F-Secure Corporation

F-Secure® Kernel Mode Cryptographic
Driver™ for Linux

FIPS 140-2 Validation Security Policy

Author: Alexey Kirichenko
Module version: 1.1.3

Document version:
F-Secure,FSCLM, FSCLM_Linux_kernel_SP.rtf,00000002

Created: May 2006
Last modified: November 2006

Abstract: This document describes the F-Secure® Kernel Magptographic Driver™ Security
Policy submitted for validation, in accordance wile FIPS publication 140-2, level 1.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 2

COPYRIGHT © 2006, F-Secure Corporation. All Rights Reserved.

"F-Secure" is a registered trademark of F-Secure Co rporation and F-Secure product
names and symbols/logos are either trademarks or re gistered trademarks of F-Secure
Corporation. All other product and company names, i f any, are trademarks or
registered trademarks of their respective owners.

This document may be copied without the author’s pe rmission provided that it is
copied in its entirety without any modification

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli

3
T oo U ox T o OO PSP PU R PPPRRPPRI 4
Overall Design and FUNCHONEAIILYeiiiiiiiiieiee ettt e e e e et b e e e e e e e abb et e e e e snneeeeeeannenes 5
The Cryptographic Module and CryptographiC BOUNGALY, ceee.....coiiuviiiiiieiiiiiiee et ee ettt e e e s senaeeeee s 6
ROIES QN SEIVICES ...ttt e oo ettt e e e e e et e bttt ettt et e eaaaaaseasaaaaa s an s betbesbeeeeeeeeeeeeaeaeeeeasnannsssssesnnsnenneeees 7
NS\ E= TaE=To 1] 0 =T o ST P PP UPPPPPUPPPPRIN 9
[oTe 81 L= a1 (=Tg = Lol =TT PO PP PPPPPPPPPPRPP 11
Y= B TS 1] o TP PPPPTURPPP 12

List of the API Functions, Operating Modes, Important Técdl Considerations

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 4

Introduction

The F-Secure® Kernel Mode Cryptographic Driver™lforux kernel (the Module) is a software
module implemented as a shared library (FSCLM.K@)en loaded into computing system memory,
it resides at the kernel mode level of the Linwe@ping System and provides an assortment of
cryptographic services that are accessible by dterel mode drivers through an Application
Programming Interface (API).

In certain cases, it is very important to have asde cryptographic services in the kernel mode. Fo
instance, file and disk encryption products andl@m@ntations of Virtual Private Network (VPN)
concept usually include kernel mode components lwitiake extensive use of cryptographic
functions, such as encryption, hashing, and ranbitsrgeneration. For such a component,
cryptographic service providers residing in therusede are of little help because of a significant
performance penalty associated with calling usedarfanctions from the kernel mode. This penalty is
hardly acceptable in products operating in reaktithis also more error-prone and difficult to user
mode services from the kernel mode in a securediable way. Therefore, the F-Secure Kernel Mode
Cryptographic Driver, whose high performance ARidiions can be directly called from other kernel
mode drivers, may bring considerable value to smféwendors developing real-time data security
products for Linux Operating System.

The Module was tested for FIPS 140-2 Level 1 reqnéents on Red Hat Enterprise Linux (RHEL) 4
operating system.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 5

Overall Design and Functionality

The Module is designed and implemented to meeltével 1 requirements of FIPS publication 140-2
when running on a GPC under Linux RHEL 4 operasiygtem.

The Module is written in the “C” programming langa At the source code level, we use nearly an
identical set of source files to build cryptograplibraries for a number of platforms, operating
systems and linkage options. Almost all platfornpeledent code is clearly separated into a small
number of platform-specific files. The F-Secure @@ographic Library for Windows is a dynamically
linked module (DLL) for the user mode level of Wawas 2000, Windows 2003, Windows XP,
Windows 98, and Windows ME operating systems, thlar$s version is a shared library (Shared
Object) for Sun Trusted Solaris$plaris 8 and 9 operating systems, the Linux vars@ shared
library for Linux RHEL 3 and 4 operating systene thinux kernel version is a kernel object for Linux
RHEL 4 operating system, the HP-UX version is aethdibrary for HP-UX 10 and 11 operating
systems, and the AIX version is a shared library¥iX 5 operating system. Other examples of our
cryptographic library “instances” are: kernel magort driver and statically linked library for
Windows NT/2000/2003/XP; DLL for Pocket PC 2002 &@93 and Windows Mobile 2005; DLL for
Symbian OS. (Note that only some of these instamnegs tested and validated for compliance with the
FIPS 140 Level 1 requirements.)

The Module supports the FIPS approved AES, TrigkSITDES), SHA-1, HMAC-SHA-1, SHA-256,
and HMAC-SHA-256 algorithms. It also provides ndi®*§ approved DES, Blowfish, RC2, MD5,
HMAC-MD5, RIPEMD-160, HMAC-RIPEMD-160, and passpbleabased key derivation (PBKDF2 as
specified in PKCS#5) algorithms. The Module implesea high-quality cryptographically strong
Pseudorandom Number Generator (PRNG), which is Ganmpvith the algorithm specified in
Appendix 3.1 of thé&-IPS PUB 186-2document.

Since the cryptographic driver is a software modiné runs on a general-purpose computing systems
and does not support asymmetric cryptographic nasthao special effort was taken to mitigate side-
channel attacks, in particular those based on gjraimd power analysis and fault induction.

All the cryptographic services implemented withie tModule are available ontg kernel mode

system drivers, which are a part of the operatysiesn Trusted Computer Base (TCB). It is impossible
to access any of the Module services directly fum@ar mode programs. This approach is chosen, in
particular, to reduce the risk of a targeted at@mtkhe Module by malicious code.

Use of an appropriate synchronization techniqueénModule helps ensure that it functions correctly
when simultaneously accessed by multiple threads.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 6

The Cryptographic Module and Cryptographic Boundary

In FIPS140-2 terms, the Module is a “multi-chiprstalone module.” The F-Secure Kernel Mode
Cryptographic Driver for Linux runs as a Kernel &dtjin any commercially available computing
system under the Linux OS. A “cryptographic bougtifor the Module is defined as those applicable
software and hardware components internal to adwaputing system that is running the operating
system.

The OS and the underlying central processing @#{) hardware control access to the non-paged
memory space in such a way that it is accessilieinrihe kernel mode. Being a kernel mode driver,
the Module resides in the non-paged space. Asagyaphic services provided by the Module are
available only to other kernel mode drivers, we edifately see that any data passed between the
Module and its clients can be accessed only iptveged mode of the OS and never leave the
cryptographic boundary.

The module provides no physical security beyontlah#he physical enclosure of a “hosting”
computer system.

The assumption, which we make about the operatimgament of the Module, is that it is installed,
initialized and used by following the rules desedtbelow in section “Roles and Services.”

The Module was internally tested by the vendor ¢€t8e Corporation) on the following computing
platform:

Hardware: Dell OptiPlex GX 240 Personal Compststem
Processor: Intel P4 1.6 GHz
Operating System: RH Enterprise Linux 4 (2.6 k8rn

Additionally, the Module was tested by a CMVP ladttory on the following computing platforms:
Hardware: Custom PC

Processor: AMD Athlon(tm) XP 1800+ (1540 MH2z)
Operating System: Linux RHEL 4

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 7

Roles and Services

The Module implements the following two roles: Ciy®fficer role and User role. Since the Module
is validated at security level 1, it does not pdavan authentication mechanism. Hence the roles are
assumed implicitly based on the services that artopned.

The two roles are defined per the FIPS140-2 stahaafollows:

A Useris any entity that can access services implemantéte Module.

A Crypto Officer is any entity that can access services implemeantdte Module, install the Module
in a device, and configure the device to ensurpgroperating of the Module in the FIPS 140-2 mode
of operation.

There is ndMaintenancerole.

An operator performing a service within any role cead and write security-relevant data only thioug
the invocation of a service by means of the Mod\ié.

The following operational rules must be followeddry user of the Module:

1. Virtual memory of the computing system must befigured to reside on a local, not a network,
drive.

2. A special operating system device providing hgghlity randomness must be present on the
computer. The Module attempts to read data froth thee blocking /dev/random device, and the non-
blocking /dev/urandom device to seed its PRNG.

It is a responsibility of the Crypto-Officer to dayure the operating system to operate securely and
whenever it is necessary, to prevent remote ldgate that the Crypto Officer must have
administrative privileges in the computer systeimg¢peonfigured.

The services provided by the Module to the Useréfextively delivered through the use of
appropriate API calls. In this respect, the sam@fksgervices is available to both the User and the
Crypto Officer.

When the OS loader attempts to load the Modulermeaory, the Module runs an integrity test and a
number of cryptographic functionality self-testsall the tests pass successfully, the Module makes
transition to “User Service” state, where the ABllcan be used by other kernel mode drivers to
carry out desired cryptographic services. Othervitse Module returns to “Uninitialized” state arnt
OS reports failure of the attempt to load it intemory.

The Module provides the following FIPS-approved/gsss:

1. Cryptographic data hashing using FIPS PUB 18&H2A-1 and SHA-256.

2. Symmetric data encryption and decryption usitRSFPUB 197 AES and FIPS PUB 46-2 TDES.
3. Random number generation using a software-balgedthm as specified in FIPS 186&igital
Sgnature Sandard (DSS), Appendix 3.1.

4. MAC computation and verification using FIPS PUS HMAC-SHA-1 and HMAC-SHA-256
algorithms (when key size is at least half of tlygathm output size).

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 8

Other non-approved services provided by the Mothdkride:

5. Cryptographic data hashing using MD5 and RIPEMID-algorithms.

6. MAC computation and verification using HMAC-MDBRHd HMAC- RIPEMD-160 algorithms.
7. Symmetric data encryption and decryption usitayiish and RC2 block ciphers.

8. Passphrase-based key derivation (PBKDF2 asfigueri PKCS#5) algorithm.

9. Symmetric data encryption and decryption usiigD

Non-FIPS-approved services cannot be selectee iibdule is operating in accordance with FIPS
140-2, that is, in the FIPS mode of operation. &eeption to this is the Passphrase-based key
derivation service based on the FIPS-approved SHAsh function and HMAC-SHA-1 algorithm.
This service provides functionality that is not pedy covered by any of the FIPS-approved algorghm
at present time. DES is also available as a npneapd service while the Module is in FIPS mode.

We note that the client must ensure that keys ddnvith PBKDF2 are only used for authentication
purposes while in the FIPS mode. Such keys camnasbd for symmetric encryption/decryption when
the Module is in the FIPS mode of operation. Tientis also responsible for excluding any use of
DES encryption/decryption while in FIPS mode.

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli 9

Key Management

The Module implements a number of functions thatether used internally or exposed in the API to
meet the FIPS140-2 Level 1 requirements for Key &gment.

Key Generation

Keys for symmetric ciphers and HMAC algorithms tengenerated by simply requesting the PRNG
implemented in the Module to produce a desired rarmobbytes. The PRNG employs a FIPS-
approved algorithm as specified in FIPS 18®@jital Sgnature Sandard (DSS), Appendix 3.1. No
other RNGs are used by the Module.

Intermediate key generation values are never otitpot the Module.
Key Distribution and Storage

All keys are processed, stored, and used in theuldazhly on behalf of and for immediate use by its
clients, which all belong to TCB and run in theteys process.

Since the current version of the Module does nppstt any public key methods, there is no easy way
to use it for electronic key distribution in tharfnes of a NIST-approved key distribution protoaol o
for implementing standard key exchange protocols.

If, nevertheless, someone wants to use the ModBlg@ implementing a key distribution/exchange
algorithm, it is their responsibility to ensure BIR40-2 compliance of protocols and algorithms they
implement.

The Module does not provide long-term cryptograjdeg storage.
Zeroization of Keys

Keys and critical security parameters in the Modwde be divided into two groups: those used by the
Module internally and the ones that actually beltmgs clients.

The Module takes care of zeroizing all its interk&ys and critical security parameters (such as the
PRNG internal state or various pre-computed valyé$when those are not needed any more, (2)
when the OS loader calls the Module’s “unload” fiime, and (3) when the Module enters the error
state. Also, as a precaution, the PRNG internéd gfets overwritten when the Module processes an
unregistration request of its last client.

For the other group, when a client requests theléotb destroy a data object containing keys or
critical security parameters, the Module alway®zas all such data objects prior to freeing their
memory. Also, when a client calls the “client uniségtion” function, provided by the Module API,
the Module zeroizes and frees memory of all dajaate which are allocated and left unfreed by the
client. Finally, the Module performs so-called “ebis clean-up at exit.” If the OS loader calls the
Module’s “unload” function, we check if there amgyaobjects (like cipher or HMAC contexts)
allocated and not freed by any of the clients,@adzeroize and free all such objects. This is daapigc

F-Secure Kernel Mode Cryptographic Driver Security &oli 10

important if a fatal error occurs in the Module some of the clients do not have a chance to take
proper care of cleaning up objects possibly coirigisecret information.

Protection of Keys

We rely on the OS memory management mechanismstarethat process space of the system
process, including its memory, cannot be accesgehy other process. Keys created within or passed
into the Module for one user are not accessibbntoother user via the Module. It is a responsibof

its clients to protect keys exported from the Medaihd validate keys passed into the Module.

The Module takes care of never exposing its owerinal keys and critical security parameters oujside
and of zeroizing those prior to exiting or freecwresponding portions of memory. In particular, we
mention the PRNG state and intermediate generatiires, whose disclosure or modification may
compromise the security of the Module.

All dynamic memory allocations in the Module aredadrom the non-paged pool to ensure that blocks
containing confidential data never get paged byaBe

List of Keys stored in the module
Following keys are stored in the Module:

1. Keys for symmetric encryption/decryption algioniis:
a. DES key
b. Triple DES key
c. AES key
d. Blowfish key
e. RC2 key

2. Keys for HMAC methods:
a. HMAC-SHA-1 key
b. HMAC-SHA-256 key
c. HMAC-MDS5 key
d. HMAC-RIPEMD-160 key

4. Key for self-integrity test:
a. HMAC-SHA-1 key

Out of the above keys, only the HMAC-SHA-1 key u$adthe self-integrity test is stored across
power cycles. The rest of the keys are ephemeyal, kehich are zeroized before the Module exits.

F-Secure Kernel Mode Cryptographic Driver Security &oli 11

Module Interfaces

Being a software module, the F-Secure Kernel ModgGgraphic Driver defines its interfaces in

terms of the API that it provides. We define Datput Interface as all those API calls that accapt,

their arguments, data to be used or processecdehyitidule. The API calls that return, by means of
return value or arguments of appropriate types daherated or otherwise processed by the Module to
the caller constitute Data Output Interface. Cdritrput Interface is comprised of the call used to
initiate the Module and the API calls used to cointine operation of the Module. Finally, Status

Output Interface is defined as the API calls, whpcbvide information about the status of the Module

F-Secure Kernel Mode Cryptographic Driver Security &oli 12

Self-Testing

The F-Secure Kernel Mode Cryptographic Driver impégits a number of self-tests to check proper
functioning of the Module. This includes power-ghfgests (which are also callable on-demand) and
conditional self-tests.

Power-up Self-Testing

When the Module starts loading into memory, powesself-testing is initiated automatically. It is
comprised of the software integrity test and kn@amswer tests of cryptographic algorithms. If any of
the tests fail, the Module returns to “Uninitiaki¥estate and the OS reports failure of the attetmpt
load it into memory.

The following known answer tests are implementethéModule:

- AES KAT

- DES KAT

- TDES KAT

- Blowfish KAT

- SHA-1 KAT

- SHA-256 KAT

- HMAC-SHA-1 KAT

- MD5 KAT

- PRNG KAT

- PRNG Statistical Tests

The software integrity test computes DAC value pglging the HMAC-SHA-1 method, FIPS 198, to
data of all the relevant sections of disk imagéhefModule. The test fails if the DAC value compulte
on the disk image of the Module does not matclotiggnal value computed on the Module by a
special utility at the vendor’s site (F-Secure @ogpion) and stored in a special place inside the
Module.

On-Demand Self-Testing

The Module exports an API routine, “fsclm_Selftesthich can be called to initiate the power-up-self
tests. If any of the tests fail, the Module enteeserror state. This error state is unrecoveralgen
entering it, the Module stops providing cryptogragervices to the client.

Conditional Self-Testing

This includes continuous PRNG testing. The verst fautput block generated by the PRNG is never
used for any purpose other than initiating the iooitus PRNG test, which compares every newly
generated block with the previously generated bldtle test fails if the newly generated PRNG output
block matches the previously generated block. thsucase, the Module enters the unrecoverable
error state.

F-Secure Kernel Mode Cryptographic Driver Security &oli 13

List of the API Functions, Operating Modes, Important Technical Considerations

In this section, we briefly describe the servidest the Module provides and related security aag@s
considerations. In order to guarantee secure angstdunctioning of the Module, it is important tha
the clients follow our recommendations as fully anelcisely as possible.

The following list presents the Module API functsosplit into a number of groups in accordance with
their functionality.

M ode of operation and | nformation functions

fsclm_GetModuleVersion
This routine provides the callers with the Moduégsion information.

fsclm_GetModuleMode

This routine returns the current mode of operatibthe Module.

The F-Secure Kernel Mode Cryptographic Driver sutgpttvo modes of operation: FIPS 140 mode
and non-FIPS mode. Only FIPS-approved algorithrasagailable to the caller in FIPS 140 mode. Any
attempt to use non-FIPS-approved algorithms in AI®mode results in an appropriate error code
returned by the Module. It is a responsibility bént application developers to design their praduic
such a way that they function properly in the botbdes of operation. We recommend avoiding
schemes and protocols, which are based on nontsgleaon-FIPS-approved algorithms in any part.

fsclm_SetModuleMode

This routine sets the mode of operation of the Medthe two options are:
FSCLM_MODE_NONFIPS - all methods included in theddte are available to the caller;
FSCLM_MODE_FIPS140 - only FIPS-approved methodsaaeglable to the caller.

Use of "fsclm_SetModuleMode" makes it easy to emshat non-FIPS-approved algorithms are
unavailable, no matter what cryptographic servibesclient application requests from the Module.

fsclm_GetModuleStatus

This routine returns the current status of the Medtiihere are five states defined in the Modulat&in
State Machine (FSM):

FSCLM_STATUS_UNINITIALIZED

FSCLM_STATUS SELF _TESTING

FSCLM_STATUS USER_SERVICE

FSCLM_STATUS UNLOADING

FSCLM_STATUS_ ERROR

fsclm_GetErrorCode
This function returns "fatal" error code if the Mdd is in the error state, or
FSCLM_ERROR_FATAL_NONE otherwise.

F-Secure Kernel Mode Cryptographic Driver Security &oli 14

Symmetric encryption functions

The Module implements a number of symmetric cipheduding FIPS-approved AES and TDES
modes. In the code, we use a layered approach basieé internal “cipher API”, which makes it very
easy to exclude existing or add new ciphers ifrdesiThe cipher modes of operation are implemented
as a generic layer, so each newly included cipaeimmediately be used in any of the supported
modes. (The Module supports the standard ECB, CBB, and OFB modes as well as Counter and
IWEC modes.)

All the encryption and decryption functions suppartplace” operations, which means that the same
buffer may be used as both source and destinasicaneters.

fsclm_Cipherinfo
Provides information about the specified cipheiisThakes it possible to learn if the cipher is
supported by the Module, if it is FIPS-approved] amat key and block sizes are supported for it.

fsclm_CipherAlloc

Allocates and initializes the cipher context objectthe specified cipher in the specified mode of
operation and with the specified key. Any allocatgzher object must eventually be freed by calling
"fscim_CipherFree". The Module takes care of newgrosing contents of cipher objects outside and of
proper zeroizing their memory when appropriate.

fscim_CipherFree
Zeroizes and frees the memory of the specifiedesipbject. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_CipherReset
This resets the given cipher object so that it Wwdobk like a newly allocated and initialized ofiée
"reset" operation also zeroizes all remnants optieeious processing.

fsclm_CipherEncrypt
This encrypts the given input buffer and writes tbsulting ciphertext to the given output buffer.
Encryption mode and other parameters are taken thergiven cipher context object.

fsclm_CipherDecrypt
This decrypts the given input buffer and writes tbsulting plaintext to the given output buffer. déo
of operation and other parameters are taken frengithen cipher context object.

fsclm_CipherEncryptlV

This encrypts the given input buffer and writes tbsulting ciphertext to the given output buffeheT
only difference between this routine and "fsclm_@&rEncrypt" is that the latter takes IV/counter
information from the cipher object and updategpjrapriately, while the former uses "iv" value pas
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherDecryptlV
This decrypts the given input buffer and writes ibgulting plaintext to the given output buffer.eTh
only difference between this routine and "fsclm_&ecrypt" is that the latter takes I1V/counter

F-Secure Kernel Mode Cryptographic Driver Security &oli 15

information from the cipher object and updategpjrapriately, while the former uses "iv" value pabs
to it as a parameter and updates that value (lgdViftounter information in the cipher object infac

fsclm_CipherSetlV

This sets encryption or decryption IV/counter valu¢ghe specified cipher object. This value wikth
be used for the subsequent encryption (“fscim_Cpherypt") or decryption ("fscim_CipherDecrypt")
operation respectively.

Note that the same cipher object can be used thrdytcryption and decryption operations, thus we
maintain separate encryption and decryption IV/¢eumformation in the cipher object.

fscim_CipherGetlV
This copies the current encryption or decryptiofctbdnter value in the specified cipher object ® th
caller-supplied buffer.

fscim_CipherComputelV

Certain modes of operation of block ciphers maleafsounter value. In such modes, processing of a
particular block of input depends on the initialueaof counter and index (or offset) of the blokwo
examples supported by the Module are Counter ari€ld\Whodes.) If you want to perform encryption
or decryption operation starting with theh block, you would need to know the correspondiagnter
value, and this is what this routine helps yougieen the initial counter value and the block ingdiéx
computes and writes to the caller-supplied bufierdounter value for the block.

Note that counter-based modes provide you witmdam read-write access to large streams of
encrypted data, the property that CBC, CFB, and @®Bes do not enjoy.

fsclm_CipherEncryptBuffer

This routine performs one-pass encryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API ttaflave the application developer effort. This wall
equivalent to the following sequence:

fsclm_CipherAlloc

fsclm_CipherEncryptlV

fsclm_CipherFree

fsclm_CipherDecryptBuffer

This routine performs one-pass decryption of amiveffer, which can be a useful shortcut in certain
cases. It encapsulates a number of other API twaflave the application developer effort. This wall
equivalent to the following sequence:

fsclm_CipherAlloc

fsclm_CipherDecryptlV

fsclm_CipherFree

F-Secure Kernel Mode Cryptographic Driver Security &oli 16

Hash functions

The Module currently implements FIPS-approved SH&adl SHA-256, and non-FIPS-approved MD5
and RIPEMD-160 hash functions. In the code, wealulsgered approach based on the internal “hash
API”, which makes it very easy to exclude existorgadd new hash functions if desired.

fsclm_Hashinfo

Provides information about the specified hash fienctThis makes it possible to learn if the hash
function is supported by the Module, if it is FIRBproved, and what its output (digest) and blozkssi
are.

fsclm_HashAlloc

Allocates and initializes the hash context objecttfie specified hash function. Any allocated hash
object must eventually be freed by calling "fsclnasHFree".

Hash objects may contain confidential informatibhe Module takes care of never exposing contents
of hash objects outside and of proper zeroizing themory when appropriate.

fsclm_HashFree
Zeroizes and frees the memory of the specified bagdct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HashReset

This resets the given hash context object so theduld look like a newly allocated and initialized
one. It is useful when you want to use the samb haxtion for computing hash values (also called
digests) of multiple data blocks.

The "reset" operation also zeroizes all remnante@previous processing.

fsclm_HashUpdate

This updates the given hash context with the gimpnt.

When you need to compute digest of a data streaichvdlomes in a number of portions (or when you
want to split a very long stream in a number otps), you can simply feed such portions to
"fscIm_HashUpdate" one by one. The resulting digakie will be identical to what you would get if
passing the entire stream as a single buffer.

Note that in order to obtain digest value of yoatag any sequence of calls to "fscim_HashUpdate"
must eventually be followed by a call to "fsclm_HBEmal".

fsclm_HashFinal

This function completes computation of hash valua data stream, which has been processed by calls
to "fsclm_HashUpdate" function. The resulting digeswritten to a caller-supplied buffer.

Note that after "fsclm_HashFinal" has been caledafhash object, the object should not be used for
any further operations until you call "fscim_HaskB® for it. After resetting, you may start

computation of hash value for a new data stream.

fsclm_HashOfBuffer

This routine computes digest of a given buffer,chihtan be a useful shortcut in certain cases. It
encapsulates a number of other API calls to savapiplication developer effort. This call is
equivalent to the following sequence:

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli

fsclm_HashAlloc
fsclm_HashUpdate
fsclm_HashFinal
fsclm_HashFree

17

F-Secure Kernel Mode Cryptographic Driver Security &oli 18

HMAC functions

The Module clients can use HMAC methods based grhash function that is implemented in the
Module. By specifying the ID of a hash functionyaiur choice, you fully specify the HMAC
algorithm that you want to use. To obtain inforraatabout parameters of a particular HMAC
algorithm, simply call "fsclm_HashlInfo" for the ¢esponding hash function.

fscim_HMACAIlloc

Allocates and initializes the context object foe tHMAC algorithm based on the specified hash
function, and with the specified key. Any allocatéflAC object must eventually be freed by calling
"fscim_HMACFree".

The Module takes care of never exposing contenitiMAC objects outside and of proper zeroizing
their memory when appropriate.

fscim_HMACFree
Zeroizes and frees the memory of the specified HM&ct. This routine is always available to the
caller, even if the Module is in the error state.

fsclm_HMACReset

This resets the given HMAC context object so thatduld look like a newly allocated and initialized
one. It is useful when you want to use the same I@Mdnction, possibly with a different key, for
computing message authentication code (MAC) vatdiesultiple data blocks.

The "reset" operation also zeroizes all remnante@previous processing.

fscilm_HMACUpdate

This updates the given HMAC context with the giveput.

When you need to compute MAC of a data stream wtaches in a number of portions (or when you
want to split a very long stream in a number otps), you can simply feed such portions to
"fscim_HMACUpdate" one by one. The resulting MAGQuawill be identical to what you would get
if passing the entire stream as a single buffer.

Note that in order to obtain MAC value of your datay sequence of calls to "fsclm_HMACUpdate"
must eventually be followed by a call to "fsclm_HIgRinal".

fsclm_HMACFinal

This function completes computation of MAC valueaadata stream, which has been processed by
calls to "fscim_HMACUpdate" function. The resultiMAC is written to a caller-supplied buffer.
Note that after "fsclm_HMACFinal" has been called &an HMAC object, the object should not be
used for any further operations until you call IilscHMACReset" for it. After resetting, you may dtar
computation of MAC value for a new data stream ¢fag using a different key).

fsclm_HMACOfBuffer

This routine computes MAC value of a given buffehich can be a useful shortcut in certain cases. It
encapsulates a number of other API calls to savapiplication developer effort. This call is
equivalent to the following sequence:

fsclm_HMACAIlloc

fscilm_HMACUpdate

fsclm_HMACFinal

F-Secure Kernel Mode Cryptographic Driver Security ¢3oli

fscilm_HMACFree

19

F-Secure Kernel Mode Cryptographic Driver Security &oli 20

PRNG functions

The PRNG implemented in the Module is based onithydrchitecture. It uses a one-way output
function on top of the well-known “entropy pool”’reme. The design is FIPS-compliant as the output
algorithm is the one specified in Section 3.1, Apfir 3 of FIPS PUB 186-2document, with the
function G constructed from the SHA-1 as specifie8ection 3.3, Appendix 3 of the same document.

The PRNG is initialized when the Module gets loagted memory. During the initialization phase,
various system and hardware parameters and stat@s® collected and mixed in the PRNG pool with
the SHA-1 transform function to achieve a goodudifbn of “entropy” bits. Seeding/reseeding code for
each supported platform resides in the respectatéopm-specific source file.

fscim_PrngDeepPoll

Invokes platform-specific “deep” polling for entpfi.e., hard-to-predict bits) to achieve good-dyal
seeding of the PRNG. This deep polling gets cal#matically occasionally during the entire
lifetime of the Module. Also, the function is callat the PRNG initialization time.

The main purpose of this function is to help mamthe PRNG pool in a state, which is infeasible to
guess for the adversary.

fsclm_PrngAddNoise

This exclusive-ORs bytes from the given buffer vitie PRNG pool content and serves the purpose of
adding unpredictability to the PRNG state. (We &#@wp to the client whether to use this funcion

not as the automatic PRNG seeding in the Modulelghwe good enough to prevent the adversary
from guessing the PRNG state or any of the outplutes.)

The exclusive-OR operation cannot force the PRN& weaker state because it obviously cannot
reduce the pool data entropy.

fsclm_PrngMixPool

Mixes (i.e., cryptographically processes) the PRMGI. The mixing operation is based on the SHA-1
transform function. It provides good “entropy” diffion and is irreversible.

This function gets called automatically at theiatization time and then regularly during the emtir
lifetime of the Module.

fsclm_PrngGetBytes

This routine writes to the caller-supplied buffiee requested number of PRNG-produced bytes.
Although what the generated bytes will be usedd@ntirely up to the caller, we recommend calling
this function if you need to generate:

- any keying material (in both symmetric and asynnoesettings)

- IV or initial counter values used in many poputaethods (e.g., modes of operation of block ciphers
- padding bytes for various cryptographic schemes

- random nonces and challenges required in mamtagyaphic protocols (e.g., authentication
protocols)

- salts to be combined with passphrases in passpitu@sed key derivation algorithms

- random values for probabilistic cryptographicaxlthms (e.g., signing with DSA)

We stress that it is a responsibility of the clienprotect bytes provided by the Module PRNG (in
particular, from being exposed to the adversary).

F-Secure Kernel Mode Cryptographic Driver Security &oli 21

fsclm_PrngGetParameters

Fills in the fields of a caller-supplied structwveh the current values of the PRNG object paransete
The function that sets the PRNG parameters, “fseimgSetParameters”, is unavailable in the API of
the F-Secure Kernel Mode Cryptographic Driver far time being. This is mostly due to the fact that
in the kernel mode, a single instance of the Modudg serve to multiple callers — kernel mode dsyer
so the PRNG object is shared between all the saller

F-Secure Kernel Mode Cryptographic Driver Security &oli 22

Client registration functions

fsclm_RegisterCaller

Prior to using any of the cryptographic servicesvated by the Module, the clients must registethi®
Module. Successful registration results in a “refiee” token returned to the client. That token &hou
then be passed as a parameter to almost all théuABtions the client calls. (A small number of
information functions do not have the “caller refgece” argument and can be used without registering.

fsclm_UnregisterCaller

When the client does not need the Module servingdanger, it must call the unregistration function
Such a call results in freeing the memory assatiaiéh the client. All cryptographic objects allded
and not freed by the client will be zeroized arekft by the Module. This helps ensure no confidentia
data will be left in memory.

We strongly recommend to our clients to ensure ghantually unregister with the Module. (Note that
it may be insufficient to simply put the unregisima function in the "unload” function of your dey,

as the latter function does not get called by tBel@éader when the system is about to be shut down.
Thus, you may want to process "system shutdownificettion sent by the OS to take your chance to
unregister.)

The unregistration routine is always availableh® tlient, even if the Module is in the error stéte
fact, we recommend calling it as soon as you faaridhat the Module had entered the error state.

F-Secure Kernel Mode Cryptographic Driver Security &oli 23

Other functions

fsclm_Selftest

Calling this routine makes the Module run a nundfeself-tests. This on-demand self-testing includes
self-integrity test, Known Answer Tests of cryptaghic algorithms, and, optionally, the set of PRNG
statistical tests (as specified in the FIPS 14@@udhent). If any of the tests fail, the Module estihe
error state, which means that its cryptographicises become unavailable to the clients. To use the
services again, the user will need to restart tioelile.

fsclm_DeriveSymmetricKey

This routine implements the passphrase-based keyaten function specified in PKCS#5 (PBKDF2).
The implementation uses HMAC-SHA1 as a PRF.

The two main goals of this key derivation algorithne:

- preventing the adversary from compiling a unigédictionary of passphrases and precomputing the
corresponding keys (achieved by using so-calletf”;s@hose presence in the algorithm results in a
very large number of keys that correspond to easisghrase)

- making exhaustive search attacks much more catipoally expensive, which is especially
important in the case of “weak” passphrases (aekidy iterating the key derivation function many
times and recursively)

We stress that it is a responsibility of the clienprotect keys derived by this routine (in partae,

from being exposed to the adversary). This is aAgproved service.

fsclm_OverwriteMemory

This function can be used for overwriting a givéock of memory with a bit stream that enjoys good
statistical properties (i.e., appears as a BingnarSetric Source output).

We use it internally to overwrite portions of memdinat may contain confidential data.

Also, this function can (and should !) be useddadtof the PRNG to produce random-looking bits
when we do not care about “cryptographic qualiy’typical example is generating “witnesses” for
probabilistic primality testing.

fscim_GetBase64Length

Clients should call this routine prior to callinfs¢im_EncodeBase64” to determine size of the buffer
that Base64 encoded data will be written to. Vahfabe encoding option arguments passed to
“fsclm_GetBase64Length” must be identical to thessubsequently passed to
“fscim_EncodeBase64”.

fsclm_EncodeBase64

Given an input buffer, this routine encodes thadatBase64 format. The client can specify desired
line length and ending for the encoded byte stream.

fsclm_DecodeBase64

This routine transforms a given Base64 encodeddiygam to the original (raw) form.

Detailed description of the Module API can be foumthe Module public header file, FSCLM.H.

F-Secure Kernel Mode Cryptographic Driver Security &oli 24

We conclude this section by listing a number obramendations aimed at helping the Module clients
avoid security-related and technical problems wihgsiementing data security products.

Prior to freeing any memory blocks that may contaitical security parameters or other
confidential data, take care of zeroizing them prop When you free an object allocated by the
Module (for example, a symmetric cipher contexthiling an appropriate FSCLM API function,
the Module zeroizes the object memory. The clippiiaations are responsible for zeroizing any
other memory blocks, in particular, those intermagalivariables containing keying or otherwise
confidential data.

It is a responsibility of the clients to ensuneyt work with cryptographic objects allocated by th
Module in a multi-threading safe way. Please keemind that the Module provides no
synchronisation for accessing such objects conetlyrby multiple threads of the client
applications.

All dynamically allocated memory blocks that n@yntain critical security parameters or other
confidential data should be allocated from the paged pool. We follow this rule in the Module
code as this is the best way to ensure that blogktaining confidential data never get paged by the
OS.

