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ABSTRACT

Softening of the gravitational potential in n-body simulations, introduced as a modification to Newto-
nian gravity on the small scale, can affect the large-scale, global dynamics of computer models of gal-
axies. These effects arise because softening modifies the gravitational binding energy and changes the
equilibrium configuration of self-gravitating systems.

In this paper we give the analytic expressions for the “softened” gravitational potential energy of
some example systems. We then present a corrected form of the scalar virial theorem, which describes
the relationship between potential and kinetic energies in equilibrium galaxies.

It is important to understand these phenomena when conducting numerical experiments on galaxies. It
is often desired to numerically construct and study an equilibrium galaxy derived from an analytic
model. We show by example that the use of softening can lead to global phenomena that cannot be
discussed solely in terms of Newtonian gravity. As an example, we examine numerically the behavior of
a spherical galaxy undergoing fundamental mode oscillations as the softening length is varied.

Subject headings: galaxies: kinematics and dynamics — galaxies: structure — methods: numerical

1. INTRODUCTION

Because large-scale changes in galaxies occur on time-
scales measured in units of 108 yr, n-body computer models
provide the only way to perform dynamical experiments on
these systems. But even with today’s most powerful super-
computers, it is not feasible to calculate the trajectories of
all 10! stars that constitute a typical large galaxy. There-
fore, the numerical experimenter must make compromises
when modeling the relevant physics with a computer.

A common practice is to represent a galaxy with fewer
“particles ” than the number of stars that are present in a
real galaxy. The number of particles, n, must be chosen large
enough to reduce “n-body noise” (i.e., artificially imposed
graininess in the gravitational potential calculation) and
suppress unwanted two-body gravitational scattering. In a
real galaxy, like the Milky Way, there are so many stars and
the space between individual stars is so immense that relax-
ation effects due to two-body scattering are insignificant
over a Hubble time. In order to ensure the collisionless
nature of the system, the gravitational potential is
“softened ” in numerical simulations. Softening, first intro-
duced by Aarseth (1963), has the effect of reducing two-
body short-range forces.

A common strategy in astrophysical n-body experiments
is to replace the 1/r point mass potential by one of the
Plummer form:

GM
where a denotes the “softening length” and M is the mass
of the “particle.” This expression does not have the infinity
at 7 = 0 that is present in the point mass potential; instead
the force on a test particle goes to zero at zero separation
(see eq. [3] below). Softening has the additional beneficial
effect of allowing a larger time step to be taken in the simu-
lation (see, e.g., Hockney & Eastwood 1988).

Softening also has its drawbacks since it compromises the
physics that the experimenter desires to model. As Dyer &
Ip (1993) pointed out, the standard scheme is physically

o) = — M
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inconsistent. The Plummer potential is that which would be
produced by a density distribution of

3M N
p(r) = 27;;1—3 (1 + ?> . 2

However, when forces are calculated between particles the
expression used is

GM?*r
- (r2 + a2)3/2 > (3)

which is correct only for a point mass interacting with a
Plummer density distribution. Dyer & Ip (1993) compare (1)
the generally used form, (2) the true force between two
Plummer spheres, and (3) that between two (unsoftened)
point masses. The three expressions converge at approx-
imately r = Sa, but at smaller separations they differ signifi-
cantly (see Dyer & Ip 1993). In typical three-dimensional
self-gravitating n-body experiments, galaxies with diameters
on the order of 25-100 resolution, or softening, lengths are
used.

Of the three forms considered by Dyer & Ip, the standard
Plummer-point mass interaction produces the smallest (in
magnitude) maximum force. In this paper we refer to par-
ticles that interact in the manner given by equation (3) as
“Plummer point masses,” which describes well their dual
extended/point character.

It is generally recognized that softening strongly affects
an n-body simulation over length scales comparable to the
softening length. For example, it has long been known that
softening modifies the dispersion relation in stellar disks
and therefore influences the local stability of those disks (see
e.g., Miller 1972; Toomre 1977; and recently Romeo 1994).
Sellwood (1981) notes that excessive softening can suppress
the bar instability in disks.

The purpose of this paper to is point out that global, or
“long-wavelength,” phenomena are also influenced when a
softened form of the gravitational potential is employed in
numerical experiments. We seek to determine under which
situations the method provides a faithful representation of
the desired physics.
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For example, the total gravitational potential energy of a
softened n-body system is always less (in absolute
magnitude) than in the Newtonian case. The large-scale
force field is also changed. These modifications can have
important dynamical effects that must be understood when
building model galaxies and analyzing results from compu-
tational experiments. Softening affects many familiar results
from Newtonian gravitational physics, including the fam-
iliar form of the scalar virial theorem, which relates time
averages of kinetic and potential energies.

In § 2 we show how softening changes the calculation of
forces and gravitational potential energies, and we give the
relevant form of the virial theorem. In § 3 we show by
example how softening can affect the global behavior of an
n-body galaxy.

2. EFFECTS OF SOFTENING

In this section we examine how the presence of softening
affects some of the standard results of Newtonian gravita-
tional physics. First we look at Newton’s First Theorem,
which concerns the force felt by a particle inside a spherical
shell of matter. The modified form of some force laws for
some example spherical three-dimensional mass distribu-
tions are discussed, and then we present the modified form
of the virial theorem for a configuration composed of
Plummer point masses.

2.1. Newton’s First Theoreem

The well-known result that a test particle placed within a
thin spherical shell of matter feels no net force is referred to
as Newton’s First Theorem (Binney & Tremaine 1987).
When mass elements on the spherical shell behave like
Plummer point particles, however, the Theorem is no
longer true.

2.1.1. A Heuristic Argument

Before we derive an exact expression for the gravitational
potential due to a spherical shell of Plummer point masses,
we make an intuitive argument that the dynamics needs to
be changed. To do this, we follow a modified form of the
discussion given in Binney & Tremaine (1987).

Consider a particle of mass M placed at point P some-
where inside a constant density spherical shell of radius R as
shown in Figure 1. A diameter is shown passing through P
and the center of the shell, C. A line is drawn passing
through P, and it is rotated around the diameter passing
through P and C. This produces two cones as shown in the
figure. Assume the solid opening angle of these cones is
small so that r, + r, ~ 2R. The cones intersect amounts of
mass on the shell we denote M and 6M,.

Consider the force felt by P due to M, and 6M,, which
are composed of Plummer point masses. The result is

GMéM,r, GMM, a*\ 32

F, = = — R 4
! r + a? r? + 2 @
F. - _GM5M2r2+GM5M2 1+c_zf —32 )

2 r: +a® r3 r2 '

Geometrical considerations alone give the result that
oM, oM,

= . 6
r? r3 ©)

oM

/.
/

M,

F1G. 1.—Geometry for discussion of Newton’s First Theorem. (See text)

We also note the relationships (see Fig. 1) r, = R + r and
r, = r — R, and we can write the net radial force on P as

GM 5M,
R*(1 + r/R)?

a2 —-3/2 a2 -3/2
{P+Rm—ﬂm4 ’D*RM+#MJ }'

U

Inside the shell »r < R, and the first term in braces is
always smaller than the second, which gives a radially
inward net force. This is easily understood in the limit that
the test particle lies very close to M. Then the force due to
J0M, tends toward zero and the net force is entirely produc-
ed by 6M,. In the Newtonian case the two mass elements
always exert equal and opposite forces on M and the net
force is zero. Note that by setting a =0 we recover the
Newtonian result (i.e., F ., = 0) in equation (7).

FnetzFl—FZ=

2.1.2. An Exact Expression for the Potential

We now derive an exact expression for the gravitational
potential due to a spherical shell of material that interacts
gravitationally like Plummer point masses. The author
would like to thank R. H. Miller for much of the derivation
in this section.

First consider the standard Newtonian integral form of
the Poisson equation,

_ p(x') ,
O(x) = Gf P 3x . 8)

If we let x lie along the z-axis, we have in spherical coordi-
nates,

p(r', 0, ¢
\/ 72 4+ 72 — 21’ cos O
r2dr cos 0d6’'d¢’ . (9)

o, 0,4)=G
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A standard way to solve the integral is to expand the
denominator in terms of powers of the radius and spherical
harmonics (see, e.g., Jackson 1975),

1
<I>(r, 0, ¢) = 41:G1,Zm im

1 .
x U;T;I YO, ¢)p(r, 0, ') 2dr’ sin O dO’ d¢']

1.0, ¢), (10)

where r_ (r,) is the lesser (greater) of r and r'. With soften-
ing included, equation (9) becomes

p(r, 0, ¢')
r,0,9)=G
o, 6. 9) _f\/rz +72+a%>—2rr cos &
x r'2dr cos 0 do’d¢’ . (1)

If we can write the denominator in the form (¢2 + n? — 2¢n
cos 0)'/2 for the same 6 as in equation (10) then we can use
the same series expansion to solve the problem. The
requirement that the two expressions for the denominator
be equal makes &y = r’ and €2 + n*> = r*> + r'2 + a® These
equations are solved with

2U=Jr+r?+a+./r—7r)+d, (12)
M=Jr+ryY+a*—Jr—7)+a. (13)

The potential is then

O(r, 0, ¢) = 4nG

m2l+1
1
X [ % YO, ¢)p(r', 0, @'Y’ 2 dr’ sin @' dOf dqb’]

Y,(6, ¢) . (14)
For a spherical shell of mass M with radius R, the density is

M !
o', 0, @) = 23 SR —¥)Xoo0, ¢)  (19)
and by the orthogonality of the spherical harmonics, equa-
tion (14) is

GM
®Q) = — 75
¢
It is convenient to rewrite ¢ by introducing two dimension-
less “lengths,” o and f,

(16)

(=St P+ B, ()
where
az=£, ,8=£ forr>R,
a a
=I’ =-1S forr <R
a

In Figure 2 we plot the acceleration as a function of
radius for the shell. Inside the shell there is always an
inward force that reaches zero only at the center. Outside
the shell the magnitude of the force is less than the Newto-
nian result.
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FiG. 2—The acceleration produced by a constant density spherical
shell for different values of the softening length. The shell has a radius of 1.
Values are scaled so that the acceleration just outside the shell has the
value 1 in the unsoftened case.

Near the center of the shell we can obtain an estimate of
the character of the force field by expanding the potential in
powers of r/a and find

GM 1 M, .
(I)=a _ﬂ2+1+§a(ﬂ2+1)5/2a +0(a).

The first term is a constant and does not contribute to the
force. The second term represents a harmonic term: a test
mass will oscillate about the center of the shell with angular
frequency, w,

(18)

o = GM ___GMma?
- a3(ﬁ2 + 1)5/2 - (R2 4 (12)5/2 .

For a given mass the frequency goes to zero as 1/8°?* =
(a/Ry*2.

(19)

2.2. Global Forces

The force produced by a spherical three-dimensional con-
figuration can be found by summing spherical shells. In
general, softened force fields appear to differ from
unsoftened ones in regions when the radial density gradient
is large compared with the softening length.

As n-body representations of galaxies must always be
finite, we examine two truncated spherical mass distribu-
tions as example cases: (1) a constant density sphere and (2)
a singular isothermal sphere.

The potential inside any spherical Plummer point parti-
cle distribution with outer radius R can be written as

rfa 2 Rja 2
. R, @) = —4nGa3[ J pla)e da. f M] ,
0 4 h/a ¢
(20)
where £ was defined previously in equation (17).
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2.2.1. Constant Density Sphere

Analytic expressions for the potential and force due to a
truncated constant density sphere are given in the Appen-
dix. The fractional deviation from the unsoftened force is
plotted in Figure 3 for a constant density sphere of radius
R =1 and softening lengths of 0.01, 0.05, 0.1, and 0.2. Two
effects are of note: (1) The largest deviations from the
unsoftened force occur near the outer edge and (2) with a
truncated radius of 100 or more softening lengths (i.e., 200
softening lengths across the configuration) the error is less
than 2% everywhere.

An unsoftened uniform density sphere produces a radial
force that increases linearly with radius, i.e., it has a harmo-
nic oscillator potential which has an angular frequency

4
@2, = 3 nGp . 21

By expanding the softened potential in powers of r/a about
the origin, we find that the lowest order term in the force
represents an oscillator with frequency

3
X
wszoft = wﬁue[W] s (22)

where x = (R/a). The softened frequency approaches the
true frequency very quickly as the softening length gets
smaller than the actual size of the configuration. Even with
R as small as 104, o is modified by a multiplicative factor of
only 0.9926. Note that this result was obtained for radii less
than the softening length, implying that, at least in this case,
softening by itself has essentially no effect on the dynamics
of a test particle orbiting very near the center.

2.2.2. Isothermal Sphere
In Figure 4 we plot the circular speed of a truncated

singular isothermal sphere of radius R =1 where the
unsoftened circular speed has been normalized to 1. A
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FiG. 3—The fractional difference between the softened force the
unsoftened force for a constant density sphere, which has been truncated at
a radius R=1. The fractional deviation is calculated as (Fyenea

—F unsoftened)/ F unsoftened*
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F1G. 4—The circular speed (“ rotation curve ”) for an isothermal sphere
density distribution, which has been truncated at a radius R = 1. Units are
normalized so that the unsoftened isothermal sphere has a circular speed of
1.

closed-form expression for the force is given in the Appen-
dix.

With softened gravity, the circular speed is zero at the
origin and remains about 2% below the unsoftened case at
10 softening lengths away from the center. With a system
radius of 100 softening lengths, the circular speed is within
1% of the Newtonian value over 90% of the configuration.
However, with relatively small softening lengths such as
R/a = 10, the rotation curve is not flat and does not much
resemble a true isothermal sphere.

2.3. The Virial Theorem

The familiar form of the scalar virial theorem states that,
in equilibrium, a self-gravitating system obeys

(Ty = —3 Uy,

where {T) and {U) are time averages of the total kinetic
and total potential energy, respectively. With softened
gravity, this relationship is modified.

Elementary mechanics texts (see e.g., Marion 1970) give a
more general form of the virial theorem,

@ =-3(5nk), 3

where the sum is over all particles and F is the force on
particle a. If the force can be written as the gradient of a
potential energy function, U, we can write

1
(T)=— 5 <Zr, . VUa> . (24)
For the Plummer point masses we have

2.2 2
_ GM*=r; _ ry U 25)
a7\ a)

r,* VU, =
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and the virial theorem becomes

1 2
=3 (S

With a = 0, we have the standard Newtonian result. Note
that here U is not the Newtonian potential energy, but
rather the potential energy due to point-mass interactions
with Plummer spheres. Even taking that into consideration,
the familiar virial theorem is modified by the extra factor
involving the softening length.

For a continuous spherical system of radius R and total
mass M we can write

(T>=—n J R r,4P(r', R, M)®(', R, M, a)dr’

o 2+ a?

(26)

» (27

or, by defining n = r'/aand y = R/a,
* n*p(n, x, R, M)®(n, x, R, M)dn
<T> = — naaj (” ) X M)
) n°+ 1

If we write the density and potential in the following form,
absorbing geometrical factors into new functions, I" and @,

. (28)

M
p(n, x, M, R) = g I'(n, x) (29)
and
GM
®(n, x, M, R) = x oM, 1), (30)
we obtain
nGM?* (X T(n, Y)p(n, x)n* dn
(T)=— Ry L o . (31)

The integral in equation (31) is just now a dimensionless
number, depending on the value of y, i.e., the size of the
system in terms of the softening length. The integral can be
evaluated numerically for various density distributions and
values of .

As an example, we show in Figure 5 the softened virial
relationship for the conical model of radius R that will be
discussed further in the next section. (The potential for the
softened conical model is given in the Appendix.) This plot
(analogous ones can be derived for any given density
distribution) shows how Plummer softening influences the
equilibrium configuration of a self-gravitating system. With
no softening, —<{U) = 2({T) at the numerical value indi-
cated by the horizontal line in Figure 5. With softening
included, the identical density distribution is in equilibrium
with a value of —(U) less than the softened case and a
numerical value of 2{ T that is lower still.

As in the previous discussion, the virial relationship is
close to that for the unsoftened case for R/a 2 100. The
horizontal line shows the familiar Newtonian value at
which —(U) = 2{T). For softening lengths that are large
compared to the system size, there is a significant change
from the Newtonian case. At a/R = 0.1 the virial theorem
relationship is modified at approximately the 10% level.
This corresponds to a model galaxy with a diameter of 20a.

2.4. A Word about n-Body Codes

The previous discussion was based solely on analytic,
continuous models of softened gravity. In n-body simula-
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Fic. 5—The equilibrium values of (negative) the (softened) potential
energy and twice the total kinetic energy as given by the “softened ” virial
theorem for the conical model. The softening length is given in units of the
radius of the conical model. In the absence of softening, both lines would
lie on the horizontal line shown in the plot.

tions gravitational force calculations are further influenced
by finite particle number and numerical methods. Two
popular methods for calculating the gravitational potential
in galaxy simulations are Particle Mesh (PM) and tree
codes, which both employ softened gravity, but not in the
same manner.

In tree codes, the softened force between nearby particles
is calculated directly. Particles are grouped into a “tree”
hierarchy, and the potential due to distant groups of par-
ticles is approximated by a multipole moment expansion,
usually truncated at either the monopole or quadrupole
term. This distant field approximation is not accounted for
by the discussion of the previous sections.

In PM codes, each particle’s mass is assigned in some
manner to a regular grid (mesh) during the calculation of
the gravitational potential. Softening is applied to the mesh.

In practice, these further approximations will give any
given code an effective softening length that is not necessar-
ily equal to the value of a that is explicitly entered into the
simulation.

In § 3 we show by example how softening can affect the
behavior of an n-body galaxy, and we use the results of this
section to find a numerical representation of a spherical
galaxy that is approximately in a “softened ” virial equi-
librium.

3. AN EXAMPLE OF THE GLOBAL EFFECTS OF SOFTENING

A stable spherical galaxy, if perturbed, has been shown to
undergo undamped global oscillations (Miller & Smith
1994). We have confirmed Miller & Smith’s basic result that
their conical model supports large fundamental mode oscil-
lations that are undamped over at least 80 dynamical time-
scales. These oscillations were observed using both a tree
code obtained from L. Hernquist and two different PM
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momentum-conserving codes written by the author of this
paper. The oscillations in the global kinetic energy of one
such model are shown in Figure 6. The oscillations in
kinetic energy have been shown to be a good diagnostic of
the fundamental mode oscillations described by Miller &
Smith (1994) and show the remarkable undamped nature of
the oscillations. Runs were started from a 10,240 particle
load provided by R. Miller. To test the effect of particle
number, some test runs were performed with 122,880 par-
ticles and the main points discussed below were unaffected.
Phase space parameters for the load were produced by sam-
pling from a distribution function that describes the conical
model of total mass M and radius R. The density, p, is given
by p=p.(1 —7/R) if 0 <R/r<1 and p =0 otherwise;
p. = 3M/(nR>).

The conical model’s ability to sustain these modes gives
us a tool with which to explore the effect of softening on a
global property of a spherical galaxy. We will show that the
exact same initial state (i.e., identical initial phase space
coordinates) oscillates in a quantitatively different manner
depending on the choice of the softening length. We will use
the amplitude of the approximately sinusoidal oscillations
in total kinetic energy to describe the behavior of the
system.

Starting with a particle load that was derived using
strictly Newtonian gravity, we follow that load’s evolution
using softening gravity. Because the initial particle velocities
were assigned based on an unsoftened analytic model, the
configuration does not have the instantaneous value of total
kinetic energy, T, equal to the time-averaged value, (T,
appropriate for a finite value of the softening length. This
provides an initial perturbation that gets the system oscil-
lating. The galaxy oscillates about the equilibrium state

—Potential

Energy

Kinetic

|

1000
Time Step [T,,..=25]

x100 L —L P
) 500 1500 2000
F1G. 6.—Values of total kinetic, potential, and total energy for the
conical model (R = 11.23, a = 0.5). The sinusoidal time variations continue
essentially undamped for 80 crossing times. These are the same oscillations
reported by Miller & Smith (1994). The results presented here were
obtained using a particle-mesh n-body code that was developed indepen-
dently from that used by Miller & Smith. Similar results were obtained
using a tree code, as discussed in the text.
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appropriate for the given values of the softening length.
That state cannot be precisely predicted for this initial load
since the density distribution changes once the configu-
ration is released from its initial state. However, if the
“softened ” equilibrium is not too “far” from the original
one, then the amplitude, Ty, of the kinetic energy oscillation
can be approximated by

TE) ~ I Tinitial - <T;oft,analytic>| s (32)

where T anaiyiic) 18 given by equation (31). This expres-
sion states that, since the oscillations are undamped, the
amplitude should be equal to the difference between the
initial kinetic energy and equilibrium value of the kinetic
energy.

In Figure 7 we show the time dependence of the total
kinetic energy for three different values of the softening
length using a PM code. It can be seen that the amplitude
increases with increasing softening length. This is due to the
galaxy, in its initial state, being “farther away” from the
“softened ” equilibrium state. The oscillation frequency also
depends on the softening length. This is no surprise since
the frequency is a function of the gravitational potential
energy (see Miller & Smith 1994).

Figure 8 shows the rms amplitude of kinetic energy oscil-
lations for different values of softening using the tree code
and the PM code. Also shown is the crude estimate of the
expected amplitude based on equation (32). In Figure 9 we
show the corresponding values of (T). These values of
softening are in a “typical” range for n-body simulations,
i.e., R/a ~ 20-100.

A number of features are of note in Figures 8 and 9. First
is that they quantitatively show that the oscillation ampli-
tude increases and {T) decreases with increasing softening,
Note that in Figure 8 a minimum in the amplitude occurs at
the point with the value of a/R = 0.02226. This occurs

3.6 ——T————

a/R=0.034 __

34

w
(]
BN B Feyves 7o

Kinetic Energy

©
=)

28 % 57 N ¥ooo8 i -

. . . . e
X1ty 200 400 600 800 1000

Time [T, ,=25]

F1G. 7—Variations in kinetic energy as the conical model is evolved
using three different values of the softening length. In all cases a 64°
particle-mesh code was employed. The three values of a correspond to
a/R = 0.031, 0.045, 0.063. n = 10,240.
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FiG. 8.—The amplitude of kinetic energy oscillations, given as a per-
centage of the total kinetic energy, for the conical model of radius R. The
PM 643 runs were performed using a 64> grid spacing, AL/R = 0.089. The
PM 1283 run used AL/R = 0.0445. For comparison the estimate given in
the text is shown. The experimental amplitudes are rms values.

because the kinetic energy in the initial particle load was
not set precisely to its unsoftened analytic value (as derived
from a distribution function) and, by coincidence, this one
model’s initial kinetic energy was closest (one part in 1073)
to the value of (T predicted by the softened virial theorem
(as given by equation [31]). This means that this model was
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F1G. 9.—The total kinetic energy averaged over many cycles of the
oscillations for the same computer runs as given in the previous figure. The
estimate is based on the “softened ” virial theorem as discussed in the text.
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initially “closest” to its “softened” equilibrium state and
therefore oscillated with the smallest amplitude.

The plots reveal that the PM code has a larger “effective
softening ” than the tree code for a given value of a. This is
due to the manner in which mass is assigned to the grid and
how force values are interpolated from the grid to the parti-
cle positions.

Note that we have not determined nor discussed the
character of the oscillations themselves beyond reproducing
the computational results given by Miller & Smith (1994).
Those results, that the global oscillations persist undamped
over timescale approaching a Hubble time, have been veri-
fied here, and further investigation into the nature of the
oscillations will be the subject of another paper (Gerber,
Miller, & Smith 1996).

For those interested in further details of the runs, some
are given here. For the tree code, the accuracy parameter
was 0 = 0.75, and quadrupole terms were included. For the
PM code, the CIC scheme was used (see Hockney & East-
wood 1988), with 643 or 1283 grid points and a grid spacing
of AL = 0.089R (2a). The specific computational values for
the conical model were: G = 1, M = 10240, R = 11.23.

4. SUMMARY

We have shown that softening of the gravitational poten-
tial, introduced as a modification to Newtonian gravity on
the small scale, can have an effect on the global behavior of
n-body computer models of galaxies. Global force fields,
values of the potential energy, and the familiar form of the
virial theorem are all modified by the use of softened
gravity. Expressions have been given to calculate these
quantities and relationships.

It is important to understand the phenomena discussed
in this paper when conducting numerical experiments on
galaxies. It is often desirable to construct an “equilibrium ”
galaxy with phase space parameters derived from an analy-
tic model, and then perturb the galaxy to study its time
evolution. As shown in this paper, the use of softening can
lead to global, or “long-wavelength,” behavior that cannot
be discussed solely in terms of Newtonian gravity.

The role of softening also should be considered in
attempts to use multiple softening lengths within a single
simulation (to try to resolve dense regions, for example).
Multigrid and nested grid numerical schemes may also be
affected, particularly if the system reaches or passes through
an equilibrium or quasi-equilibrium state. Any abrupt
change in the softening length (either spatially or
temporally) will force the system out of equilibrium without
changing any of the true physical parameters of the system.
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APPENDIX

Here we give the expressions for the softened potential for (r < R) of the constant density sphere of radius R, the softened
force for the singular isothermal sphere truncated at radius R, and the softened potential for the conical model.
For a constant density sphere of total mass M,

3G
O = —n?B + 2¢*B + nyB + 2B + nxA
—3111n(A+x—11)—3r,1n(B+x+n)+n2A—2x2A—2A],
where
R
'152’ =, A= /P +py -2 +1, B=Un*+2+2p+1, C=n*+1.

For a truncated isothermal sphere of radius R and total mass M,

—GM 2 —n* -1
— M [——sinh'l <1}_{l1_1_+_1> + BC — AC — sinh™1 (ﬂx__”_>] .
2aRn*/n* + 1 X X

The potential for the conical model is
. MG
4x°nR
—5By — 134B + 2n*yB + 5Ay + 2B + 2n3A — 1344 — 3In(B + x + 1) — 2nAy>
—1272In(A+x —n) + 127°In(B + x + 1) + 129*In(C — ) — 12¢*In(C + 1) — 12n1In(C — 1)
+12xnIn(B + x + 1) + 12ynIn(4 + x — ) — 12yn1n(C + n) — 2By + 24> — 2x*nB — 2n°xA] .

[—473C +26nC — 3In(C — ) + 3In(C + ) + 3In(4A + x — 1)
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