(d,p) with extended gas target basic motivation

• D2 2 electrons

CD₂ 8 electrons

Factor 4 in energy loss or countrate

- No background from C
- Measure depth in target, where reaction occurs
 Gives beam energy for reaction
 Target might be very thick
- Other reactions, other targets, He

Density of hydrogen 0.090 g/l or 0.090 mg/cm³.

 $300~{\rm MeV}$ $^{96}{\rm Zr}$ loose $144~{\rm MeV}$ in $1~{\rm mg/cm^2}$ hydrogen.

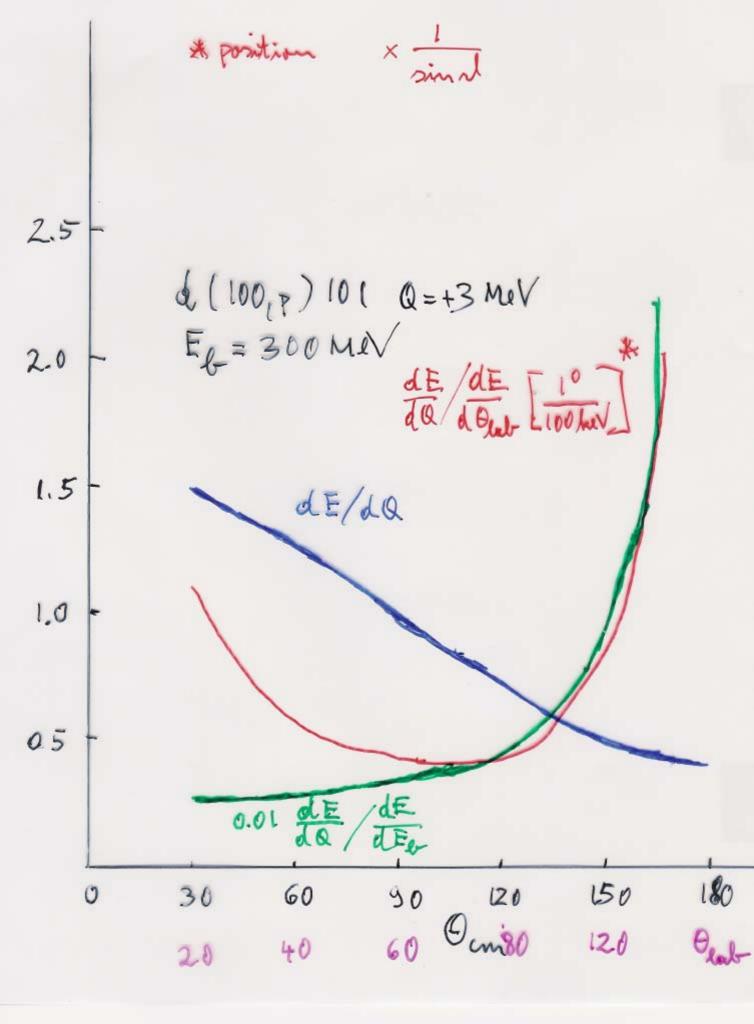
Then 300 MeV ⁹⁶Zr loose 72 MeV in 1 mg/cm² deuterium.

 $400~{\rm MeV}$ $^{132}{\rm Sn}$ loose $180~{\rm MeV}$ in $1~{\rm mg/cm^2}$ hydrogen.

Then 400 MeV ^{132}Sn loose 90 MeV in 1 mg/cm^2 deuterium.

 $1~\mathrm{mg/cm^2}$ hydrogen corresponds to 11.1 cm at atm. pressure.

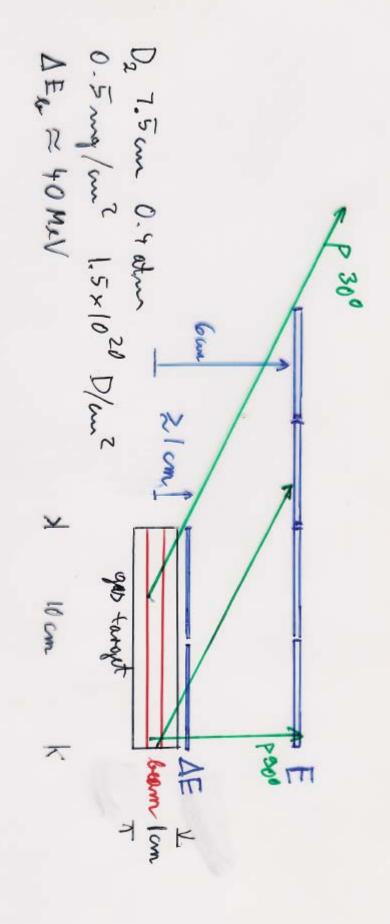
therefore 1 cm correponds to 13 rsp. 16 MeV energy loss for the two beams.


for deuterium the density is twice as high, but talking per length, nothing changes.

Angular straggling in ΔE detector

SRIM calculations give:

- $3~\mathrm{MeV}$ protons after $65~\mathrm{mu}$ Si FWHM $110~\mathrm{mrad}$ or $6~\mathrm{deg}$
- $5~\mathrm{MeV}$ protons after $70~\mathrm{mu}$ Si FWHM $50~\mathrm{mrad}$ or $3~\mathrm{deg}$
- $10~\mathrm{MeV}$ protons after $80~\mathrm{mu}$ Si FWHM $20~\mathrm{mrad}$ or $1~\mathrm{deg}$
- $20~\mathrm{MeV}$ protons after $130~\mathrm{mu}$ Si FWHM $20\,\mathrm{mrad}$ or $1~\mathrm{deg}$


This is an important contribution, that also limits this approach to forward angles in the lab.

Mechanics

• 5 μ Mylar should be ok and easy $\Delta E{=}100~{\rm keV}$ for 3 MeV p

- 65 μ Si is available ≤ 1mm resolution
 means 5 cm between detectors
 .1 mm allows smaller size, Si drift detectors?
 5 mm resolution in φ is sufficient
 ΔE=1.7 MeV at 3 MeV, 2×0.3 MeV at 20 MeV
- \bullet at 30 deg 1.035+0.065 mm stop 20 MeV At 30 deg most Si needed
- Mechanical arrangement with little dead space

DE 65 msi 2×8 olut, × 2 strips 5 mm wide

E 2 1000 jusi 4x 8 old x 10 strips 5 mm wide

Conclusions

- about 200 to 300 keV resolution feasible angle and beam energy better defined
- factor 10 detection efficiency over $(CH_2)_n$ target
- angles from ≤ 30 to ≥ 100 deg
- might be combined with γ -measurement
- γ and p-energy might separate isobars

Detection efficiency makes it worthwhile for any "major" program