Transfer reactions in Inverse Kinematics an experimental overview Nucleon Transfer with Radioactive Beams focus on 10-30 MeV/A reactions kinematics are then generic • a general array can be envisaged resolution issues are general three classes of solution/choice catalyst to discussion outline of TIARA array

overview : Nucl Phys A701 (2002) 1c-6c
overview : Acta Phys Pol 32B (2001) 1049-1060
resolution : JSW et al NIM A396 (1997) 147-164

Velocity vector addition diagram

$q \cong 1 + Q_{\text{tot}} / (E/A)_{\text{beam}}$ f = 1/2 for (p,d), 2/3 for (d,t)

Inverse Kinematics

 \mathcal{V}_{CM} is the velocity of the centre of mass, in the laboratory frame

Reaction Q-values in MeV

-0.9 -9.8 -11.1 -11.6 -12.3 -13.1 -17.1 -16.4 -18.4 Ne 60.3 5.4 4.0 1.6 -7.4 -7.5 -9.8 13 14 15 23 -16.7 -14.1 -7.0 -7.9 -9.6 -15.6 75.0 8.7 7.0 6.0 4.9 -0.1 -2.5 -5.1 -5.6 -8.6 N=20 13 0 5.4 4.0 0.9 -1.8 -6.6 -8.3 -10.4 -11.6 -13.9 -15.6 -17.5 -19.0 = stable 11 12 13 Ν 7.3 4.9 3.6 -2.1 -4.7 -6.0 -7.6 -9.7 -10.8 -12.5 -13.7 20 Reaction Q-value in MeV С 5.4 4.2 1.5 -3.1 -10.5 -12.0 -15.3 -15.6 -17.1 -17.9 -20.2 -21.4 -24.1 (d, ³He): refer to cell of TARGET 7.7 5.4 5.7 -1.1 -5.7 -8.6 -10.3 -13.1 -12.9 В N=14 Ве 4.9 -0.1 -11.8 -11.4 -14.1 -15.5 -17.6 t Li 8.4 7.5 0.9 -4.5 -7.0 -8.4 -8.7

N=8

Ζ

theta c.m.

The general form of the kinematic diagrams is determined by the light particle masses, and has little dependence on the beam mass or velocity

Calculations of E_x resolution from particle detection

152

J.S. Winfield et al. | Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 147-164

Table 2

Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of contribution					$\Sigma_{ m quad}$
			$\Delta \theta$	Δp	$E_{\rm stragg}$	$\Theta_{1/2}$	dE/dx	
p(¹² Be, ¹¹ Be)d	30	1.07°	172	147	101	74	23	259
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169
p(⁷⁷ Kr, ⁷⁶ Kr)d	30	0.16°	1404	811	808	723	56	1952
p(⁷⁷ Kr, ⁷⁶ Kr)d	10	0.10°	334	143	502	570	268	883
d(⁷⁶ Kr, ⁷⁷ Kr)p	10	0.21°	1140	614	2177	1859	1321	3408

Table 3

Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Reaction	E _i /A (MeV)	$\theta_{\rm lab}$	Origin of contribution					$\Sigma_{ m quad}$
			$\Delta \theta$	ΔE_f	ΔE_i	$\Theta_{1/2}$	dE/dx	
p(¹² Be, d) ¹¹ Be	30	19.0°	136	74	114	96	649	685
p(12Be, d)11Be	15	17.8°	66	72	55	89	984	995
p(77Kr, d)76Kr	30	15.0°	124	55	64	63	186	249
p(⁷⁷ Kr, d) ⁷⁶ Kr	10	6.0°	26	24	23	19	775	777
d(⁷⁶ Kr, p) ⁷⁷ Kr	10	155.3°	52	93	37	60	1309	1316

beamlike

particle detected

Lighter projectiles

Some advantages to detect beam-like particle (gets difficult at higher energies)

Heavier projectiles

Better to detect light particle (target thickness lilmits resolution)

Study of the ⁵⁶Ni $(d,p)^{57}$ Ni Reaction and the Astrophysical ⁵⁶Ni $(p,\gamma)^{57}$ Cu Reaction Rate

K. E. Rehm,¹ F. Borasi,¹ C. L. Jiang,¹ D. Ackermann,¹ I. Ahmad,¹ B. A. Brown,² F. Brumwell,¹ C. N. Davids,¹ P. Decrock,¹ S. M. Fischer,¹ J. Görres,³ J. Greene,¹ G. Hackmann,¹ B. Harss,¹ D. Henderson,¹ W. Henning,¹ R. V. F. Janssens,¹ G. McMichael,¹ V. Nanal,¹ D. Nisius,¹ J. Nolen,¹ R. C. Pardo,¹ M. Paul,⁴ P. Reiter,¹ J. P. Schiffer,¹ D. Seweryniak,¹ R. E. Segel,⁵ M. Wiescher,³ and A. H. Wuosmaa¹

Focal plane spectrum from SPEG magnetic spectrometer

Separation Energy form factor

Vibrational form factor

Radial form factor for the transferred nucleon (in ¹¹Be)

The two have subtly different effects

Excitation energy spectra from the Orsay experiment

Figure 4.17: spectres d'énergie d'excitation du ¹⁰Be obtenus sans (gauche) et avec (droite) les détecteurs CATS.

Resonance scattering at ORNL: ¹⁸F (p, α) ¹⁵O

Possible Experimental Approaches to Nucleon Transfer

1) Rely on detecting the beam-like ejectile in a spectrometer

- Kinematically favourable unless beam mass (and focussing) too great
- Spread in beam energy (several MeV) translates to E_x measurement
- Hence, need energy tagging, or a dispersion matching spectrometer
- Spectrometer is subject to broadening from gamma-decay in flight

2) Rely on detecting the target-like ejectile in a Si detector

- Kinematically less favourable for angular coverage
- Spread in beam energy generally gives little effect on E_x measurement
- Resolution limited by difference [dE/dx(beam) dE/dx(ejectile)]
- Target thickness limited to 0.5-1.0 mg/cm² to maintain resolution

3) Detect decay gamma-rays in addition to particles

- Need exceptionally high efficiency, of order > 25%
- Resolution limited by Doppler shift and/or broadening
- Target thickness increased up to factor 10 (detection cutoff, mult scatt'g)

J.S. Winfield, W.N. Catford and N.A. Orr, NIM A396 (1997) 147

Proof of Principle using weak ³⁶S beam and inverse ³⁶S(d,p)³⁷S

TIARA SETUP

Forward and Backward annular detectors

Barrel detector

OUTLOOK

Experimentally proven inverse kinematics manageable gamma-ray detection often desirable Reactions on p and d targets identify angular momentum and E_x then, measure spectroscopic factors Alpha 2-nucleon transfer ● (d,⁶Li) or (¹²C,⁸Be) or (⁶Li,d) possible ● (*t*,*p*) or (⁹Be,⁷Be) or (¹⁰B,⁸B) possible Experimental challenges pushing beyond 35-40 deg in (p,d) etc. stopping all particles & detecting gammas

- low energy thresholds for particles
- detection of beam-like particle (identify Z)
- scattered beam particles are radioactive