STARS at GAMMASPHERE

A. Schiller LLNL

Transfer Reactions Workshop ORNL/HRIBF June 21, 2002

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

The case for a Highly Segmented Particle Detector for particle-γ coincidences

- Magnetic spectrometers provide the best θ and E resolution at a price low efficiency (10⁻⁴).
 - Stable beams overcome this by raising the current.
 - This makes coincident γ-ray measurements extremely difficult.
- STARS will provide reasonable particle id, θ and E resolution for a wide variety of particles with decent efficiency (0.1-0.2)
 - p, d, t, α , τ , Li
 - Particle-γ measurements now possible @ 0.1 pnA

This new array is called **STARS** (<u>Silicon Telescope Array for Reaction Studies</u>

STARS Components

- A target chamber (designed and built at LLNL)
 - Fits inside of GAMMASPHERE
 - Can be used separately for experiments that don't require γ-ray coincidences.
- Two particle detectors
 - S2 model "CD" detector from Micron Semiconductor.
 - Can be used with inverse kinematics experiments
 - SiRi (Silicon Ring) detector from the University of Oslo.
 - Best for "Normal" kinematics
- Electronics
 - CAEN shapers
 - CAMAC ADCs (GAMMASPHERE DAQ)

STARS Target Chamber and Vacuum Feedthroughs

STARS Detector + Target Ladder

The SI(licon) RI(ng) detector from the University of Oslo Nuclear Physics Group

- 8 separate particle telescopes
 - 140 micron ΔE
 - 1500 micron E
- Covers 30° to 60°
- 8 segments/telescope (3 mm pitch, $\Delta \theta = 3.75^{\circ}$).

The Micron S2 detector

- E/ΔE particle telescopes
 - 140 micron ΔE
 - 1000 micron E
- 22 mm ID 48 rings
- 70 mm OD
- 1 mm pitch
 - Adjacent rings to be summed
- 2 ∆E's and 3 E's acquired

The first run @ GAMMASPHERE: March 2002 157 Gd(3 He, 4 He) 156 Gd @ E_{beam} = 45 MeV

- SiRi detectors used
 - only 1/2 of the detectors mounted
- Low beam current due to neutron damage concerns.
 - Average current = 0.3-0.5 pnA
- Short production run (<3 days of beam on target).

Measuring Level Densities and γ -ray strength functions up to $E_x = S_n$

- Subject of numerous PRC/PRL
- GAMMASPHERE set-up will improve on Oslo in two significant ways:
 - 80 times greater α - γ (BGO) coincidence rate
 - Ge detectors allow for discrete state coincidences

Transfer Peak gated Ge spectra

Physics with GS+HSPD: Nuclear structure as a function of E_x

 $\Delta E_x = 100 \text{ keV from}$ particle detector array

- How do low energy symmetries break down as energy increases?
 - K-conservation
 - Vibrations
 - Pairing
- Spin dependence of level density

 $\gamma(BGO)-\alpha/p(HSPD)-\gamma(Ge)$ coincidences will allow for tracing of cascades above the limits of discrete spectroscopy

Physics with STARS+Ge detectors: Shell structure near the "lip" of the potential well (L.G. Moretto/L. Phair

Does the spin-orbit interaction decrease near the edge of the well?

Angles and Angular Resolution for the S2 detector at various distances from the target

Collaborators

L.A. Bernstein, J. Cooper, J.A. Becker, E. Tavukcu¹ LLNL M.A. McMahan, A.O. Macchiavelli, P. Fallon LBNL **D.G. Sarantites, L.G. Sobotka** Washington University M. Guttormsen, J. Rekstad, S. Siem University of Oslo

¹North Carolina State University