
 1

Rainbow Technologies CryptoSwift HSM 
Cryptographic Accelerator 

 

FIPS 140-1 Non-Proprietary 
Cryptographic Module Security Policy 

Hardware P/N 107316 
Firmware version 5.6.27 

Ver 25 

7/29/01 

for 
Level 3 Overall 

Level 4 for Self-Test 
Validation 

 

1.0 Scope  
 
This document describes the security policy for the CryptoSwift HSM cryptographic accelerator.  It is to be used for 
the FIPS 140-1 validation process.  The board is designed to attain a level 3 overall validation and a level 4 
validation in the area of Self-Test.  
 
The following table describes the compliance level for each section of the FIPS 140-1 specification: 
 

Cryptographic Modules: Level 3 

Module Interfaces: Level 3 

Roles and Services: Level 3 

Finite State Machine Model: Level 3 

Physical Security: Level 3 

Software Security: Level 3 

Operating System Security: Level N/a 

Cryptographic Key Management: Level 3 

Cryptographic Algorithms: Level 3 

EMI/EMC: Level 3 

Self-Tests: Level 4 
 
 
 
If changes are made to the design of the CryptoSwift HSM, this document should be updated to incorporate the 
changes and reviewed by an NVLAP-accredited CMT lab. 
 
 

2.0 Applicable Documents 
 
FIPS PUB 140-1 Federal Information Processing Standard, Security Requirements for Cryptographic Modules 
January, 11, 1994, U.S. Department of Commerce, National Institute of Standards and Technology 



 2

 
Derived Test Requirements for FIPS PUB 140-1, Security Requirements for Cryptographic Modules 
FINAL, March 1995, Mitre for NIST Contract 50SBNIC6732 
 
FIPS PUB 46-3  and FIPS PUB 81, for information on the Data Encryption Standard (DES), and Triple DES 
algorithm. 
U.S. Department of Commerce, National Institute of Standards and Technology 
 
FIPS PUB 180-1, Secure Hash Algorithm (SHA-1), U.S. Department of Commerce, National Institute of Standards 
and Technology 
 
ANSI Standard X9.17-1995, Financial Institution Key Management (Wholesale), American Banking Association, 
X9 Financial Services, American National Standards Institute  
 
PKCS #1 RSA Cryptography Standard, Version 2.0,  
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html 
RSA Security Inc. 
 
 
 



 3

3.0 Overview 
 
The CryptoSwift HSM is a cryptographic module which is used to accelerate cryptographic processing for network 
based electronic commerce and other network based applications.   The board  has two modes.   These are the non-
FIPS140-1 mode and the FIPS140-1 mode.  In the FIPS140-1 mode, the board  can be used in servers to improve the 
performance associated with high rate signing operations.  In the non-FIPS140-1 mode, the board can be used to 
accelerate RSA operations for SSL connections on web servers.   Other uses are limited only by the creativity of 
applications developers who can write to standard API’s such as Cryptoki (PKCS#11).   
 
The CryptoSwift HSM is a PCI card.  It has a serial port, a Universal Serial Bus (USB) port, and an LED.   The 
board is shipped with four tokens.  These tokens plug into the USB port.    The first token is used for authenticating 
the Security Officer to the HSM.  The second token is used to for authenticating the User.  The third and forth 
tokens are called “code tokens.”  One of these is held (controlled) by the Security Officer.  The other held by the 
User.   The code keys are used to move key parts (also known as “key shares”) between two HSM boards.   Key 
parts transferred by this mechanism are combined within the destination boards so that a shared secret can exist on 
one or more boards without having existed in plaintext outside of a family of HSM boards.   The shared secret is a 
Key-Wrapping-Key.  When two or more boards contain the same Key-Wrapping-Key, they are said to be in the 
same family.  The  Key-Wrapping-Key is used to encrypt other keys.  These encrypted keys can then be transmitted 
between boards over untrusted paths under the control of a Rainbow Technologies key management utility.  This 
allows boards to share keys as would be appropriate for load distribution or redundancy needs. 
 
The key wrapping key also makes it possible for keys to be stored in encrypted form on backup tapes or hard drives 
for archival purposes.  The keys encrypted with the Key-Wrapping-Key need never exist in plaintext form outside of 
an HSM. 
 
When an operator uses an HSM, he will be assisted by a key management utility.  This utility will prompt the 
operator when it is time to plug a particular token into a particular HSM.  A particular host system may contain one 
or more HSM’s.  So that there is no confusion, the key management utility will control an LED on each HSM to 
alert the operator to know where to insert a particular token.   

1. The HSM can detect attempts to penetrate its cryptographic envelope.  If it detects a tamper attempt, the 
HSM will erase all of the critical security parameters that it contains. 

 
The HSM is controlled via its PCI interface.  Commands are entered via the PCI bus, and status is read from the PCI 
bus.  Also, both plaintext and encrypted data is transmitted over the PCI interface.  The serial port  is disabled in the 
production version of the CryptoSwift HSM.  A primary function of the HSM is to securely generate, store, and use 
private keys (particularly for signing operations). 
 
 
 
 

4.0 Capabilities 
 
The CryptoSwift HSM is capable of performing a wide variety of cryptographic calculations including DES, SHA-1,  
DSA, 3DES, RSA exponentiation, RC4 and HMAC.  When in the FIPS 140-1 mode, the board can perform DES,  
3DES, RSA Signatures, RSA Signature Verifications and SHA-1 functions.  When in the non-FIPS 140-1 mode, the 
board can also perform the RSA exponentiation, RC4, MD5, HMAC (SHA-1 and MD5) and DSA.  
 
The RSA signature and verification implementation is compliant with the PKCS #1 standard. 



 4

 
The following table describes how each cryptographic algorithm is used by our module while operating in the FIPS 
140-1 Mode: 
 
Algorithm How it is used by the HSM module Used in FIPS 140-1 Mode? 
DES The module provides services for 

encryption/decryption.  As currently 
implemented, the plaintext key must be 
inputted via the PCI interface.  Therefore, 
this algorithm is not accessible in the FIPS 
140-1 Mode.  The self-tests perform a 
known answer test on this algorithm in FIPS 
140-1 Mode. 

No 

3DES Used to generate Pseudo-random numbers 
using the X9.17 Appendix C PRNG 
algorithm for the purposes of key generation 
of RSA and 3DES keys. 
 
Encryption/decryption of every key stored in 
persistence storage within the module using 
the Master Key. 
 
Wrapping (encryption) of Private RSA Keys 
using the Key-Wrapping-Key for archival 
purposes. 
 
 
Unwrapping (decryption) of Private RSA 
Keys using the Key-Wrapping-Key for the 
purpose of restoring an archived key. 
 
Note: The 3DES Encrypt and Decrypt 
services are not available for this algorithm 
in FIPS mode because keys are entered in 
plaintext. 

Yes 

RSA Signature/Verification Generation and verification of digital 
signatures using the RSA algorithm, in 
accordance with the PKCS #1 specification. 
  
Keys pairs of modulus size in the range 192 
through 1024 bits, in 64 bit increments. 
 
Note: The message digest operation of the 
digital signature and verification function is 
performed outside of the cryptographic 
boundary for performance reasons.  After 
the digest is computed outside the module, 
the module formats and pads the message 
digest according to the PKCS #1 standard 
and then uses the  RSA algorithm to 
compute the digital signature. 

Yes 

SHA-1 Hashing of host-provided data. 
 
Hashing for the purpose of verifying the 
RSA digital signature of a firmware image. 
 

Yes 



 5

Hashing a 3DES key for the purpose of 
checking its integrity after it is split and then 
the corresponding shares combined. 

MD5 The module provides services to compute an 
MD5 message digest.  As this algorithm is 
not FIPS-approved, the corresponding 
services are not available in the FIPS 140-1 
Mode. 

No 

HMAC (SHA-1) The module provides a service to compute 
HMAC using SHA-1.  As currently 
implemented, the service requires the MAC 
key to be inputted unencrypted via the PCI 
interface, and therefore this service is not 
available in the FIPS 140-1 Mode. 

No 

HMAC (MD5) The module provides a service to compute 
HMAC using MD5.  Since MD5 is not a 
FIPS-approved algorithm, this service is not 
available in the FIPS 140-1 Mode. 

No 

RC4 The module provides services for 
encryption/decryption with RC4.   Since 
RC4 is not a FIPS-approved algorithm, the 
corresponding services are not available in 
the FIPS 140-1 Mode. 

No 

DSA  The module provides services for generating 
and verifying DSA signatures.  As currently 
implemented, the private key for signature 
generation must be inputted via the PCI 
interface.  Therefore, this algorithm is not 
available in the FIPS 140-1 Mode. 
 
Keys pairs of modulus size in the range 512 
through 1024 bits, in 64 bit increments. 
 
 

No 

 
 



 6

5.0 Physical Security 
 
The board is  designed to detect tampering attempts and will zeroize critical security parameters under a variety of 
prescribed circumstances.  These circumstances include penetration of the module’s cryptographic envelope.  The 
cryptographic envelope consists of an opaque tamper resistant lid and circuit board, and will provide clear visual 
evidence of tampering.  The lid and circuit board are joined to form a contiguous perimeter. This perimeter encloses 
module components responsible for the creation, storage and processing of critical security parameters.  The 
boundary contains intricate serpentine patterns that are used to detect tamper attempts associated with a breach of 
the cryptographic envelope by drilling, sawing or removal of the tamper lid.  
 

 
6.0 Module Interfaces 
 
6.1 USB (Universal Serial Bus) Interface 
 
This is the trusted interface of the HSM.  It is used for communicating with iKey1000 tokens. 
Four tokens are shipped with each HSM.  One will contain a pin used to authenticate the Security Officer.  One will 
contain a pin used to authenticate the User.  One will contain a key-part to be controlled by the Security Officer.  
One will contain a key-part to be controlled by the user.   No secrets, key-parts or critical security parameters are 
contained within any of the tokens or within the HSM when these items are shipped from Rainbow Technologies. 
 
6.2 Status LED (Light Emitting Diode) Interface 

 
The LED can be in four possible states.  These are off, green, orange and red.   
The meaning associated with each LED state is as follows:   
 
LED State Meaning 
 
off     power off  
green   board is on but idle 
orange  board is in the self-test state or performing a crypto function 
red  board is in the error state 
 
The true state of the HSM, will be obtainable from the status register which is read by the host over the PCI 
interface. 
 
6.3 Serial Interface 
 
The serial interface is disabled in the production version of the CryptoSwift HSM board. 
 
6.4 PCI Interface 
 
This interface is used to provide data and commands to the CryptoSwift HSM board.  It is also used to read data and 
status from the CryptoSwift HSM.   
 
6.5 Backup Battery Interface 
 
The Backup Battery Interface is used to provide backup power to the HSM.  This gives the HSM the capability to 
maintain and protect secrets should PCI power become unavailable.  The battery is continuously monitored by the 
HSM for a voltage low condition.  This makes it possible to alert an operator.  The operator may then replace the 
battery.  This can be done  without loss of critical security parameters as long as the battery  is replaced when PCI 
power is present.  If the battery is removed while PCI power is absent, all critical security parameters contained 
within the HSM will be erased.   
 
6.6 PCI Power Interface 



 7

 
The PCI Power Interface will provide the power necessary to perform all other CryptoSwift HSM functions. 
 

 
7.0 Components 
 
7.1 Bulk Crypto 
 
This component performs cryptographic hashing and symmetric cryptographic operations. 
 
7.2 Power Management and Tamper Detect 
 
This component monitors battery voltage and the security envelope to detect conditions that will result in the 
zeroization of critical security parameters.  Battery voltage is also monitored to determine when it is necessary to 
replace the battery. 
 
7.3 FastMap Processor 
 
This component contains a processor and internal SRAM.  The processor executes the software that initially resides 
in Flash memory and is eventually loaded into the external SRAM (external to the FastMap Processor yet still within 
the cryptographic boundary).  The FastMap Processor also contains large accumulators and a random number 
generator.  The accumulators are necessary for the acceleration of public key cryptographic operations. The random 
number generator generates truly random numb ers through a stochastic process.  The output of this random number 
generator is used only for seeding the FIPS-approved ANSI X9.17 Appendix C pseudo-random number generator 
(PRNG).  The output of the PRNG is used for generating 3DES and RSA keys, as well as outputting random 
numbers requested via the Generate Random Number service. 
 
7.4  Flash 
 
This component is non-volatile memory.  The contents of Flash will maintain its state after PCI power and Battery 
power have been removed. The Flash contains the firmware that controls processing within the CryptoSwift HSM.  
It also contains public keys and other information that are not considered dangerous if exposed (certificates, public 
keys, encrypted data, encrypted keys and hash values used for authentication).   
 
7.5 SRAM 
 
SRAM is Static Random Access Memory. This memory will be used to store plaintext data, ciphertext data, 
symmetric keys, asymmetric keys, intermediate values, and firmware after it has been loaded from Flash. 
 
7.6 Real Time Clock/Battery Powe red RAM (RTC/BBRAM) 
 
This component is used to store values that are to be retained when PCI power is removed.  This includes the master 
key (MK) that can be used to decrypt encrypted private keys and symmetric keys stored in Flash.  The RTC is used 
to provide input to the key generation process so that it is consistent with FIPS 140-1 key generation requirements. 
 
7.7 Programmable Logic Device (PLD) 
 
This component embodies all additional logic necessary to interface components contained within the security 
envelope.  
 
 7.8 USB (Universal Serial Bus) Controller 
 
This component allows the board to communicate with an iKey.  The iKey is used to store a Personal Identification 
Number PIN that allows for user authentication, or to store key parts for moving keys from one HSM to another 
HSM.   



 8

 
 
7.9 Universal Asynchronous Receiver Transmitter (UART) 
 
This component is disabled in the production version of the CryptoSwift HSM board. 

 
7.10 33MHz Clock 
 
This  circuitry generates a square wave to provide the primary system clock and  to synchronize the various 
components of the CryptoSwift HSM with the operation of the FastMap chip. 
 
 

8.0 Definition of Security Relevant Data Items 
 
The following are the security relevant data items contained in this module: 
 
Master Key (MK) = The 3DES3KEY key which encrypts all non-volatile critical security parameters that are 
stored within the module (in the flash).  The master key is stored in the BBRAM, and is destroyed when power is 
removed from both the PCI interface and the battery, and by the tamper detection circuitry whenever tampering is 
detected.  The master key is randomly generated when the board is initialized (the Security Officer role is created). 
 
Security Officer role PIN (SOPIN) = The SO role PIN is generated randomly when the board is initialized.  It is 
written to an iKey token via the trusted USB interface.  Please refer to section 9.2 below for a description of how 
this PIN is used for authentication. 
 
User Role PIN (UserPIN) = The User Role PIN is generated randomly when the SO invokes the Create User 
service.  It is written to an iKey token via the trusted USB interface.  Please refer to section 9.2 below for a 
description of how this PIN is used for authentication..   
 
Key-Wrapping-Key (KWK) = A 3DES3KEY key created by either the SO or User role for the purpose of 
wrapping private RSA keys.  The Key-Wrapping-Key may be randomly generated using the Generate Key service, 
or may be entered into the module using the Combine Key service, which combines two key shares entered via the 
trusted USB interface.  In the non-FIPS 140-1 mode, the Key-Wrapping-Key may also be created via the Derive 
Key service. 
 
PRNG3DES Key (PRNGKey)= This 3DES2Key is used for seeding the X9.17 Pseudo-random Number Generator 
(PRNG).  The PRNG 3DES Key is generated randomly using the hardware random number generator (RNG) within 
the FastMap processor.  This key is generated every time a random number is needed for key generation or as a 
direct request via the Generate Random Number service.  The PRNG 3DES EDE Key is destroyed after each PRNG 
is generated. 
 
RSA Public and Private Key Pair (SPK, VPK)= This RSA key pair is generated by either the SO or User role for 
the purpose generating RSA digital signatures via the RSA Sign service, or for verifying the same via the RSA 
Verify service.  A key pair which is designated by the user who created it cannot be used for any other purpose such 
as key exchanges or encryption/decryption of data.  The user may specify via Boolean attributes whether the private 
key may be used for Signature Generation and/or Data Decryption, and whether the public key may be used for 
Signature Verification and/or Data Encryption.  Hence, a given key pair may be used for both 
signatures/verifications as well as data encryption/decryption.  In FIPS 140-1 Mode, data encryption/decryption is 
not available. 
 
RSA Encryption/Decryption Public and Private Key Pair  (EPK, DPK)= This key pair is generated by either the 
SO or User role for the purpose of encrypting and decrypting data.  When creating this key pair, the user may 
specify via Boolean attributes whether the private key may be used for Signature Generation and/or Data 
Decryption, and whether the public key may be used for Signature Verification and/or Data Encryption.  Hence, a 
given key pair may be used for both signatures/verifications as well as data encryption/decryption.  Note that in the 



 9

FIPS 140-1 Mode, although Encryption/Decryption key pairs may be generated, the RSA Encrypt and RSA Decrypt 
services are not available ,and therefore, such keys are not useable in this mode.   
  
Key-Wrapping-Key Share (KWKShare) = Key share obtained by splitting the KWK into two shares with the 
Split Key service.  Two corresponding shares may be combined with the Combine Key service to enter the KWK 
into the module. 
 
 
 
 

9.0 Roles & Services 
 
9.1 Roles 
 
The CryptoSwift HSM supports two roles.  These are the User role and the Security Officer role. 
Each role has a username and an iKey ID that are selectable by the security officer.   
 
The mo dule must be handled in a secure manner prior to initialization because authentication is not required to 
initialize the module. 
 
Cryptographic keys and user-defined data which is created by a specific authenticated user cannot be deleted or 
modified by another user, regardless of the role.  For example, a specific user of the User role may not delete or 
modify keys or data created by a different user of either the User or SO roles.   
 
The SO and User roles cannot operate simultaneously.  Only one authenticated user is allowed at a time. 
 
9.1.1 User 
 
The User role can perform cryptographic operations using private keys which are encrypted and stored in flash.  The 
User role cannot create a user.    
 
9.1.2 Security Officer 
 
The Security Officer role can also perform cryptographic operations using private keys which are encrypted and 
stored in flash.  Additionally, the Security Officer may create a user, update the HSM firmware, or command the 
CryptoSwift HSM to “uninitialize.”  
 
9.2 Authentication 
  
The CryptoSwift HSM uses identity-based authentication to allow subjects to assume one of the two roles. 
Usernames are transmitted to the CryptoSwift HSM over the PCI interface to identify the user.  A corresponding 
personal identification number (SOPIN or UserPIN as described in section 8.0 above) is inputted to the HSM from 
an iKey token over the trusted USB interface.  This PIN is hashed and compared with a hash value which is stored in 
flash and associated with the user’s name on the HSM.  If the two hash values match, the user is authenticated and 
assigned a role that is associated with the user’s name.  To increase security in case the iKey token is compromised, 
an iKey ID is used to unlock the plaintext PIN that is stored in the iKey.  This plaintext iKey ID is  inputted into the 
module in plaintext as part of the Login service.  The module provides a SHA-1 of this iKey ID to the iKey token in 
order to unlock the PIN.  Since the iKey ID does not authenticate the user to the module, but rather unlocks the 
plaintext PIN from the iKey, the iKey ID is not an SRDI. 
 
 
 
 
9.3 Initialization 
 



 10 

The CryptoSwift HSM is shipped in an un-initialized state.  At this point, it contains no private or secret keys.   The 
Security Officer initializes the board.  Performing this function generates an internally stored master key, and 
generates a random PIN, which is stored in the Security Officer’s iKey token.  Initialization also creates the Security 
Officer account and associates the SHA-1 hash of the random PIN with the Security Officer account. 
 
9.4 User Creation 
 
Once the board has been initialized, the Security Officer can create a User account.  Creating the User account 
generates a random PIN, which is stored  in the User’s iKey token.  The SHA-1 hash of this random PIN is 
associated with the User account. 
 
9.5 Services 
The following table describes which services can be performed by which role, and the SRDI(s) which each service 
accesses.  

 
Service FIPS140-1 Level 3 Mode Non- FIPS140-1 Mode  

 Not 
authentica-
ted 

User 
Role 

SO 
Role 

Not 
authentica-
ted 

User Role SO 
Role 

SRDIs 
Accessed 

Modular 
Exponentiation using 
CRT (note 3) 

YES  YES  YES  YES YES YES None 

Modular 
Exponentiation  
(note 3) 

YES  YES  YES  YES YES YES None 

RSA Encrypt 
(note 8) 

NO NO  NO  NO YES YES EPK (use) 

RSA Decrypt 
(note 8) 

NO NO NO NO YES YES DPK (use) 

Digital Signature 
Standard Sign (note 
1) 

NO NO NO YES YES YES None. 

Digital Signature 
Standard Verification 
(note 1) 

NO NO NO YES YES YES None 

Self-test YES YES YES YES YES YES None 

Firmware Update NO NO YES NO NO YES None. 

Generate Random 
Number  

YES YES YES YES YES YES PRNGKey 
(create, destroy) 

Get Configuration YES YES YES YES YES YES None. 

Get Status YES YES YES YES YES YES None. 

Verify Firmware 
Image 

NO NO YES NO NO YES None. 



 11 

SHA1 Hash  NO YES YES YES YES YES None. 

SHA1 HMAC (note 1) NO NO NO YES YES YES None. 

MD5 Hash NO NO NO YES YES YES None. 

MD5 HMAC (note 1) NO NO NO YES YES YES None. 

DES Encrypt (note 1) NO NO NO YES YES YES None. 

DES Decrypt (note 1) NO NO NO YES YES YES None. 

Triple DES Encrypt 
(note 1) 

NO NO NO YES YES YES None. 

Triple DES Decrypt 
(note 1) 

NO NO NO YES YES YES None. 

RC4 Encrypt (note 1) NO NO NO YES YES YES None. 

RC4 Decrypt (note 1) NO NO NO YES YES YES None. 

Encrypt SHA1 Hash 
(DES)  (note 1) 

NO NO NO YES YES YES None. 

Decrypt SHA1 Hash 
(DES)  (note 1) 

NO NO NO YES YES YES None. 

Encrypt SHA1 Hash 
(3DES) (note 1) 

NO NO NO YES YES YES None. 

Decrypt SHA1 Hash 
(3DES)  (note 1) 

NO NO NO YES YES YES None. 

Encrypt MD5 Hash 
(RC4) (note 1)  

NO NO NO YES YES YES None. 

Decrypt MD5 Hash 
(RC4)  (note 1) 

NO NO NO YES YES YES None. 

Generate and Return 
RSA Key Pair  
(note 4) 

NO NO NO YES YES YES None. 

Generate and Store 
RSA Key Pair 

NO YES YES NO YES YES PRNGKey 
(create and 
destroy), and 
create either or 
both of the 
following pairs: 
(SPK, VPK) or 
(EPK, DPK) 

Store Public Object 
(Public RSA Key, 
user data object)  

NO YES YES NO YES YES Enter and store: 
EPK or VPK  



 12 

Store Vendor-Defined 
Data Object 

YES YES YES YES YES YES None. 

Store Private Object 
(Private RSA Key) 
(note 4) 

NO NO NO NO YES YES Enter and 
Store: 
SPK or DPK 

Get Public Object 
(RSA public key, 
user-defined data 
object)  

NO YES YES NO YES YES Read: 
SPK or DPK 

Get Vendor-Defined 
Data Object 

YES YES YES YES YES YES None. 

Get Object 
Information by Object 
ID  

YES YES YES YES YES YES None. 

Get Object Count YES YES YES YES YES YES None. 

Get Object 
Information by Index  

YES YES YES YES YES YES None. 

Get RSA Key 
Information by ID 
(modulus, exponent) 

NO YES YES NO YES YES Read: 
VPK or EPK 

Get RSA Key 
Information by Index 
(modulus, exponent) 

NO YES YES NO YES YES Read: 
VPK or DPK 

Change Object ID NO YES YES NO YES YES None. 

Delete Object NO YES YES NO YES YES Destroy 
selected key: 
KWK,  
SPK, VPK, 
EPK, DPK. 

Delete All Objects NO YES YES NO YES YES Destroy all 
keys: 
KWK,  
SPK, VPK, 
EPK, DPK 
 

Initialize Card YES NO NO YES NO NO MK (create), 
SOPIN (create 
and write to 
trusted path) 

Uninitialize Card 
(note 7) 

NO NO YES NO NO YES Destroy all of 
the following: 
MK, SOPIN, 
UserPIN, KWK, 
SPK, VPK, 
EPK, DPK 

User Login/Change 
PIN 
(note 5) 

YES NO NO YES NO NO UserPIN (read 
from trusted 
interface) 

Create User NO NO YES NO NO YES UserPIN 
(create, write to 
trusted 
interface) 



 13 

interface) 

User Logout NO YES YES NO YES YES None. 

Derive Key (note 2) NO NO NO NO NO YES KWK (create) 

Wrap Key 
(note 4) 

NO YES YES NO YES YES KWK (use), 
Wrap: 
SPK, DPK  

Unwrap Key 
(note 4) 

NO YES YES NO YES YES KWK (use), 
Unwrap: 
SPK, DPK 

 
Modify Object NO YES YES NO YES YES None. 

        

RSA Sign  
(note 4) 

NO YES YES NO YES YES SPK (use) 

RSA Verify  
 

NO YES YES NO YES YES VPK (use) 

Generate Key 
(note 6) 

NO YES YES NO YES YES KWK (create) 

Split Key  NO YES  YES NO YES YES KWK (split), 
PRNGKey 
(create, 
destroy), 
Two 
KWKShares 
(created and 
written to 
trusted 
interface) 

Combine  Key  NO YES YES NO YES YES KWK (created), 
two 
KWKShares 
(read from 
trusted 
interface) 
 

Set LED State YES YES YES YES YES YES None. 

 
 
Note 1 = The key for these commands is inputted via the PCI bus (data input interface) 
Note 2 = This is a PKCS 12 method for deriving a 3DES key from a password, salt and iteration count.. 
Note 3 = The Exponentiation Using CRT and Exponentiation functions are generic math functions; all 
parameters are inputted via the PCI interface (data input interface). 



 14 

Note 4 = When operating in the FIPS140-1 mode, it is not possible for secret keys, private keys or critical 
security parameters to cross the PCI bus without being wrapped (encrypted) using the Key-Wrapping-
Key. 
Note 5 = User Login is the process that takes the board from an unauthenticated state to the 
authenticated state.  Only one user may be authenticated at a particular time.  Consequently, the User 
Login process cannot be started from the authenticated state.  Nonetheless, the User Login process 
cannot be completed successfully without authentication. 
Note 6 = This command is used for generating the key-wrapping-key. 
Note 7 = When the board is in the zeroized state, it is possible to for an unauthenticated user to 
uninitialize the board. 
Note 8 = These operations must access stored cryptographic keys.  The keys may not be inutted ivia the 
PCI interface. 



 15 

10.0 Key Management 
 
10.1 Key Generation 
 
Random number generation for key generation is accomplished using the algorithm described by appendix C of 
ANSI standard X9.17.  This algorithm will use a seed value V (from appendix C) that is generated by the random 
number generator contained in the FastMap chip.   Using this algorithm ensures that the keys generated will be 
consistent with the requirements of FIPS 140-1.  Performing the key generation in this manner will ensure that the 
generated keys will be random and that the process used for their construction will be compatible with FIPS 140-1 
requirements.  Continuous random number testing is performed on the output of the hardware RNG (in the Fastmap 
chip) as well as on the output of the FIPS-approved ANSI X9.17 PRNG  which is seeded by the RNG.  For both 
continuous tests, the block size of 64 bits.  

 
10.2 Key Storage 
 
Private keys, symmetric keys and other critical security parameters will be stored in plaintext within the security 
envelope in RAM.   Private and symmetric keys may also be stored in Flash, but only when first 3DES3KEY 
encrypted with the Master Key (MK) of the board.  BBRAM is used to store the Master Key.   
 
10.3 Key Entry and Output 
 
When in the FIPS 140-1 mode, private keys and symmetric keys can only cross the cryptographic boundary when 
3DES3KEY encrypted with a Key-Wrapping-Key.  The Key-Wrapping-Key is generated when the “Generate Key” 
command is received by the HSM.   The command that is used to encrypt and output a private or symmetric key is 
the “Wrap Key” command.  The command that is used to enter and decrypt a private or symmetric key is the 
“Unwrap Key” command.     
 
 
10.4 Key Distribution 
 
To distribute a Key-Wrapping-Key between devices, it is split into two parts.   The two parts, when exclusively 
ORed together, generate the Key-Wrapping-Key.  The key splitting occurs when the “Write Key Split” command is 
first issued by the Security Officer.  This command will cause one of the key parts to be written to an iKey 
controlled by the Security Officer.  The second key part is written to an iKey controlled by the User.  The Security 
Officer must logout and the User must login before the second “Write Key Split” can be performed.  The two iKey 
tokens used for carrying key parts are labeled with the word “CODE”.    
 
The two key parts are then physically carried by separate trusted individuals to another device.   If this device is also 
an HSM, the two parts may loaded into it using the “Read Key Split” command.  Similarly, this command must be 
issued twice, once for the Security Officer and once for the User.  Separate authentications are required for each 
“Read Key Split” command.  After the second “Read Key Split” command has been successfully completed the 
destination device will contain the same Key-Wrapping-Key as the originating device. 
 
Once two or more devices that contain the same Key-Wrapping-Key, they are said to be in the same family.  
Devices in the same family may share other secrets.  Secrets are moved between devices under the control of a 
Rainbow Technologies key management utility.  The key management utility runs on the host, and uses “Wrap Key” 
and “Unwrap” commands to move wrapped keys between devices in the same family. 
 
 

 
 
 



 16 

10.5 Key Destruction 
 
Critical security parameters including plaintext private keys, symmetric keys and intermediate values will be 
zeroized according to various conditions as described in figure 2.  It is also possible for the security officer to 
command the board to un-initialize, which causes the data stored in RAM, FLASH and BBRAM to be erased. 
 

Tamper Voltage Applied Storage
Detected Battery PCI BRAM RAM and Other Flash

NO YES YES Retained Retained Retained
NO YES NO Retained Erased Retained
NO NO YES Retained Retained Retained
NO NO NO Erased Erased Retained
YES YES YES Erased Erased Retained
YES YES NO Erased Erased Retained
YES NO YES Erased Erased Retained
YES NO NO Erased Erased Retained

Figure 2: Key Destruction  
 
10.6 Key Archiving 
 
Under the control of the Rainbow Technologies key management utility, it is also possible to archive keys.  
This may be done so that keys may be stored on backup media such as tape or  hard drives. 
The Rainbow Technologies key management utility utilizes the “Wrap Key” command to perform key archival.  All 
archived keys are 3DES3KEY encrypted.  Keys may only be archived and restored between devices in the same 
family. 
    
 



 17 

11.0 Modes 
 
The CryptoSwift HSM has two operating modes.  These are the FIPS140-1 mode and the non-FIPS140-1 mode.  
Before the HSM is initialized with the “Initialize Card” command, it is in the non-FIPS140-1 mode.  This command 
has an input parameter that specifies the mode of the card after initialization.  Once initialized, the board remains in 
one of the two modes.  If one wishes to change the operating mode of the card, the card must first be uninitialized 
using the “Uninitialize Card” command.  Then, the card can be initialized with a different operating mode.  
Uninitializing the card removes all secrets from the card.   
 
11.1  FIPS 140-1 Mode 
 
In the FIPS 140-1 mode, the board may only perform FIPS approved algorithms. 
These are as follows: 
 
 
DES 
3DES **  
SHA-1 
RSA Sign 
RSA Verify 
 
See the table in services section to identify the conditions necessary for performing various HSM commands in the 
FIPS140-1 mode. 
 
No plaintext private or symmetric keys can cross the cryptographic boundary when the HSM is in the 
FIPS140-1 mode. 
 
 
 
**The 3DES algorithm is used to secure private or symmetric keys stored in flash and for the key wrapping and 
unwrapping functions.   
 
 
 
11.2 Non-FIPS 140-1 Mode 
 
In the non-FIPS140-1 mode, the user has greater flexibility in the types of algorithms that can be performed and the 
manner that keys are handled.  For example, in the non-FIPS140-1 mode, the board can perform all the functions of 
the FIPS140-1 mode plus other functions like MD5 and RC4.  In the non-FIPS140-1 mode, keys may cross the 
cryptographic boundary in plaintext form for certain operations (e.g. DES, RSA CRT exponentiation).  It is still 
possible to store keys on the board so that they cannot be extracted.   These non-extractable keys will be erased if a 
tamper attempt is detected.  See the table in services section to identify the conditions necessary for performing 
various HSM commands in the non-FIPS140-1 mode.   
 



 18 

12.0 Self-Tests 
The following table describes all of the cryptographic self-tests performed by the CryptoSwift HSM module.  The 
following abbreviation is used: 
KAT = Known Answer Test 
 
Self-Test FIPS 140-1 Mode Non-FIPS 140-1  Mode When performed 
RSA Encrypt/Decrypt 
and Sign/Verify KATs 

Yes Yes Power-up, 
Self-Test Service (on-
demand) 

DES KAT Yes Yes Power-up, 
Self-Test Service (on-
demand) 

3DES KAT Yes Yes Power-up, 
Self-Test Service (on-
demand) 

SHA-1 KAT Yes Yes Power-up, 
Self-Test Service (on-
demand) 

DSA KAT No Yes Power-up, 
Self-Test Service (on-
demand) 

MD5 KAT No Yes Power-up, 
Self-Test Service (on-
demand) 

RC4 KAT No Yes Power-up, 
Self-Test Service (on-
demand) 

RSA Key Generation 
Pairwise Consistency 
Test 

Yes Yes Generate And Store RSA 
Key Pair Service , 
Generate And Return 
RSA Key Pair Service 
 

Statistical Random 
Number Generator 
Tests (Monobit, Poker, 
Runs, Long Run) 

Yes Yes Power-up, 
Self-Test Service (on-
demand) 

Continuous Random 
Number Generator Test 

Yes Yes Whenever a pseudo-
random number is 
generated: 
key generation, 
Generate Random 
Number Service 

Firmware RSA 
Signature Verification 
Test 

Yes Yes Power-up, 
Self-Test Service (on-
demand), 
Firmware Update, 
Verify Firmware Image 
Service 

 

 
13.0 Conclusion 
 
The CryptoSwift HSM provides FIPS 140-1 Level 3 cryptographic processing, acceleration and security for RSA 
signing and verifying functions.  In the non-FIPS140-1 mode, it can also bulk data cryptographic algorithms for PKI 



 19 

certificate server, firewall and web server equipment.  It is suitable for use in applications requiring up to 200 public 
key transactions per second where protecting critical security parameters is a high priority.  Industries requiring this 
high level of performance and security include (but are not limited to) banking, telecommunications, e-commerce, 
and medical services.  In the area of self-test, the CryptoSwift HSM provides capabilities consistent with FIPS 140-1 
Level 4. 

 


