) from t-l to t. Firms choose 

prices in stage two of period t after observing the level of demand, at. Another interpretation is 

that firms are producing to a stock each period, but it is after production occurs that the firms 

output equal to capacity. We use the short run competitive price as a benchmark instead of marginal cost. 
7 The business cycle dates from Hamilton's filter closely correspond to the traditional NBER dates. It is also worth 
noting that the unobservable state is only one of many influences on the growth rate so that output could be falling 
even though the economy is in the "high" growth rate state. 
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learn the actual level of demand and choose prices. For industries with large irreversible 

capacity investments (e.g., chemicals), this must be the interpretation. 

We add a feature to the model to allow for price variations due to variations in production 

costs. Let bt be the real short run marginal cost of production in t, and let rt be consumers' real 

reservation price in t. Assume that bt is an i.i.d. random variable with E(b() = b > 0 and 

Var(b
t

) = O"~. Furthermore, we assume that rt = bt + v; i.e., reservation prices and short run 

marginal costs are perfectly correlated. Firms observe rt and bt after capacities are set in t and 

before prices are set in t. Variations in rt and bt do not influence firms' expected revenue 

associated with capacity investments, since v is constant. 

The marginal cost of capacity investment is also permitted to be time dependent through 

the state variable, St. Let C(St_l) be the marginal cost of capacity in t. Assume that 

0< c(1) ~ c(2) < v so that the marginal cost of capacity following slow growth periods is less 

than or equal to marginal capacity cost following high growth periods. The following two 

assumptions are counterparts to Ai and A2. 

Assumption Bi: (1- Pi2)v > c(i), i = 1,2 

Assumption B2: t" 2 > "1 

Consider first the two-stage game for a single period t, given any at-I and St-I. Under 

assumptions Bi and B2 an equilibrium pair of capacities exists for this two-stage game. 

Equilibrium capacities in period t sum to "lat-l' The set of equilibrium capacities may differ 

depending on the value of state St-I, since the probability of low demand and the marginal cost of 

capacity are both permitted to depend on St-I. If demand is high then both firms set a price equal 

to rt , the real reservation price. If demand is low, then firms adopt mixed strategies for prices 

over a support contained in (b(, r( ] • 

I 
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Now consider the infinite horizon game beginning in period one, given initial conditions, 

(ao ,so), Let b'be a common discount factor, where we assume that rIb' < 1, so that payoffs are 

bounded. We focus on equilibria that have two features: (1) firms use strategies that constitute 

an equilibrium for the two-stage game in each period t, conditional on (a t-1> S t-I), and (2) the 

market shares of capacities are the same whenever the previous period state is the same. 

Equilibria with these features yield a stationary Markov process for price and quantity changes. 

The next step of the analysis is to characterize such a process. 

Suppose that (St-I ,St) = (1,2); i.e., there is high growth in t-1 and low growth in t. Then 

III period t firms utilize mixed strategy distributions of prices. As long as St-I = 1, this 

distribution is the same, regardless of the value of at-I, given the features of the equilibrium we 

consider. Let mit be a random variable representing the average of the two firms' prices less 

marginal production cost, based on their mixed strategies, with mIt E (0, v], E(ml t ) = ml < v, 

2 and Var(ml t ) = (j'ml • 

Suppose instead that (St-I ,St) = (2,2); i.e., there is low growth in periods t-1 and t. 

Firms utilize mixed strategy distributions of prices and, as long as SI_I = 2, this distribution is the 

same, regardless of the value of at-I. Let m2t be a random variable representing the average of the 

two firms' prices less marginal production cost, based on their mixed strategies, with 

With two states the model makes four predictions for price and quantity changes. Let Pt 

and qt represent the percentage change in prices and quantity, respectively. The results are 

derived in Appendix B and summarized in Table I. The testable implications of the model are 

twofold. First, during recessions (St = 2) the model predicts that changes in price will have a 

larger variance than during booms. Second, the form of the distribution of price changes will be 

I 
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different in recessions than in booms. For example, suppose that bt is normally distributed. 

Then prices in booms are normally distributed, while prices in recessions consist of a normally 

distributed marginal cost component and a non-normally distributed price markup component. 

This generates price changes in recessions that have a distribution that is not Gaus~ian. 

1 

2 

Table I 
Model Predictions * 

1 2 

E(pt) = 0 
(b +mIJ E(pt)=ln <0 

b +v 
E(qt)=lnTI 

E(qt) = InT2 
2 

Var(pt) = 2¢OO'b 2 2 
Var(pt) = (¢O + ¢I)ub + ¢W m, 

Var(qt) = 0 Var(qt) = 0 

( b +V ) E(pt) = In _ > 0 E(pt) = 0 
b +m2 

E(qt) = InTI 
E(qt) = InT2 

2 2 
2 2 Var(Pt) = 2¢2 (Ub + U m) 

Var(pt) = (¢O + ¢2)Ub + ¢20'm2 
Var(qt) = 0 

Var(qt) = 0 

II. Estimation Approach, Data and Empirical Analysis 

The business cycle formulation of the previous section generates a specific time series 

model of price and quantity changes. However, some features of the model are too restrictive. 

For example, the predicted variance of quantity changes is zero in each state; only two different 

quantity-change amounts are predicted to appear. In what follows we specify an empirical 

model that is more general than what is laid out in Table I. We allow a nonzero covariance 

between price and quantity changes. As we will discuss later, this permits a test of a prediction 
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in an optimal collusive model. More importantly, a positive variance for quantity change is 

permitted in each state. The state variable is not observed, so that the observed path of price and 

quantity changes must be used to make inferences about the values of the state variable (as with 

the Kalman filter). The unobserved state is assumed to be one of two growth rates, "high" or 

"low," and the probabilistic switch from one state to another is assumed to follow a Markov 

process. This approach to the issue of cyclical pricing is appealing because the data will 

determine when an industry switches regimes and whether relative price changes are more 

variable or not in recessions. 

Time Series Model 

The model we use is of the type formulated by Engel and Hamilton (1990) to test the 

hypothesis of uncovered interest parity. Let y I = [q" PI]' be a two-dimensional vector at date t 

where qt is the percentage change in production and Pt is the percentage change in price for a 

particular industry. There is an unobservable variable, St, which characterizes the "state" at date t 

and takes on the value of one or two. In Engel and Hamilton (1990), Y t is drawn from one 

bivariate distribution if the state in t is equal to one and a second bivariate distribution if the state 

in t is equal to two. Our setting is somewhat more complex, in that we have predictions on the 

distribution governing Y t draws conditional on both the current and the prior state (recall Table 

I). Depending on the current and prior states, the contemporaneous changes in the growth rates 

of production and real prices are drawn from a N (J..l s s' Os s) distribution. Thus, there are 
I-I> I I-I> I 

four different bivariate distributions governing Y t draws, since the pair (St-l, St) can take on 

four different values. 

The state variable follows the Markov chain process specified in Section I. Only through 

St-l do past realizations of y and S affect the unobservable state variable. Note that the draws of 
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Yt are not independent draws from a mixture of normal distributions. The inferred probability 

that Yt is drawn from one distribution depends on all the realizations of Y prior to time t. This 

approach differs from the Bresnahan and Suslow (1989) switching regime regression in that all 

prior information is used to infer the current probability that Yt is drawn from a particular 

distribution. 

The bivariate model of stochastic segmented trends permits a wide variety of behavior for 

the series. First, the industry mean production growth rates may pick up slow or fast growth 

rates of production for an industry. The production growth rates could also be the same in both 

regimes, or one state may reflect recessionary periods and the other expansionary periods. 

Likewise, these combinations are possible for the contemporaneous real price regimes. 

The model described above is the basis for estimation of a parameter vector, 

8=(,ull,,u12,,u21,,u22,Qll,Q12,Q2PQ 22,Pll,P22)'. This vector has 22 parameters. The sample 

log likelihood function, In p(y T' Y T -1'"'' Y 1; 8), which is to be maximized with respect to the 

unknown parameters of 8, can be constructed from the conditional likelihood of Yt. The 

conditional likelihood of Yt. p(Y,!Y,_p ... 'Yl;8), is a byproduct of Hamilton's (1989) filtering 

algorithm. We can infer the probability that Yt was drawn from a particular state Sf based on all 

information available at time t: p(s,! Y p ... ,y,; 8). Furthermore, a full sample smoother can be 

used to draw inference on the regime at date t using all the information available ex post: 

8 Two issues arise when attempting to find the maximum likelihood estimate {). Both involve the process of 
finding the global maximum of the sample log likelihood function. From the filter we can determine the sample log 
likelihood function as the sum of the conditional log likelihoods: 

T 
III p(y T' Y T -I , ... , Y I) = t~IIIl p(y t I Y (-I , ... , Y I) . As in Hamilton (1989) the sample log likelihood can be 

maximized using numeric hill-climbing methods, but systems with a large number of parameters (e.g., twenty-two) 
often have many local maxima and require lengthy computing time. Hamilton (1990) shows how the switching 
regime filter can be estimated using the EM (expected maximum likelihood) algorithm developed by Dempster, 
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The Data 

The price and output measures considered for this study are monthly time series. The 

Federal Reserve publishes indices of industrial production associated with the Bureau of Labor 

Statistics' Producer Price Index commodity series at the monthly level. 10 For this study we limit 

ourselves to considering industries first at the two-digit Standard Industrial Classification level 

and then at the three-digit level if there are industry definition problems at the two-digit level. 

The PPI' s at various levels of aggregation are the natural choice for the price series. 11 To 

form a relative industry price, Pt, the aggregate PPI is used to deflate an individual industry price 

index. If the corresponding PPI for an industry at the two-digit SIC level is too broad, we then 

look at industries at the three-digit level where we can get a closer match of the production and 

producer price series. The industries and associated price indices included in this study are listed 

in Table II. 

The first observation for Yt is either January, 1960, or the earliest date following January, 

1960, when both price and production series data first become available; the final observation is 

December, 1995. The originally unseasonalized price and production series are also individually 

Laird, and Rubin (1977). With the EM algorithm, analytic derivatives are easily calculated from smoothed 
inferences. Furthermore, systems with a larger number of parameters, as in the bivariate model employed here, do 
not require additional iterations or computing time because the analytic derivatives are calculated from the smoothed 
probabilities. In addition to choosing the method for maximizing the likelihood function, another problem arises 
when the mean of the first state is set exactly equal to the first observation and the variance of the first state is 
allowed to vanish. In such a case the likelihood function blows up to infinity. Hamilton (1991) offers Bayesian 
priors as a solution to this problem. These positive Bayesian priors imply that one is now maximizing a generalized 
objective function that is not subject to these singularities. The first order conditions from maximizing the log 
likelihood function with and without the Bayesian priors are given in Hamilton (1990) and Engel and Hamilton 
(1990). In practice we fmd that this potential singularity in the likelihood function is not a problem with our data. 

9 The smoothed probability, P(sl_l =i,sl =jIYl""'YT;9), is calculated as part of the filter for the two-state 

model employed by Engel and Hamilton. In a two-state model, the transition observations from state i in period 1-1 

to state j in period I are incorporated into the estimate of !.l sf = j and n
SI 

= j' In practice we estimate a two-state 

model and use P(St-1 =i,st =jIYl""'YT;9)to estimate the parameters from a four-state version of the EM 

equations in Hamilton (1990) (p.54). 
10 The results are similar if capacity utilization rates are used instead of industrial production. 
II The PPI data were downloaded from the BLS World Wide Web site http://stats.bls.gov/. 
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deseasonalized usmg Harvey's (1993) basic structural model (pp. 142-44). In terms of the 

notation in the model described above, q I is 100 times the difference in natural logs of the index 

of industrial production, and PI is 100 times the difference in natural logs of the corresponding 

price index. 

Estimates and Business Cycle Specification Testing 

The model was estimated for twelve industries at the two-digit SIC level and five 

industries at the three-digit level. 12
,\3 The estimated persistence of both boom and recessionary 

states is high for all industries, so there are only a small number of months representing 

transitions from one state to another. Because of this, the standard errors associated with 

estimates of Ji12' Ji21' n 12 , and n 21 are large. Therefore, in Table III we report parameter 

estimates for the persistent states and the estimated state transition probabilities for each of the 

seventeen industries. 

It is clear from the estimates that the filter is capturing the dynamics of business cycles as 

opposed to structural changes in positive growth rates. For fourteen of the seventeen industries, 

the production mean growth rate is statistically different from zero in state 1. The mean change 

in production for state 2 is also negative for these fourteen industries, but not always statistically 

different from zero. 14 

12 We thank James Hamilton for kindly distributing his Gauss code with which we replicated his results. Additional 
code was added for the likelihood ratio tests and bivariate conditional moment tests. 
13 The following industries are not included: Tobacco (SIC 21), Textiles (SIC 22), Apparel SIC (23), and 
Instruments (SIC 38). The real price of tobacco was fairly constant from January, 1960, to August, 1982, after 
which it began a nearly deterministic climb from lO2 in September, 1983, to 234 in July, 1993. Then the real price 
fell 24% in August, 1993, and does not change much for the rest of the sample. Clearly a more complicated model 
explaining these events is necessary before the switching regime model is applied. The BLS does not publish a 
price index solely for textiles, but one for Textiles and Apparel. It did publish a separate series for Apparel, but it 
ends in 1977. There is also no price index which adequately captures the general industry, Instruments (SIC 38). 
The five industries at the three-digit level represent three industries for which good measures of the price could not 
be found at the two-digit level. 
14 Furthermore, following Engel and Hamilton (1990) we use a general null hypothesis to test whether a series 
follows a random walk against the alternative of the two-state regime model. The Markov switching probabilities 
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The production growth rates for the newspaper (SIC 271) and metalworking machinery 

(SIC 354) industries are not statistically different from zero in state 1 or 2. Leather (SIC 31) 

production is trending down for the entire sample, and the mean growth rate in production in the 

food (SIC 20) industry is constant. 

An alternative empirical approach is to estimate a model in which price and quantity 

changes depend on the current state (Sf E {1,2} ) but not on the previous state. Such a model has 

two bivariate distributions for p and q, rather than four. The point estimates and the standard 

errors from estimating such a two-state model differ only slightly from those presented in Table 

III. The statistical tests (below) that compare means and variances in different states are based 

on estimates from this two state model that includes the effect of the transition observations 

(St_1 = i,St = j) on the statej estimates (see footnote 9). 

A Wald statistic for testing whether the means for one of the component series, JiSt' are 

different across states is given by 

which is asymptotically distributed X12. The asymptotic variance and covariance of the 

parameters, denoted by var(it.I,) and COV(itl' A) , are estimated from the inverse of the negative 

are not identified in the model when III = 112 and °1 = Oz ' but asymptotically valid tests of the following null 

hypothesis do exist- H 0: PI I = I - P22' III *" 1l2' and °1 *" ~. As in Engel and Hamilton, we test the null 

hypothesis of a random walk with both a Wald and likelihood ratio statistic. The Wald statistic is given by 

L811 - (1 - P22 )]2 2 

var(h I) + var(P22) + 2 c6v(PII ,P22) "" XI . 
The likelihood ratio test compares the unconstrained log 

likelihood to the largest log likelihood when Pil = I - P22 and is asymptotically distributed as X12. These test 
statistics are not reported here. The Wald test statistics are all larger (in some cases much larger) than the likelihood 
ratio test statistics, but the even the latter soundly rejects the null hypothesis of a random walk in favor of the two 
regime model. (The smallest LR statistic is greater than 68.) In sum, the switching regime model is capturing the 
dynamics of the business cycle for these industries. 
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of the matrix of second derivatives. These statistics for the production and price series are 

reported in Table IV. Superscripts on the means denote the series: production (q) and price (P). 

The growth rates of production for the two states are significantly different for eight industries at 

the a=.05 level of significance and ten industries at a=.1 O. 

Figure 4 reports the estimated smoothed probability, p(StIYP""YT;8), that the industry 

is in the recessionary regime (state 2) at date t. 15 A reasonable criteria for inferring that the 

recessionary regime is more likely is peSt = 21y, , ... ,y T;8) > .5. The smoothed inferences on 

state 2 indicate that the dates of the business cycle at the industry level are similar to the 

traditional NBER dates of business cycles. This first month of the recession in the mid 1970's is 

nearly uniform among these 17 industries, indicating that the filter is capturing the dynamics of 

the business cycle. For the chemical (SIC 28) industry, the filter dates the beginning of the 

1973-75 recession as December, 1972, nearly a whole year earlier than the NBER date of 

1973:IV. The turning point in April, 1975, however, is identical to the conventional NBER date, 

1975:11. The chemical industry also experiences contractions conforming to the traditional 

recessions of 1980, 1981-82, and 1990-91. These, too, are present in the other industries but 

with more variation in the starting and ending dates. At the monthly and industry level the 

algorithm also indicates the common feature across industries of contractions in the early months 

of 1986 and in the latter half of 1994, but these rarely last more than three months. 

Note that the filter typically permits a clear classification of months into regimes. The 

smoothed probabilities are usually very close to 0% or to 100%. There are only 6 inferences 

between 40% and 60% for the chemical industry. The lumber (SIC 24) industry is an exception 

15 The evolving probabilities are similar to the smoothed inferences. Using all the information in the sample reduces 
the "noise" in the some of probabilities within a recession. For example, six months into the 1973-75 recession, the 
probability of being in the recessionary state falls from 99% to 70%, but using all the information in the sample 
revises that estimate back to 99%. 
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with frequent regime switches and more months with less conclusive inferences on the state. 

The estimated switching probabilities can be used to calculate the expected duration of a 

regime. A regime i is expected to last (1 - piirl months. The postwar historical average 

recession according to NBER dating is 4.7 quarters which would imply that the probability of 

remaining in the production contraction regime is 92.01%. Many of the industries have smaller 

probabilities suggesting shorter recessionary periods at the industry level. 

Columns 3 and 4 in Table IV report the results of Wald tests of the null hypothesis that 

the growth rate of real prices is identical for both regimes. The chemical (SIC 28) industry is the 

only industry with countercyclical pricing trends, and the nonferrous metals industry (SIC 33:3-

6,9) is the only industry with strong procyclical trends in real prices. 

Estimates of the Price Variance 

The pnmary testable implication of our non-collusive oligopoly model is that the 

variance of the price changes, cr 2 ,is greater in the recessionary regime than during times of 
SI'P 

production growth. Using a likelihood ratio test, the null hypothesis that we now test is 

The results from these tests are reported in Table V. 

For every industry, save one, we can reject the null hypotheses of equal price change 

variance draws across regimes. As the estimates in Table III show, the recessionary variance for 

price changes is anywhere from 6 to 17 times the expansionary variance. For these sixteen 

industries, the average ratio of the state 2 price variance to the state 1 price variance is 11.69. 

Because the inferred probabilities of being in either state are usually close to 0% or to 100%, we 

are confident that the prices are much more variable in a recession than in an expansion. 

The lone exception is the nonferrous metals industry (SIC 33:3-6, 9) for which the point 
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estimates of the price variance are nearly identical. This classification includes the aluminum 

industry. Notice from Tables III and IV that the nonferrous metals industry is the only industry 

which has different mean price growth rates across regimes and which has negative price 

changes in recessions and positive price changes in expansions. Using peSt =2IYI""'YT;8» 

.5 as the criteria for dating a recession, the levels of the real price by state are shown in Figure 5 

for the nonferrous metals industry. Prices almost uniformly rise during expansions and fall 

during recessions, and as mentioned earlier, these price changes have equal variances. The sharp 

rise in the level of real prices as the industry reaches the peak of the business cycle is consistent 

with the Bresnahan and Suslow (1989) model in which firms are producing at the vertical portion 

of the short run supply curve. Bresnahan and Sus low document how competition has increased 

in the aluminum market by observing that the Herfindahl index and concentration ratios fall for 

the U.S. aluminum industry from 1957-1982. It appears that there is too much competition in the 

Aluminum Industry for firms to set a price markup above the short run competitive price when 

demand is low. 16 

In addition to our theory, another source of increased price variation during contractions 

may be more variable input prices. This explanation, however, is not consistent with current 

New Keynesian research on labor markets, which contends that real wages are rigid because 

firms pay efficiency wages (see Yellen (1984)). Furthermore, the estimates from the machinery 

industry (SIC 35) seem to indicate that input costs are not likely responsible for the increase in 

the price change variance. All three-digit machinery industries plausibly have similar mixes of 

the same inputs. If input cost variation is responsible for the price variation in both recessions 

and expansions, then a testable prediction is that the price change variance is the same in 

recessions and expansions for the three-digit machinery industries. As Table III indicates, the 

16 cf ft. 5. If n + 1 > a / (a -~) then Nash equilibrium prices correspond to the short run competitive price. 

I 
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point estimates for the expansionary pnce change variance are identical (.168) for the 

agricultural machinery (SIC 352) and metalworking machinery (SIC 354) industries, but they 

differ in recessions, 1.620 and 2.341, respectively. This suggests that these two industries with 

similar inputs have different oligopoly pricing in recessions. 

The food (SIC 20) industry may also provide some insight into how much of the increase 

In the price variance may be due to economy-wide reasons other than oligopoly pricing 

incentives. Our theory of oligopoly pricing may not be applicable to this industry because 

production in the food industry is growing at a constant rate throughout the sample (see Table 

III). Nevertheless, the filter estimates two empirically distinct regimes. Figure 4a illustrates that 

food industry is in regime 2 from 1973-1981 and from 1990-91. The former time period was a 

period of high inflation and general economic stagnation and the latter was the 1990-91 

recession. As Table V reports, the two regimes for the food industry have statistically different 

price change variances, apparently for reasons not due to oligopoly pricing incentives. If this is a 

macroeconomic phenomenon, it may be a component of the state 2 price variances for the other 

industries which do experience expansions and contractions. However, the food industry's price 

change variance only increases by a factor of six, the smallest of all the significantly different 

variances (see Table V). For the fourteen industries which have distinct expansionary and 

recessionary states, the average ratio of the state 2 price change variance to the state 1 price 

change variance is 12.20. This suggests that if there is a macroeconomic source for a higher 

price change variance in recessions, it is not responsible for all of the increased variance. 

Moreover, as the next subsection discusses, for the fourteen industries with expansions and 

contractions we find support for the additional prediction on the change in the form of the price 

change distribution. 
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Distribution of Price Draws 

We have assumed that Yt has bivariate normal distributions in all states. Assuming that 

expansionary price changes come from a normal distribution, the model predicts that 

recessionary price changes come from a non-normal distribution because firms use non-normal 

mixed strategy distributions for prices during recessions. 17 Following the work of Newey (1985) 

and Hamilton (1996), we make use of the score statistics in tests that certain moment restrictions 

of the normal distribution hold for the data for both regimes. In particular, we will take the 

standard approach and examine the third and fourth moments, jointly and individually for each 

senes. The null hypothesis then implies the following expectations hold for the joint test: 

Hamilton (1996) provides the scores for the univariate case, which can be naturally extended to 

the bivariate model. The sample counterparts to the above moment restrictions are 

Let M be the T x 4 matrix whose t th row is given by 

17 Even though the recessionary price changes may not be Gaussian, the estimates in Table III are consistent quasi­
maximum likelihood estimates. 

I 
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1 
and let the matrix D be the T x 12 matrix of scores. For S = T (M'M - M'D(D'D)-I D'M), the 

Wald statistic, Tr'S-l r , is asymptotically distributed as a xi and tests whether ql and PI are 

jointly normally distributed. For only testing one restriction (column) of M, the test statistic is 

asymptotically Xl2 
• 

The results of the joint and individual tests for skewness and kurtosis are reported in 

Table VI. Column 2 reports the statistic for the joint test of normality for both regimes. There 

are clear rejections for all industries except food (SIC 20). Most of the individual series reject 

the null hypotheses of no skewness and/or kurtosis equal to 3. Recall that the moments being 

tested include both states. 

Histograms of the pnce draws by state are shown in Figure 6. A pnce change is 

considered to be in state i (j = 1, 2) if pC Sf = i! Y I , ... ,y T; 8) >.5. These histograms for the price 

draws in state 1, the expansionary state, appear to be consistent with a normal distribution 

whereas the state 2 draws clearly are not. The variances of these draws are larger as our tests 

above indicate, and the skewness and non-normal kurtosis detected in the conditional moment 

tests is apparently coming from the recessionary price draws. Many of the industries have state 2 

price draws with means shifted to the left, but with longer tails to the right. ls Other industries 

like electrical machinery (SIC 36) and metalworking machinery (SIC 353) appear to have bi-

modal price distributions during recessions. 

Comparing Predictions o/Collusive and Non-Collusive Models 

Rotemberg and Saloner (1986) analyze a repeated game model of oligopoly pricing in 

which demand fluctuates randomly and independently over time. Firms are informed about the 

18 These conditional moments tests are influenced, but not overwhelmingly so, by a common outlier in August, 
1973. Food prices jumped 9% that month causing the overall PPI to rise abruptly. For many industries, this real 
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current level of demand when they set pnces, but are uncertain of future demand levels. 

Rotemberg and Saloner show that a firm participating in a collusive group may have more 

incentive to defect during a boom period than during a low demand period, because the short 

term gains from defection are relatively large. Thus, an optimal collusive mechanism may 

involve lower prices (or markups over marginal cost) during booms than during recessions, in 

order to eliminate the incentive to defect. 

A recent paper by Bagwell and Staiger (1997) presents a theory of collusive pricing with 

demand alternating between expansionary and recessionary phases. Their formulation allows for 

autocorrelation in demand shocks. They prove that the prices for an optimal collusive 

mechanism are weakly procyclical when growth rates are positively correlated over time. Our 

empirical analysis shows that growth rates are positively correlated over time for most U.S. 

manufacturing industries. However, a variety of approaches are consistent with procyclical 

pricing, including our non-collusive oligopoly model, a theory of competitive pricing with rising 

marginal costs, and the Cournot oligopoly theory. Another prediction in Bagwell and Staiger 

(1997) is that a higher transitory demand shock (within a recessionary regime or a boom regime) 

is associated with a lower most-collusive price. This would generate a negative covariance 

between price change and quantity change within recessions and within booms. Table III reports 

our estimates of these covariances (see the results for Q 11 and Q 22 ). There are about as many 

positive as negative covariances; for most industries the covariance is not significantly different 

from zero. Thus, the evidence does not support the unique prediction of an optimal collusion 

regarding transitory demand shocks. In contrast, the evidence supports the unique predictions of 

our non-collusive oligopoly model regarding price change variances and distributions. We 

should point out that these conclusions are based on an examination of a number of industries at 

price draw around -5% is the lone outlying negative real price change. 
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a fairly high level of aggregation (two- and three-digit SIC). The optimal collusion theory may 

work very well for some selected industries in which collusion is likely to be successful. 

However, it does not appear to be operative for a large number of U.S. manufacturing industries. 

III. Concluding Remarks 

Our analysis of pricing over the business cycle focused on a non-collusive oligopoly 

formulation. The theoretical analysis predicts that output price changes exhibit higher variance 

during recessions than during boom periods and that the form of the distribution of price changes 

differs across recession and boom periods. The analysis also predicts that the markup of output 

price over the short run competitive price (conditional on demand and capacity levels) is higher 

in recessions than in booms. Evidence from U.S. manufacturing industries is consistent with the 

hypothesis that price changes have higher variance in recessions than in booms. In fact, price 

changes are much more variable in recessions than in booms for almost all industries studied. In 

addition, the frequency distributions of these price changes in recessions are distinctly unlike 

their expansionary counterparts. These empirical results complement the direct support for the 

non-collusive oligopoly model from laboratory experiments reported in Wilson (1997). 

Our empirical analysis does not attempt to measure directly price-cost margins or price 

markups over the business cycle. Instead, we take an indirect approach that evaluates a key 

implication of our pricing model. The evidence is consistent with the view that oligopoly firms 

charge prices involving a higher markup over the short run competitive price during recessions 

than during boom periods. This pattern of markups (as we define markups) may amplify the 

effects of demand shocks on output. This in tum may provide a mechanism through which 

oligopoly market power exacerbates the effects of aggregate demand shocks on the 

macroeconomy. 

I 
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It should be emphasized that our formulation does not rely on any form of collusion 

among firms, in contrast to much of the recent Industrial Organization literature on pricing over 

the business cycle. At the two- and three-digit SIC level of aggregation for manufacturing 

industries, we find less support for a model of optimal collusion over the business cycle than for 

our non-collusive oligopoly model. 

Future research may focus on how industry concentration is related to the variance of 

price changes at a more disaggregated industry level and how nature of costs affects oligopoly 

pricing incentives. Forming larger systems by grouping industries together may also improve 

estimation efficiency and increase the number of significant parameters. Since the empirical 

results suggest that the form of the distribution of price changes differs across recessionary and 

boom regimes, it would also seem worthwhile to develop a more sophisticated econometric 

model of the recessionary regime. 
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Appendix A 

Analysis of Two-Stage Game 

In stage one, firm one's expected profit is, 

7r(x,y) = Br(x,y,Q) + (1- B)r(x,y,a) - ex, 

where r(·) is the expected subgame revenue, defined on p. 7. 7t is continuous in (x,y) since 

r(·) is continuous in these arguments. However, 7t is not differentiable in x for all capacity 

levels, so one cannot rely exclusively on first-order conditions to characterize best responses. 

Consider the investment incentives for firm one, conditional on firm one being the larger 

firm (x > y). In this case assumption Al implies that expected profit is strictly increasing in x for 

x + y < a; 7t(x,y) = v(E(a) - y) - ex for x + y > a, so that 7t is strictly decreasing when total 

capacity exceeds the high demand level; and 7t is continuous in x at x = a - y. Therefore, if 

y < ta then 7t reaches a local maximum at x = a - y. This may not be a global maximum 

since 7t may attain a higher value for some x < y. 

The payoffs for firm one are more complex when it is the smaller firm (x < y). Consider 

first the best response to y E [Q, a]. Any best response will be less than Q, since A2 implies that 

7t is strictly decreasing in x for x > Q. Given y E [Q,a] , assumption A2 implies that 7t is 

strictly in x for O:$; x :$; a - y. 7t is strictly concave in x for a - y :$; x :$; Q. So, there is a unique 

best response to each y E [Q, a] , which lies in a - y:$; x :$; Q. This best response is, 

(A.1) b( ) 
{

- (9v - e)f!Y + (1- 9)Vaa} y = max a - y, . 
2(9vy + (1- 9)va) 

Suppose that y E H a, Q] . If x :$; Q - y then 7t (x, y) = vx - ex, which is strictly 

increasing in x. If x ~ y then 7t(x,y) = v(E(a) - y) - ex, which is strictly decreasing in x. so 
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any best response must be in Lf! - y,y]. Firm one's expected profit function is not differentiable 

at x = a - y; expected profit is strictly concave in x for x E [g: - y,y]. This implies that there 

is a unique best response to y E [-} a, g:] that lies in [g: - y, y] . 

If the condition, 

CA.2) 

a(V:C) 
9~ , 

3a - 2a 

ho Ids then the best response to y E H a, g:] is, 

CA.3) bey) = max{a - y,j(E(a) - cy / v)}. 

From CA.3) it follows that b(-}a) = -}a and bey) = a - y for some interval of y-values 

extending above y = -} a . Inequality CA.2) also implies that a - y is a best response to 

Y E [O,-}a); i.e., the local best response for firm one as a large firm is also a global best 

response to y E [0, -} a). So, inequality (A.2) yields a reaction function for firm one that is as 

depicted by RJ in Figure 2A. The reaction function for firm two is defined symmetrically. The 

set of equilibria is the set of capacity pairs that sum to a such that neither x nor y exceed some 

critical value. This critical value is the lowest value of y such that bey) in (A. I) or (A.3) exceeds 

a-yo 

If (A.2) does not hold then a best response to y E [-} a, g:] may be less than a - y. For 

some values of y E H a, g:], expected profit for firm one is maximized by choosing capacity, 

x (y) == -} [g: + (I - 9 - c / v) y / 9] . 
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This capacity choice is optimal for firm one when x(y) < a - y, which is possible only when 

(A.2) does not hold. If (A.2) does not hold then x(1a) < 1a and x(y) < a - y for an interval 

of y-values exceeding 1 a. The best response to y E H a, Q] is, 

(A.4) b(y) = min{x(y), ma.x{a - y,j (E(a) - cy / v)}}. 

If (A.2) does not hold there is also an interval of y-values below 1 a for which the best response 

is x(y) < a - y. In such cases, there is a local maximum that involves firm one being the large 

firm and choosing capacity, a - y; however, the global maximum is for firm one to respond as 

a small firm, choosing x(y) < y. Once y becomes sufficiently small, firm one's best response 

"jumps" up to a - y. The reaction correspondence for firm one is depicted as Rl in Figure 2B. 

The set of equilibria is the set of capacity pairs that sum to a such that, (1) neither x nor y 

exceed a critical value defined in the previous paragraph and, (2) an interval of capacity pairs 

around x = y is excluded (when firm two is the large firm, the excluded set involves y-values 

such that x(y) < a - y). 

I 
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Appendix B 

This appendix illustrates the derivations of the results presented III Table I for the 

predicted pnce and quantity changes. We define PI == In ~ -In ~-l and ql == In QI -In QI-l 

where PI is the average price and Qt is production in period t. The approximations of PI use a 

first order Taylor expansion: 

x - E (x) + y - E (y) 
In(x + y) ~ In(E(x) + E(y» + . 

E(x) + E(y) 

A derivation for the case, St-I = 1 and St = 2, is provided here. Derivations for the other 

three cases in Table I are similar to this. The period t price is the sum of the short run marginal 

cost, bt , and a markup term, mit , where mit E (0, vI, E(mlt ) = ml < v, and Var(mlt) = 0-
2 

• 
ml 

The price in t -1 is, bt- I + v. Thus we have, 

-l(b )-l(b )~l(b+ml) bt+mlt-b-ml_bt_l-b Pt - n t + mit nt-I + v ~ n + _ , 
b +v b +ml b +v 

which is linear in bt, mit, and bt- I , and 

The first and second moments are: 

(
b + ml) E(pt) = In < 0, 
b +v 

I 



Table II 
Industries and Associated Price Indices 

Industry 
Foods 
Lumber and products 
Furniture and fixtures 
Paper and products 
Newspapers 
Chemicals and products 
Petroleum products 
Rubber and plastic products 
Leather and products 
Clay, glass, and stone products 
Nonferrous metals 
Fabricated metal products 
Agricultural machinery and equipment 
Construction machinery and equipment 
Metalworking machinery and equipment 
Electrical machinery and equipment 
Transportation equipment 

SIC Code 
20 
24 
25 
26 
271 
28 
29 
30 
31 
32 
33:3-6,9 
34 
352 
353 
354 
36 
37 

Price Index (BLS series) 
PPI, Processed foods and feeds (wpu02) 
PPI, Lumber and wood products (wpu08) 
PPI, Furniture and household durables (wpuI2) 
PPI, Pulp, paper, and allied products (wpu09) 
CPI, Newspapers (cuurOOOOse590 1) 
PPI, Chemicals and allied products (wpu06) 
PPI, Petroleum products refined (wpu057) 
PPI, Rubber and plastic products (wpu07) 
PPI, Leather (wpu042) 
PPI, Nonmetallic mineral products (wpu13) 
PPI, Nonferrous metals (wpul02) 
PPI, Fabricated structural metal products (wpul07) 
PPI, Agricultural machinery and equipment (wpull1) 
PPI, Construction machinery and equipment (wpul12) 
PPI, Metalworking machinery and equipment (wpul13) 
PPI, Electrical machinery and equipment (wpu117) 
PPI, Transportation equipment (wpu14) 

I 



Table III 
Maximum Likelihood Estimates for YI = [ql ,PI]' 

Parameter Food Lumber Furniture Paper Newspaper Chemicals 
(SIC 20) (SIC 24) (SIC 25) (SIC 26) (SIC 271) (SIC28) 

11t~ 0.219 0.260 0.370 0.326 0.042 0.494 

(0.048) * (0.118) (0.090) (0.076) (0.065) (0.043) 

11t~ 0.041 0.057 -0.065 0.031 0.124 -0.075 

(0.030) (0.060) (0.020) (0.023) (0.034) (0.023) 

14 0.198 -0.083 -1.117 -0.09 -0.347 -0.439 

(0.089) (0.445) (0.398) (0.260) (0.307) (0.261) 

14 -0.168 0.033 -0.267 0.222 -0.058 0.563 

(0.128) (0.342) (0.282) (0.180) (0.336) (0.365) 

Pll 0.991 0.941 0.985 0.976 0.986 0.981 
(0.007) (0.025) (0.008) (0.011) (0.013) (0.010) 

P22 0.972 0.844 0.878 0.893 0.921 0.873 
(0.023) (0.056) (0.077) (0.058) (0.060) (0.066) 

0,1 0.578 -0.067 3.062 0.203 2.852 0.010 1.549 -0.038 0.916 -0.095 0.611 -0.030 

(0.047) (0.049) (0.308) (0.220) (0.227) (0.071) (0.136) (0.060) (0.083) (0.074) (0.052) (0.036) 
-0.067 0.241 0.203 0.775 0.010 0.141 -0.038 0.148 -0.095 0.262 -0.030 0.169 

(0.049) (0.025) (0.220) (0.085) (0.071) (0.012) (0.060) (0.014) (0.074) (0.024) (0.036) (0.014) 

On 0.645 -0.072 9.449 3.889 4.397 -0.017 3.502 -0.318 1.884 -0.446 2.124 -0.450 

(0.113) (0.191) (1.201) (1.595) (1.292) (1.244) (0.592) (0.997) (0.478) (0.876) (0.633) (1.216) 
-0.072 1.418 3.889 6.888 -0.017 2.149 -0.318 1.51 -0.446 2.727 -0.450 2.431 

(0.191) (0.207) (1.595) (1.071) (1.244) (0.446) (0.997) (0.193) (0.876) (0.830) (1.216) (0.381) 

*Standard errors are in parentheses. 

-



Table III continued 

Parameter Petroleum Rubber Leather Stone, Clay, Nonferrous Metals Fabricated Metals 
Refining (SIC 30) (SIC 31) and Glass (SIC33:3-6,9) (SIC 34) 
(SIC 29) (SIC 32) 

11t~ 0.276 0.628 -0.239 0.259 0.476 0.312 

(0.067) * (0.095) (0.099) (0.102) (0.137) (0.068) 

11t~ -0.046 -0.092 -0.003 0.029 0.627 0.020 

(0.083) (0.024) (0.091) (0.021) (0.140) (0.020) 

142 -0.018 -0.044 -0.273 -0.673 -0.713 -0.727 

(0.131) (0.655) (0.200) (0.360) (0.378) (0.221) 

f.4 0.218 0.154 0.238 -0.044 -1.272 0.073 

(0.442) (0.168) (0.371) (0.290) (0.214) (0.222) 

Pll 0.960 0.969 0.980 0.983 0.943 0.984 
(0.016) (0.012) (0.038) (0.009) (0.032) (0.007) 

P22 0.941 0.874 0.948 0.876 0.879 0.896 
(0.022) (0.054) (0.047) (0.066) (0.059) (0.066) 

0,1 1.043 0.131 2.714 -0.064 1.812 -0.031 3.159 0.040 2.941 -0.086 1.408 0.000 

(0.091) (0.188) (0.247) (0.083) (0.172) (0.243) (0.185) (0.079) (0.368) (0.477) (0.106) (0.051) 
0.131 1.581 -0.064 0.167 -0.031 1.446 0.040 0.144 -0.086 2.069 0.000 0.134 

(0.188) (0.146) (0.083) (0.015) (0.243) (0.180) (0.079) (0.012) (0.477) (0.191) (0.051) (0.011) 

On 2.192 -0.217 18.474 0.112 4.039 0.429 4.222 -0.433 8.816 -0.092 2.244 -0.212 

(0.244) (1.489) (2.388) (2.444) (0.531) (2.042) (1.000) (1.776) (1.887) (1.252) (0.465) (0.970) 
-0.217 24.796 0.112 1.587 0.429 15.310 -0.433 2.063 -0.092 1.915 -0.212 2.469 

(1.489) (2.375) (2.444) (0.170) (2.042) (1.542) (1. 776) (0.428) (1.252) (0.254) (0.970) (0.380) 

*Standard errors are in parentheses. 



Table III continued 

Parameter Agricultural Construction Metalworking Electrical Transportation 
Machinery Machinery Machinery Machinery Equipment 
(SIC 352) (SIC 353) (SIC 354) (SIC 36) (SIC 37) 

f.It~ 0.490 0.400 0.125 0.604 0.329 

(0.192) * (0.092) (0.133) (0.080) (0.173) 

f.It~ 0.036 0.051 0.053 -0.071 0.036 

(0.034) (0.029) (0.036) (0.021) (0.028) 

142 -1.088 -1.369 -0.641 -0.297 -0.393 

(0.543) (0.364) (0.347) (0.336) (0.980) 

14 0.084 0.156 0.121 -0.122 -0.176 

(0.199) (0.293) (0.277) (0.307) (0.213) 

Pll 0.962 0.976 0.988 0.987 0.965 
(0.019) (0.014) (0.050) (0.007) (0.018) 

P22 0.893 0.897 0.913 0.89 0.87 
(0.063) (0.060) (0.042) (0.080) (0.070) 

0" 5.629 0.066 1.964 -0.024 3.737 -0.062 1.892 -0.027 5.291 -0.033 

(0.640) (0.167) (0.170) (0.086) (0.373) (0.131) (0.153) (0.059) (0.528) (0.130) 
0.066 0.168 -0.024 0.204 -0.062 0.168 -0.027 0.146 -0.033 0.16 

(0.167) (0.023) (0.086) (0.018) (0.131) (0.021) (0.059) (0.012) (0.130) (0.016) 

On 14.529 -0.439 5.957 -0.746 4.723 -1.290 3.507 -0.416 23.141 0.026 

(3.347) (1.802) (0.969) (1.796) (1.099) (0.968) (0.915) (1.173) (3.587) (3.024) 
-0.439 1.620 -0.746 2.481 -1.290 2.341 -0.416 2.321 0.026 1.736 

(1.802) (0.216) (1.796) (0.330) (0.968) (0.479) (1.173) (0.459) (3.024) (0.388) 

*Standard errors are in parentheses. 

-



Table IV 
Tests of Different Means across Regimes 

Industry Ho: flt
q = 14 Ho: fltP = 14 

Ha: flt
q ~ 14 Ha: Pi ~ 14 

Wald Test p-value Wald Test p-value 

Food (SIC 20) 0.046 (0.830) 2.832 (0.092) 

Lumber (SIC 24) 0.930 (0.335) 0.002 (0.969) 

Furniture (SIC 25) 14.039 (0.000) 1.165 (0.280) 

Paper (SIC 26) 2.006 (0.157) 0.951 (0.329) 

Newspaper (SIC 271) 2.822 (0.093) 0.530 (0.467) 

Chemicals (SIC 28) 19.296 (0.000) 7.836 (0.005) 

Petroleum Refining (SIC 29) 3.674 (0.055) 0.408 (0.523) 

Rubber (SIC 30) 2.638 (0.104) 0.445 (0.504) 

Leather (SIC 31) 0.007 (0.933) 0.796 (0.372) 

Stone, Clay, and Glass (SIC 32) 7.619 (0.006) 0.261 (0.610) 

Nonferrous Metals (SIC 33:3-6, 9) 11.179 (0.001) 77.682 (0.000) 

Fabricated Metals (SIC 34) 15.873 (0.000) 0.008 (0.930) 

Agricultural Machinery (SIC 352) 8.881 (0.003) 0.047 (0.828) 

Construction Machinery (SIC 353) 23.928 (0.000) 0.195 (0.659) 

Metalworking Machinery (SIC 354) 2.495 (0.114) 0.016 (0.899) 

Electrical Machinery (SIC 36) 7.764 (0.005) 0.085 (0.771) 

Transportation Equipment (SIC 37) 1.982 (0.159) 1.197 (0.274) 

Note: Statistics are asymptotically ;d. Asymptotic p-values less than .1 are in bold. 
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Table V 
Test of Different Price Variances Across Regimes 

Industry Ho: al~p = ai,p 
~2 * 

Ha: al~p ~ ai,p a 2,p 
~2 

al,p 

Likelihood p-value 
Ratio Test 

Food (SIC 20) 68.274 (0.000) 5.86 

Lumber (SIC 24) 109.508 (0.000) 8.14 

Furniture (SIC 25) 142.410 (0.000) 14.38 

Paper (SIC 26) 144.794 (0.000) 9.84 

Newspaper (SIC 271) 99.566 (0.000) 9.91 

Chemicals (SIC 28) 421.102 (0.000) 13.32 

Petroleum Refining (SIC 29) 256.162 (0.000) 15.15 

Rubber (SIC 30) 149.436 (0.000) 8.88 

Leather (SIC 31) 219.260 (0.000) 10.36 

Stone, Clay, and Glass (SIC 32) 169.534 (0.000) 13.68 

Nonferrous Metals (SIC 33 :3-6, 9) 0.002 (0.964) 1.01 

Fabricated Metals (SIC 34) 292.092 (0.000) 17.65 

Agricultural Machinery (SIC 352) 103.262 (0.000) 9.23 

Construction Machinery (SIC 353) 121.596 (0.000) 11.61 

Metalworking Machinery (SIC 354) 119.200 (0.000) 13.54 

Electrical Machinery (SIC 36) 201.972 (0.000) 15.20 

Transportation Equipment (SIC 37) 144.254 (0.000) 10.29 

Note: Statistics are asymptotically xt. Asymptotic p-values less than .1 are in bold. 
* Both the restricted and the unrestricted likelihood functions were estimated without the 
Bayesian correction. 



Table VI 
Conditional Moment Normality Tests (Skewness and Kurtosis)* 

Test: Joint Test of 
Normality Skewness Skewness Kurtosis Kurtosis 

Variable: Yt qt Pt qt Pt 
Industry 

Food (SIC 20) 2.459 0.271 1.228 0.113 0.123 
(0.652) (0.603) (0.268) (0.736) (0.726) 

Lumber (SIC 24) 56.538 1.844 23.516 4.696 4.023 
(0.000) (0.175) (0.000) (0.030) (0.045) 

Furniture (SIC 25) 18.922 0.312 7.439 2.550 1.962 
(0.001) (0.577) (0.006) (0.110) (0.161) 

Paper (SIC 26) 8.984 3.222 4.427 4.085 3.397 
(0.062) (0.073) (0.035) (0.043) (0.065) 

Newspaper (SIC 271) 15.823 2.181 10.625 3.697 2.993 
(0.003) (0.140) (0.001) (0.055) (0.084) 

Chemicals (SIC 28) 10.670 4.349 2.088 0.309 4.218 
(0.031) (0.037) (0.149) (0.578) (0.040) 

Petroleum Refining (SIC 29) 10.007 0.003 1.656 2.084 8.345 
(0.040) (0.959) (0.198) (0.149) (0.004) 

Rubber (SIC 30) 23.788 12.757 3.774 12.229 5.255 
(0.000) (0.000) (0.052) (0.001) (0.022) 

Leather (SIC 31) 9.241 3.682 0.768 2.003 4.556 
(0.055) (0.055) (0.381 ) (0.157) (0.033) 

Stone, Clay, and Glass (SIC 32) 54.066 2.474 18.137 7.921 5.938 
(0.000) (0.116) (0.000) (0.005) (0.015) 

Nonferrous Metals (SIC 33:3-6, 9) 24.333 0.279 0.242 0.168 23.606 
(0.000) (0.598) (0.623) (0.682) (0.000) 

Fabricated Metals (SIC 34) 10.023 0.107 0.107 6.800 3.993 
(0.040) (0.744) (0.744) (0.009) (0.046) 

Agricultural Machinery (SIC 352) 22.579 1.473 10.208 0.478 4.401 
(0.000) (0.225) (0.001) (0.489) (0.036) 

Construction Machinery (SIC 353) 22.526 5.128 0.042 3.501 14.826 
(0.000) (0.024) (0.838) (0.061) (0.000) 

Metalworking Machinery (SIC 354) 22.620 1.076 9.348 0.055 2.626 
(0.000) (0.300) (0.002) (0.814) (0.105) 

Electrical Machinery (SIC 36) 44.848 3.755 15.090 1.693 3.317 
(0.000) (0.053) (0.000) (0.193) (0.069) 

Transportation Equipment (SIC 37) 36.802 1.288 11.152 9.713 3.963 
(0.000) (0.256) (0.001) (0.002) (0.047) 

Note: Column 2 statistics are asymptotically xi . Statistics in columns 3-6 are asymptotically x~ . 
Asymptotic p-values less than .1 are in bold. 
* The maximum likelihood estimates used in the calculations of the score were estimated without 
the Bayesian correction. 
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Figure 1 
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Figure 4a 
Inferred Probability of Being in State 2 (Recessionary State) 
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Inferred Probability of Being in State 2 (Recessionary State) 
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Figure 4d 
Inferred Probability of Being in State 2 (Recessionary State) 
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Figure 4e 
Inferred Probability of Being in State 2 (Recessionary State) 
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