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Thrusts in High Performance Computing

Science at Scale
Petaflops to Exaflops

{ Science through Volume

Thousands to Millions of Simulations

Science in Data
Petabytes to Exabytes of Data
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Science at Scale: Simulations Aid

in Understanding Climate Impacts

 Warming ocean and
Antarctic ice sheet key to
sea level rise

e BISICLES ice sheet model BISICLES Pine Island Glacier simulation — mesh

resolution crucial for grounding line behavior.

uses AMR for ice-ocean
interface.
— Dynamics very fine resolution

(AMR)
— Antarctica still very large
(scalablllty) 3 ;’Antarctic ice speed (left):
— Multi-institution (LANL, LBNL) T eolution (bnck, above)
(Using NERSC’s Hopper)

Enhanced POP ocean model
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ice sheet and ocean models
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Science through Volume: Large

Numbers of Simulations for Materials

 Tens of thousands of simulations are used to screen related
materials for use in battery design and other domains

* Goal: cut in half the 18 year from design to manufacturing
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Interesting materials...
Materials Project, Gerd Ceder Pl (MIT): website has a database materials

from simulations, e.g., over 20,000 potential battery materials.

i PlIs: Gerd Ceder, MIT and Kristin Persson, LBNL
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Science in Data:

Automated

Image Analvysis in Astronom

60

Data from scientific instruments

Is growing exponentially

« NERSC in 3 Nobel prizes, and 3 Science
“best of decade” (CMB and Genomics)

* Far outpacing processor and memory
performance growth 0

Astrophysics discover early

nearby supernova
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« Palamor Transient Factory runs machine nature

learning algorithms on ~300GB/night
delivered by ESnet “science network™

« Rare glimpse of a supernova within 11
hours of explosion, 20M light years away

» Telescopes world-wide redirected
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ISE%SC Biggest Challenge: Power

 Engineering View
— Minimize power per computation
— 1 Exaflop in 20 MW?

— Goal: 1,000-fold performance increase with
9X power consumption by 2020

 Programming View
— Past: minimize Flops
— Future: minimize data movement
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Moore’s Law
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2X transistors/Chip Every
1.5 years

Called “Moore’s Law”
Microprocessors have

become smaller, denser,
and more powerful.
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Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra
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Power Density Limits Serial

Performance

« Concurrent systems are
more power efficient —
Source: Patrick Gelsinger,

— Dynamlc power |S Shenkar Bokar, Intel®
proportional to V4fC

— Increasing frequency (f) T Nuel
also increases supply s ueleal. w=p 9
. g Reactor S
voltage (V) = cubic §
effect 8 8036 Hot Plate wap
. ] P6
— Increasing cores g T A
increases capacitance v 286\, _—4436
(C) but only linearly il
— Save power by lowering

clock speed
« High performance serial processors waste power

- Speculation, dynamic dependence checking, etc. burn power

- Implicit parallelism discovery

* More transistors, but not faster serial processors
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Revolution in Processors
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« Chip density is continuing increase ~2x every 2 years
« Clock speed is not

 Number of processor cores may double instead
 Power is under control, no longer growing
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Major Innovations Needed to Sustain

Performance Growth

Microprocessor
Performance

Cell phone [ =
\ (0.1 Watt, —
4 Gflopls)  mEEsEs

RO

Server -
(100 Watts,
50 Gflop/s)

10

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

« Processor performance growth is limited by power

« Exascale computers (1000x Hopper) in next decade:

— Manycore processors using graphics, games, embedded cores, or other
low power designs offer 100x in power efficiency

— Facilities will need 10x more power (Hopper is 3MW)
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Processor-DRAM Gap (latency)

Goal: find algorithms that minimize communication, not
necessarily arithmetic
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Can Accelerators Solve the Problem?

« Accelerator configuration
— Many small, energy-efficient cores (GPUSs)
— GPU have private memory space
— Attached to motherboard via PCI interface currently

« Case for heterogeneity
— Accelerators are theoretically very fast
— Much better theoretical Flop/Watt

« Challenges

— Need one fat core (at least) for running the OS

— Data movement from main memory to GPU memory Kills
performance

— Programmability is very poor
— Most codes will require extensive overhauls
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* 1/0 needs growing each
year in scientific
community

* For our largest users 1/O
parallelism is mandatory

* I/O remains a bottleneck
for many users

- Early 2011 — Hopper: 2
PB /scratch (we thought
that was huge!)

* New systems at TACC and
NCAR have ~18 PB/
scratch!!!!
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Images from David Randall, Paola Cessi, John Bell, FEESARLN National Laboratory




- Why is Parallel I/O for science

GRSC applications difficult?
Scientists think about - -
data in terms of how a
system is represented in

the code: as grid cells,
particles, ...

Ultimately, data is stored
on a physical device

Layers in between the
application and the
device are complex and
varied
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I/O interfaces and
configurations are
arcane and complicated
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Latencies
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