
 Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

Cisco Systems, Inc., 2010
This document may be freely reproduced and distributed whole and intact including this copyright notice

Cisco Secure Access Control
Server (ACS) FIPS module
Network Security Services
(NSS)3.12.5

FIPS 140-2 Non-Proprietary Security Policy Level 1
Validation

Version 0.3
October 2010

Table of Contents
List of Tables 2

List of Figures 2

Introduction 2

Platform List 3

Note on Calling the API Functions 3

Security Rules 4

Authentication Policy 7

Specification of Roles 7

Role-Based Authentication 7

Strength of Authentication Mechanism 8

Multiple Concurrent Operators 9

Access Control Policy 9

 2
OL-22835-01

Security-Relevant Information 9

Self-Tests 10

Random Number Generator 10

Module Ports and Interfaces 11

Physical Cryptographic Boundary 12

Logical Cryptographic Boundary 12

Logical Interfaces 13

PKCS #11 13

Inhibition of Data Output 13

Disconnecting the Output Data Path From the Key Processes

14

Specification of Services 14

Mitigation of Other Attacks 20

Access to Audit Data 20

Access to Syslog Log Files 21

Sample Cryptographic Module Initialization Code 21

Obtaining Documentation, Support, and Security Guidelines

24

List of Tables
Table 1 Algorithm Validation Certificates 5

Table 2 Service Category, Funtion, Description, Key,

Access Type 14

Table 3 Other Attacks & Mitigation 20

List of Figures
Figure 1 Physical Cryptographic Boundary 12

Figure 2 NSS PKCS #11 Interface 12

Introduction

A security policy includes the precise specification of the security rules under which the
cryptographic module must operate, including rules derived from the security requirements of the
FIPS PUB 140-2 standard, and the additional security rules listed below. The rules of operation of
the cryptographic module that define within which role(s) and under what circumstances (when

Cisco Secure ACS Module Security Policy

 3

performing which services) an operator is allowed to maintain or disclose each security relevant
data item of the cryptographic module.

There are three major reasons for developing and following a precise cryptographic module
security policy:

• To induce the cryptographic module vendor to think carefully and precisely about whom
they want to allow access to the cryptographic module, the way different system elements
can be accessed, and which system elements to protect.

• To provide a precise specification of the cryptographic security to allow individuals and
organizations (e.g., validators) to determine whether the cryptographic module, as
implemented, does obey (satisfy) a stated security policy.

• To describe to the cryptographic module user (organization, or individual operator) the
capabilities, protections, and access rights they will have when using the cryptographic
module.

The NSS cryptographic module is an open-source, general-purpose cryptographic library, with an
API based on the industry standard PKCS #11 version 2.20 [1]. It is available for free under the
Mozilla Public License, the GNU General Public License, and the GNU Lesser General Public
License. The NSS cryptographic module is jointly developed by Red Hat and Sun engineers and is
used in Mozilla Firefox, Thunderbird, and many server applications from Red Hat and Sun.

The NSS cryptographic module has two modes of operation: the FIPS Approved mode and non-
FIPS Approved mode. By default, the module operates in the non-FIPS Approved mode. To
operate the module in the FIPS Approved mode, an application must adhere to the security rules in
the Security Rules section and initialize the module properly. If an application initializes the NSS
cryptographic module by calling the standard PKCS #11 function C_GetFunctionList and
calls the API functions via the function pointers in that list, it selects the non-FIPS Approved
mode. To operate the NSS cryptographic module in the FIPS Approved mode, an application must
call the API functions via an alternative set of function pointers. Rule 7 of the Security Rules
section specifies how to do this.

This document may be freely reproduced and distributed in its entirety.

Platform List
FIPS 140-2 conformance testing of the NSS cryptographic module was performed on the
following platforms listed below. The list was configured with no elliptic curve cryptography
(ECC) support.

• Security Level 1

• Cisco CentOS (CARS)

Note on Calling the API Functions
The NSS cryptographic module has two parallel sets of API functions, FC_xxx and NSC_xxx,
that implement the FIPS Approved and non-FIPS Approved modes of operation, respectively. For
example, FC_Initialize initializes the module's library for the FIPS Approved mode of
operation, whereas its counterpart NSC_Initialize initializes the library for the non-FIPS
Approved mode of operation. All the API functions for the FIPS Approved mode of operation are
listed in the Specification of Services section.

Among the module's API functions, only FC_GetFunctionList and
NSC_GetFunctionList are exported and therefore callable by their names. (The
C_GetFunctionList function mentioned in the Introduction section is also exported and is

 4
OL-22835-01

just a synonym of NSC_GetFunctionList.) All the other API functions must be called via
the function pointers returned by FC_GetFunctionList or NSC_GetFunctionList.
FC_GetFunctionList and NSC_GetFunctionList each return a
CK_FUNCTION_LIST structure containing function pointers named C_xxx such as
C_Initialize and C_Finalize. The C_xxx function pointers in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList point to the FC_xxx functions, whereas the
C_xxx function pointers in the CK_FUNCTION_LIST structure returned by
NSC_GetFunctionList point to the NSC_xxx functions.

For brevity, we use the following convention to describe API function calls. Again we use
FC_Initialize and NSC_Initialize as examples:

• When we say “call FC_Initialize,” we mean “call the
FC_Initialize function via the C_Initialize function pointer
in the CK_FUNCTION_LIST structure returned by
FC_GetFunctionList.”

• When we say “call NSC_Initialize,” we mean “call the
NSC_Initialize function via the C_Initialize function
pointer in the CK_FUNCTION_LIST structure returned by
NSC_GetFunctionList.”

Security Rules
The following list specifies the security rules that the NSS cryptographic module and each product
using the module must adhere to:

1. The NSS cryptographic module consists of software libraries compiled for each
supported platform.

2. The cryptographic module relies on the underlying operating system to ensure the
integrity of the cryptographic module loaded into memory.

3. Applications running in the FIPS Approved mode call FC_GetFunctionList for
the list of function pointers and call the API functions via the function pointers in
that list for all cryptographic operations. (See the Note on Calling the API
functions section.) The module changes from FIPS Approved mode to non-FIPS
Approved mode when a FC_Finalize/NSC_Initialize sequence is executed;
it changes from non-FIPS Approved mode to FIPS Approved mode when a
NSC_Finalize/FC_Initialize sequence is executed.

4. NSS cryptographic module can be configured to use different private key database
formats: key3.db or key4.db. “key3.db” format is based on the Berkeley DataBase
engine and should not be used by more than one process concurrently. “key4.db”
format is based on SQL DataBase engine and can be used concurrently by multiple
processes. Both databases are considered outside the cryptographic boundary. The
interface code of the NSS cryptographic module that accesses data stored in the
database is considered part of the cryptographic boundary as the interface code
encrypts/decrypts data.

5. Secret and private keys, plaintext passwords, and other security-relevant data items are
maintained under the control of the cryptographic module. Secret and private keys
are only to be passed to the calling application in encrypted (wrapped) form with
FC_WrapKey using Triple DES or AES (symmetric key algorithms) or RSA
(asymmetric key algorithm). Note: If the secret and private keys passed to higher-
level callers are encrypted using a symmetric key algorithm, the encryption key may
be derived from a password. In such a case, they should be considered to be in
plaintext form in the FIPS Approved mode.

Cisco Secure ACS Module Security Policy

 5

6. Once the FIPS Approved mode of operation has been selected, the user must only use
the FIPS 140-2 cipher suite.

7. The FIPS 140-2 cipher suites consist solely of:

• Triple DES (FIPS 46-3) or AES (FIPS 197) for symmetric key encryption and
decryption.

• Secure Hash Standard (SHA-1, SHA-256, SHA-384, and SHA-512) (FIPS 180-2)
for hashing.

• HMAC (FIPS 198) for keyed hash.

• Random number generator Hash DRBG (NIST SP800-90).

• Diffie-Hellman primitives or RSA encrypt/decrypt may be used by user
applications to implement approved key establishment methods. The module does
not provide key establishment functionality.

• DSA (FIPS 186-2 with Change Notice 1), RSA (PKCS #1 v2.1), for signature
generation and verification.

Table 1 Algorithm Validation Certificates

Algorithm Certification
Number Description

DRBG 16 SP 800-90 [Hash_DRBG: SHA-256]

RSA 533 ALG[RSASSA-PKCS1_V1_5]; SIG(gen); SIG(ver);
1024 , 1536 , 2048 , 3072 , 4096 , SHS: SHA-1 ,
SHA-256 , SHA-384 , SHA-512

DSA 366 PQG(gen) MOD(1024); PQG(ver) MOD(1024);
KEYGEN(Y) MOD(1024); SIG(gen) MOD(1024);
SIG(ver) MOD(1024);

Triple DES 821 TECB(e/d; KO 1,2,3); TCBC(e/d; KO 1,2,3)

AES 1126 ECB(e/d; 128,192,256); CBC(e/d;
128,192,256)

SHS 1048 SHA-1 (BYTE-only) SHA-256 (BYTE-only)
SHA-384 (BYTE-only) SHA-512 (BYTE-
only)

HMAC 636 HMAC-SHA1 (Key Sizes Ranges Tested:
KS<BS KS=BS KS>BS) HMAC-SHA256 (
Key Size Ranges Tested: KS<BS KS=BS
KS>BS) HMAC-SHA348 (Key Size Ranges
Tested: KS<BS KS=BS KS>BS) HMAC-
SHA512 (Key Size Ranges Tested: KS<BS
KS=BS KS>BS)

The NSS cryptographic module implements the following non-Approved algorithms, which must
not be used in the FIPS Approved mode of operation:

• RC2 , RC4, DES, SEED, or CAMELLIA for symmetric key encryption and decryption

 6
OL-22835-01

• MD2 or MD5 for hashing

8. Once the FIPS Approved mode of operation has been selected, Triple DES and AES

must be limited in their use to performing encryption and decryption using either
ECB or CBC mode.

9. Once the FIPS Approved mode of operation has been selected, SHA-1, SHA-256,
SHA-386, and SHA-512 must be the only algorithms used to perform one-way
hashes of data.

10. Once the FIPS Approved mode of operation has been selected, RSA must be limited
in its use to generating and verifying PKCS #1 signatures, and to encrypting and
decrypting key material for key exchange.

11. Once the FIPS Approved mode of operation has been selected, DSA can be used in
addition to RSA to generate and verify signatures.

12. The module does not share CSPs between an Approved mode of operation and a
non-Approved mode of operation.

13. All cryptographic keys used in the FIPS Approved mode of operation must be
generated in the FIPS Approved mode or imported while running in the FIPS
Approved mode.

14. The cryptographic module performs explicit zeroization steps to clear the memory
region previously occupied by a plaintext secret key, private key, or password. A
plaintext secret or private key must be zeroized when it is passed to a
FC_DestroyObject call. All plaintext secret and private keys must be zeroized
when the NSS cryptographic module: is shut down (with a FC_Finalize call); or
when reinitialized (with a FC_InitToken call); or when the state changes between
the FIPS Approved mode and non-FIPS Approved mode (with a
NSC_Finalize/FC_Initializeor FC_Finalize/NSC_Initialize
sequence). All zeroization is to be performed by storing the value 0 into every byte
of the memory region previously occupied by a plaintext secret key, private key, or
password.

15. The environment variable NSS_ENABLE_AUDIT must be set to 1 before the
application starts.

16. The NSS cryptographic module consists of the following shared libraries and the
associated .chk files:

• libsoftokn3.so

• libsoftokn3.chk

• libfreebl3.so

• libfreebl3.chk

• libnssdbm3.so

• libnssdbm3.chk

The NSS cryptographic module requires the Netscape Portable Runtime (NSPR)
libraries. NSPR provides a cross-platform API for non-GUI operating system facilities,
such as threads, thread synchronization, normal file and network I/O, interval timing and
calendar time, atomic operations, and shared library linking. NSPR also provides utility
functions for strings, hash tables, and memory pools. NSPR is outside the cryptographic
boundary because none of the NSPR functions are security-relevant. NSPR consists of
the following shared libraries:

• libplc4.so

Cisco Secure ACS Module Security Policy

 7

• libplds4.so

• libnspr4.so

The installation instructions are:

Step 1: Install the shared libraries and the associated .chk files in a directory on the shared
library search path, which could be a system library directory (/usr/lib) or a
directory specified in the following environment variable:

• LD_LIBRARY_PATH

Step 2: Use the chmod utility to set the file mode bits of the shared libraries to 0755 so
that all users can execute the library files, but only the files' owner can modify
(i.e., write, replace, and delete) the files. For example:

$ chmod 0755 libsoftokn3.so libfreebl*3.so libplc4.so
libplds4.solibnspr4.so

The discretionary access control protects the binaries stored on disk from being
tampered with.

Step 3: Use the chmod utility to set the file mode bits of the associated .chk files to
0644. For example:

$ chmod 0644 libsoftokn3.chk libfreebl*3.chk
libnssdbm3.chk

Step 4: As specified in Rule 7, to operate the NSS cryptographic module in the FIPS
Approved mode, an application must call the alternative PKCS #11 function
FC_GetFunctionList and call the API functions via the function pointers
in that list. The user must initialize the password when using the module for the
first time. Before the user password is initialized, access to the module must be
controlled. See the Sample Cryptographic Module Initialization Code
section below for sample code.

(End of Security Rules)

Authentication Policy

Specification of Roles
The NSS cryptographic module supports two authorized roles for operators.

• The NSS User role provides access to all cryptographic and general-purpose services
(except those that perform an installation function) and all keys stored in the private key
database. An NSS User utilizes secure services and is also responsible for the retrieval,
updating, and deletion of keys from the private key database.

• The Crypto Officer role is supported for the installation of the module. The Crypto
Officer must control the access to the module both before and after installation. Control
consists of management of physical access to the computer, executing the NSS
cryptographic module code as well as management of the security facilities provided by
the operating system. The NSS cryptographic module does not have a maintenance role.

Role-Based Authentication
The NSS cryptographic module uses role-based authentication to control access to the module.
To perform sensitive services using the cryptographic module, an operator must log into the

 8
OL-22835-01

module and perform an authentication procedure using information unique to that operator
(password). The password is initialized by the NSS User as part of module initialization. Role-
based authentication is used to safeguard a user's private key information. However, discretionary
access control is used to safeguard all other information (e.g., the public key certificate database).

If a function that requires authentication is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. Call the FC_Login function to provide the required
authentication.

A known password check string, encrypted with a Triple-DES key derived from the password, is
stored in an encrypted form in the private key database (either key3.db or key4.db) in secondary
storage. Note: This database lies outside the cryptographic boundary.

Once a password has been established for the NSS cryptographic module, the module allows the
user to use the private services if and only if the user successfully authenticates to the module.
Password establishment and authentication are required for the operation of the module. Password
authentication does not imply that any of the roles are considered to be authorized for the purposes
of Level 2 FIPS 140-2 validation.

In order to authenticate to the cryptographic module, the user enters the password, and the
cryptographic module verifies that the password is correct by deriving a Triple-DES key from the
password, using an extension of the PKCS #5 PBKDF1 key derivation function with an 16-octet
salt, an iteration count of 1, and SHA-1 as the underlying hash function, decrypting the stored
encrypted password check string with the Triple-DES key, and comparing the decrypted string
with the known password check string.

The user's password acts as the key material to encrypt/decrypt secret and private keys. Note:
Since password-based encryption such as PKCS #5 is not FIPS Approved, password-encrypted
secret and private keys should be considered to be in plaintext form in the FIPS Approved mode.
Secret and private keys are only stored in encrypted form (using a Triple-DES key derived from
the password) in the private key database (key3.db/key4.db) in secondary storage. Note:
Password-encrypted secret and private keys in the private key database should be considered to be
in plaintext form in the FIPS Approved mode.

Strength of Authentication Mechanism
In the FIPS Approved mode, the NSS cryptographic module imposes the following requirements
on the password. These requirements are enforced by the module on password initialization or
change.

• The password must be at least seven characters long.

• The password must consist of characters from three or more character classes. We
define five character classes: digits (0-9), ASCII lowercase letters, ASCII uppercase
letters, ASCII non-alphanumeric characters (such as space and punctuation marks), and
non-ASCII characters. If an ASCII uppercase letter is the first character of the password,
the uppercase letter is not counted toward its character class. Similarly, if a digit is the
last character of the password, the digit is not counted toward its character class.

To estimate the probability that a random guess of the password will succeed, we assume that:

• The characters of the password are independent with each other, and

• The probability of guessing an individual character of the password is less than 1/10.

Since the password is at least 7 characters long, the probability that a random guess of the
password will succeed is less than (1/10)^7 = 1/10,000,000.

After each failed authentication attempt in the FIPS Approved mode, the NSS cryptographic
module inserts a one-second delay before returning to the caller, allowing at most 60
authentication attempts during a one-minute period. Therefore, the probability of a successful

Cisco Secure ACS Module Security Policy

 9

random guess of the password during a one-minute period is less than 60 * 1/10,000,000 = 0.6 *
(1/100,000).

Multiple Concurrent Operators
The NSS cryptographic module doesn't allow concurrent operators.

• On a multi-user operating system, this is enforced by making the NSS
certificate and private key databases readable and writable by the
owner of the files only.

When a cryptographic module is implemented in a server environment, the server application is
the user of the cryptographic module. The server application makes the calls to the cryptographic
module. Therefore, the server application is the single user of the cryptographic module, even
when the server application is serving multiple clients.

Access Control Policy
This section identifies the cryptographic keys and CSPs that the user has access to while
performing a service, and the type of access the user has to the CSPs.

Security-Relevant Information
The NSS cryptographic module employs the following cryptographic keys and CSPs in the FIPS
Approved mode of operation. Note that the private key database (key3.db/key4.db) mentioned
below is outside the cryptographic boundary.

• AES secret keys: The module supports 128-bit, 192-bit, and 256-bit AES keys. The keys
may be stored in memory or in the private key database (key3.db/key4.db).

• Hash_DRBG: Hash DRBG entropy - 880-bit value externally-obtained for module
DRBG; stored in plaintext in volatile memory. Hash DRBG V value Internal Hash
DRBG state value; stored in plaintext in volatile memory. Hash DRBG C value - Internal
Hash DRBG state value; stored in plaintext in volatile memory.

• Triple-DES secret keys: 168-bit. The keys may be stored in memory or in the private key
database (key3.db/key4.db).

• HMAC secret keys: HMAC key size must be greater than or equal to half the size of the
hash function output. The keys may be stored in memory or in the private key database
(key3.db/key4.db).

• DSA public keys and private keys: The module supports DSA key sizes of 512 and 1024
bits. Only DSA keys of 1024 bits may be used in the FIPS Approved mode of operation.
The keys may be stored in memory or in the private key database (key3.db/key4.db).

FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a cryptographic module
on aa on a server.

Note

 10
OL-22835-01

• RSA public keys and private keys (used for digital signatures and encrypt/decrypt): The
module supports RSA key sizes of 1024-8192 bits. The keys may be stored in memory or
in the private key database (key3.db/key4.db).

• Diffie-Hellman primes: The module supports Diffie-Hellman prime sizes of 1024-2048
bits. The values are stored in memory or in the private key database (key3.db/key4.db).

• TLS premaster secret (used in deriving the TLS master secret): 48-byte. Stored in
memory.

• TLS master secret (a secret shared between the peers in TLS connections, used in the
generation of symmetric cipher keys, IVs, and MAC secrets for TLS): 48byte. Stored in
memory.

• Authentication data (passwords): Stored in the private key database (key3.db/key4.db).

Self-Tests
In the FIPS Approved mode of operation the cryptographic module does not allow critical errors
to compromise security. Whenever a critical error (e.g., a self-test failure) is encountered, the
cryptographic module enters an error state and the library needs to be reinitialized to resume
normal operation. Reinitialization is accomplished by calling FC_Finalize followed by
FC_Initialize.

Upon initialization of the cryptographic module library for the FIPS Approved mode of operation,
the following power-up self-tests are performed:

a) Triple DES-ECB encrypt/decrypt

b) Triple DES-CBC encrypt/decrypt

c) AES-ECB encrypt/decrypt (128-bit, 192-bit, and 256-bit keys)

d) AES-CBC encrypt/decrypt (128-bit, 192-bit, and 256-bit keys)

e) SHA-1 hash

f) SHA-256 hash

g) SHA-384 hash

h) SHA-512 hash

i) HMAC-SHA-1/-SHA-256/-SHA-384/-SHA-512 keyed hash (296-bit key)

j) RSA encrypt/decrypt (1024-bit modulus n)

k) RSA-SHA-256/-SHA-384/-SHA-512 signature generation (2048-bit modulus n)

l) RSA-SHA-256/-SHA-384/-SHA-512 signature verification (2048-bit modulus n)

m) DSA key pair generation (1024-bit prime modulus p)

n) DSA signature generation (1024-bit prime modulus p)

o) DSA signature verification (1024-bit prime modulus p)

p) Random number generation, and

 N
ote

The NNSS cryptographic module does not implement the TLS protocol. The NSS
cryptographic module implements the cryptographic operations, including TLS-specific
key generation and derivation operations, that can be used to implement the TLS
protocol.

Cisco Secure ACS Module Security Policy

11

q) Software/firmware integrity test (the authentication technique is DSA with 1024-bit prime
modulus p)

Shutting down and restarting the NSS cryptographic module with the FC_Finalize and
FC_Initialize functions executes the same power-up self-tests detailed above when
initializing the module library for the FIPS Approved mode. This allows a user to execute these
power-up self-tests on demand as defined in Section 4.9.1 of FIPS 140-2.

In the FIPS Approved mode of operation, the cryptographic module performs a pair-wise
consistency test upon each invocation of RSA, and DSA key pair generation as defined in Section
4.9.2 of FIPS 140-2.

In the FIPS Approved mode of operation, the cryptographic module performs a continuous
random number generator test upon each invocation of the pseudorandom number generator as
defined in Section 4.9.2 of FIPS 140-2.

Random Number Generator
The cryptographic module performs pseudorandom number generation using NIST SP 800-90
Hash Deterministic Random Bit Generators.

The cryptographic module initializes its pseudorandom number generator by obtaining at least 110
bytes of random data from the operating system. The data obtained contains at least 440 bits of
entropy. Extra entropy input is added by invoking a noise generator. Both initialization and noise
generation are specific to the platform on which it was implemented. The pseudorandom number
generator is seeded with noise derived from the execution environment such that the noise is not
predictable. The source of noise is considered to be outside the logical boundary of the
cryptographic module.

A product using the cryptographic module should periodically reseed the module's pseudorandom
number generator with unpredictable noise by calling FC_SeedRandom.After 2

46

 calls to the
random number generator the cryptographic module obtains another 110 bytes of random data
from the operating system to reseed the random number generator.

Module Ports and Interfaces
The NSS cryptographic module is a software cryptographic implementation. No hardware or
firmware components are included. All input to the module is via function arguments; all output is
returned to the caller either as return codes or as updated memory objects pointed to by some of
the arguments. All keys, encrypted data, and control information are exchanged through calls to
library functions (logical interfaces). The physical ports, physical covers, doors, or openings;
manual controls; and physical status indicators of the NSS cryptographic module are those of the
general purpose computer it runs on.

 12
OL-22835-01

Physical Cryptographic Boundary

Figure 1 Physical Cryptographic Boundary

Logical Cryptographic Boundary

Figure 2 NSS PKCS #11 Interface

Cisco Secure ACS Module Security Policy

13

Logical Interfaces
The following four logical interfaces have been designed within the NSS cryptographic module.

1. Data input interface: function input arguments that specify plaintext data; ciphertext or signed
data; cryptographic keys (plaintext or encrypted) and initialization vectors; and passwords that
are to be input to and processed by the NSS cryptographic module.

2. Data output interface: function output arguments that receive plaintext data; ciphertext data
and digital signatures; and cryptographic keys (plaintext or encrypted) and initialization
vectors from the NSS cryptographic module.

3. Control input interface: function calls, or input arguments that specify commands and control
data (e.g., algorithms, algorithm modes, or module settings) used to control the operation of
the NSS cryptographic module.

4. Status output interface: function return codes, error codes, or output arguments that receive
status information used to indicate the status of the NSS cryptographic module.

The NSS cryptographic module uses different function arguments for input and output to
distinguish between data input, control input, data output, and status output, to disconnect the
logical paths followed by data/control entering the module and data/status exiting the module. The
NSS cryptographic module doesn't use the same buffer for input and output. After the NSS
cryptographic module is done with an input buffer that holds security-related information, it
always zeroizes the buffer so that if the memory is later reused as an output buffer, no sensitive
information may be inadvertently leaked.

PKCS #11
The logical interfaces of the NSS cryptpgraphic module consist of the PKCS #11 (Cryptoki) API.
The API itself defines the cryptographic boundary, i.e., all access to the cryptographic module is
through this API. The module has three PKCS #11 tokens: two tokens that implement the non-
FIPS Approved mode of operation, and one token that implements the FIPS Approved mode of
operation. The FIPS PKCS #11 token is designed specifically for FIPS 140-2, and allows
applications using the NSS cryptographic module to operate in a strictly FIPS mode.

The functions in the PKCS #11 API are listed in the table in the Specification of Services section.

Inhibition of Data Output
All data output via the data output interface is inhibited when the NSS cryptographic module is in
the Error state or performing self-tests.

• In Error State: The Boolean state variable sftk_fatalError tracks whether the NSS
cryptographic module is in the Error state. Most PKCS #11 functions, including all the
functions that output data via the data output interface, check the sftk_fatalError state
variable and, if it is true, return the CKR_DEVICE_ERROR error code immediately.
Only the functions that shut down and restart the module, reinitialize the module, or
output status information can be invoked in the Error state. These functions are
FC_GetFunctionList, FC_Initialize, FC_Finalize, FC_GetInfo, FC_GetSlotList,
FC_GetSlotInfo, FC_GetTokenInfo, FC_InitToken, FC_CloseSession,
FC_CloseAllSessions, and FC_WaitForSlotEvent.

• During Self-Tests: The NSS cryptographic module performs power-up self-tests in the
FC_Initialize function. Since no other PKCS #11 function (except FC_GetFunctionList)

 14
OL-22835-01

may be called before FC_Initialize returns successfully, all data output via the data output
interface is inhibited while FC_Initialize is performing the self-tests.

Disconnecting the Output Data Path From the Key
Processes

The NSS cryptographic module doesn't return the function output arguments until key generation
or key zeroization is finished. Therefore, the logical paths used by output data exiting the module
are logically disconnected from the processes/threads performing key generation and key
zeroization.

Specification of Services
Cryptographic module services consists of public services, which require no user authentication,
and private services, which require user authentication. Public services do not require access to the
secret and private keys and other critical security parameters (CSPs) associated with the user.
Note: CSPs are security-related information (e.g., secret and private keys, and authentication data
such as passwords) whose disclosure or modification can compromise the security of a
cryptographic module. Message digesting services are public only when CSPs are not accessed.
Services which access CSPs (e.g., FC_GenerateKey, FC_GenerateKeyPair) require authentication.
Some services require the user to assume the Crypto Officer or NSS User role. In the table below,
the role is specified for each service. If the Role column is blank, no role needs to be assumed for
that service; such a service (e.g., random number generation and hashing) does not affect the
security of the module because it does not require access to the secret and private keys and other
CSPs associated with the user. The table lists each service as an API function and correlates role,
service type, and type of access to the cryptographic keys and CSPs. Access types R, W, and Z
stand for Read, Write, and Zeroize, respectively.

Table 2 Service Category, Funtion, Description, Key, Access Type

Service
Category

Role Function Name Description Cryptographic
Keys and CSPs
Accessed

Access Type,
RWZ

FIPS 140-2
specific

 FC_GetFunctionList returns the list of
function pointers for
the FIPS Approved
mode of operation

none -

 FC_InitToken initializes or
reinitializes a token

password and
all keys

Z Module
Initialization

 FC_InitPIN initializes the user's
password, i.e., sets
the user's initial
password

password W

General
purpose

 FC_Initialize initializes the module
library for the FIPS
Approved mode of
operation. This
function provides the

none -

Cisco Secure ACS Module Security Policy

15

power-up self-test
service.

 FC_Finalize finalizes (shuts
down) the module
library

all keys Z

 FC_GetInfo obtains general
information about
the module library

none -

 FC_GetSlotList obtains a list of slots
in the system

none -

 FC_GetSlotInfo obtains information
about a particular
slot

none -

 FC_GetTokenInfo obtains information
about the token. This
function provides the
Show Status service.

none -

 FC_WaitForSlotEvent This function is not
supported by the
NSS cryptographic
module.

none -

 FC_GetMechanismLis
t

obtains a list of
mechanisms
(cryptographic
algorithms)
supported by a token

none -

 FC_GetMechanismInf
o

obtains information
about a particular
mechanism

none -

Slot and
token
management

NSS
User

FC_SetPIN changes the user's
password

password RW

 FC_OpenSession opens a
connection("session")
between an
application and a
particular token

none -

 FC_CloseSession closes a session keys of the
session

Z

 FC_CloseAllSessions closes all sessions
with a token

all keys Z

Session
management

 FC_GetSessionInfo obtains information none -

 16
OL-22835-01

about the session.
This function
provides the
ShowStatus service.

 FC_GetOperationState saves the state of the
cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

 FC_SetOperationState restores the state of
the cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

 FC_Login logs into a token password R

NSS
User

FC_Logout logs out from a token none -

NSS
User

FC_CreateObject creates an object key W

original key R NSS
User

FC_CopyObject creates a copy of an
object new key W

NSS
User

FC_DestroyObject destroys an object key Z

NSS
User

FC_GetObjectSize obtains the size of an
object in bytes

key R

NSS
User

FC_GetAttributeValue obtains an attribute
value of an object

key R

NSS
User

FC_SetAttributeValue modifies an attribute
value of an object

key W

NSS
User

FC_FindObjectsInit initializes an object
search operation

none -

NSS
User

FC_FindObjects continues an object
search operation

keys matching the
search criteria

R

Object
management

NSS
User

FC_FindObjectsFinal finishes an object
search operation

none -

NSS
User

FC_EncryptInit initializes an
encryption operation

encryption key R

NSS
User

FC_Encrypt encrypts single-part
data

encryption key R

Encryption
and decryption

NSS FC_EncryptUpdate continues a multiple- encryption key R

Cisco Secure ACS Module Security Policy

17

User part
encryption
operation

NSS
User

FC_EncryptFinal fnishes a multiple-
part
encryption
operation

encryption key R

NSS
User

FC_DecryptInit initializes a
decryption operation

decryption key R

NSS
User

FC_Decrypt decrypts single-part
encrypted data

decryption key R

NSS
User

FC_DecryptUpdate continues a multiple-
part
decryption
operation

decryption key R

NSS
User

FC_DecryptFinal fnishes a multiple-
part
decryption
operation

decryption key R

 FC_DigestInit initializes a message-
digesting
operation

none -

 FC_Digest digests single-part
data

none -

 FC_DigestUpdate continues a multiple-
part
digesting
operation

none -

NSS
User
(see
the
note
at
the
end
of
the
table)

FC_DigestKey continues a multipart
message-digesting
operation
by digesting the
value of a secret key
as part of the data
already digested

key R

Message
digesting

 FC_DigestFinal finishes a multiple-
part
digesting

none -

 18
OL-22835-01

operation

NSS
User

FC_SignInit initializes a signature
operation

signing/HMAC
key

R

NSS
User

FC_Sign signs single-part data signing/HMAC
key

R

NSS
User

FC_SignUpdate continues a multiple-
part signature
operation

signing/HMAC
key

R

NSS
User

FC_SignFinal fnishes a multiple-
part signature
operation

signing/HMAC
key

R

NSS
User

FC_SignRecoverInit initializes a signature
operation, where the
data can be recovered
from the signature

RSA signing key R

NSS
User

FC_SignRecover signs single-part data,
where the data can be
recovered from the
signature

RSA signing key R

NSS
User

FC_VerifyInit initializes a
verification operation

verification/HMA
C key

R

NSS
User

FC_Verify verifies a signature on
single-part data

verification/HMA
C key

R

NSS
User

FC_VerifyUpdate continues a multiple-
part verification
operation

verification/HMA
C key

R

NSS
User

FC_VerifyFinal finishes a multiple-
part verification
operation

verification/HMA
C key

R

NSS
User

FC_VerifyRecoverInit initializes a
verification operation
where the data is
recovered from the
signature

RSA verification
key

R

Signature and
verification

NSS
User

FC_VerifyRecover verifies a signature on
single-part data,
where the data is
recovered from the
signature

RSA verification
key

R

NSS
User

FC_DigestEncryptUpd
ate

continues a multiple-
part
digesting and
encryption operation

encryption key R Dual-function
cryptographic
operations

NSS
User

FC_DecryptDigestUpd
ate

continues a multiple-
part
decryption and
digesting operation

decryption key R

Cisco Secure ACS Module Security Policy

19

signing/HMAC
key

R NSS
User

FC_SignEncryptUpdat
e

continues a multiple-
part
signing and
encryption operation

encryption key R

decryption key R NSS
User

FC_DecryptVerifyUpd
ate

continues a multiple-
part
decryption and
verify operation

verification/
HMAC key

R

NSS
User

FC_GenerateKey generates a secret
key(used by TLS to
generate premaster
secrets)

key W

NSS
User

FC_GenerateKeyPair generates a
public/private key
pair. This function
performs the pair-
wise consistency
tests.

key pair W

wrapping key R NSS
User

FC_WrapKey wraps (encrypts) a
key key to be wrapped R

unwrapping key R NSS
User

FC_UnwrapKey unwraps (decrypts) a
key unwrapped key W

base key R

Key
management

NSS
User

FC_DeriveKey derives a key from
abase key (used
byTLS to derive
keysfrom the master
secret)

derived key W

 FC_SeedRandom mixes in additional
seed material to the
random number
generator

none RW Random
number
generation

 FC_GenerateRandom generates random
data. This function
performs the
continuous random
number generator
test.

none RW

 FC_GetFunctionStatus a legacy function,
which simply returns
the value
0x00000051
(function not parallel)

none - Parallel
function
management

 FC_CancelFunction a legacy function, none -

 20
OL-22835-01

which simply returns
the value
0x00000051
(function not parallel)

Note: The message digesting functions (except FC_DigestKey) do not require the user to assume
an authorized role because they do not use any keys. FC_DigestKey computes the message digest
(hash) of the value of a secret key. Therefore the user needs to assume the NSS User role for this
service.

Mitigation of Other Attacks
The NSS cryptographic module is designed to mitigate the following attacks.

Table 3 Other Attacks & Mitigation

Other Attacks Mitigation Mechanism Specific Limitations

Timing attacks
on RSA

RSA Blinding
Timing attack on RSA was first
demonstrated by Paul Kocher in 1996 [2],
who contributed the mitigation code to
our module. Most recently Boneh and
Brumley [3] showed that RSA blinding is
an effective defense against timing
attacks on RSA.

None

Cache-timing
attacks on the
modular
exponentiation
operation used in
RSA and DSA

Cache Invariant Modular
Exponentiation
This is a variant of a modular
exponentiation implementation that Colin
Percival [4] showed to defend against
cache-timing attacks.

This mechanism requires
intimate knowledge of the
cache line sizes of the
processor. The mechanism
may be ineffective when the
module is running on a
processor whose cache line
sizes are unknown.

Arithmetic errors
in RSA
signatures

Double-checking RSA Signatures
Arithmetic errors in RSA signatures
might leak the private key. Ferguson and
Schneier [5] recommend that every RSA
signature generation should verify the
signature just generated.

None

Access to Audit Data
The NSS cryptographic module may use the syslog function and the audit mechanism provided
by the operating system to audit events. Auditing is turned off by default. To turn on the auditing
capability, you need to set the environment variable NSS_ENABLE_AUDIT to 1. You also need to
configure the operating system's audit mechanism.

Access to the audit data is described in the next two subsections.

Cisco Secure ACS Module Security Policy

21

Access to Syslog Log Files
The NSS cryptographic module uses the syslog function to audit events, so the audit data are
stored in the system log. Only the root user can modify the system log. On some platforms, only
the root user can read the system log; on other platforms, all users can read the system log.

The system log is usually under the /var/adm or /var/log directory. The exact location of
the system log is specified in the /etc/syslog.conf file. The NSS cryptographic module
uses the default user facility and the info, warning, and err severity levels for its log messages. We
give an example below.

The /etc/syslog.conf file has:

*.info;mail.none;authpriv.none;cron.none /var/log/messages

which specifies that /var/log/messages is the system log.

Sample Cryptographic Module
Initialization Code

The following sample code uses NSPR functions (declared in the header file "prlink.h") for
dynamic library loading and function symbol lookup.

#include "prlink.h"
#include "cryptoki.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>

/*

* An extension of the CK_C_INITIALIZE_ARGS structure for the
* NSS cryptographic module. The 'LibraryParameters' field is
* used to pass instance-specific information to the library
* (like where to find its config files, etc).*/

typedef struct CK_C_INITIALIZE_ARGS_NSS {

CK_CREATEMUTEX CreateMutex;
CK_DESTROYMUTEX DestroyMutex;
CK_LOCKMUTEX LockMutex;
CK_UNLOCKMUTEX UnlockMutex;
CK_FLAGS flags;
CK_CHAR_PTR *LibraryParameters;
CK_VOID_PTR pReserved;

} CK_C_INITIALIZE_ARGS_NSS;

int main()

{
char *libname;
PRLibrary *lib;
CK_C_GetFunctionList pFC_GetFunctionList;
CK_FUNCTION_LIST_PTR pFunctionList;
CK_RV rv;

 22
OL-22835-01

CK_C_INITIALIZE_ARGS_NSS initArgs;
CK_SLOT_ID slotList[2], slotID;
CK_ULONG ulSlotCount;
CK_TOKEN_INFO tokenInfo;
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR password[] = "1Mozilla";
PRStatus status;

 /*

 * Get the platform-dependent library name of the NSS

 * cryptographic module.

*/

libname = PR_GetLibraryName(NULL, "softokn3");
assert(libname!= NULL);
lib = PR_LoadLibrary(libname);
assert(lib!= NULL);
PR_FreeLibraryName(libname);

 pFC_GetFunctionList =
(CK_C_GetFunctionList)PR_FindFunctionSymbol(lib,
"FC_GetFunctionList");

assert(pFC_GetFunctionList!= NULL);
rv = (*pFC_GetFunctionList)(&pFunctionList);
assert(rv == CKR_OK);

 /* Call FC_xxx via the function pointer pFunctionList->C_xxx */

initArgs.CreateMutex = NULL;
initArgs.DestroyMutex = NULL;
initArgs.LockMutex = NULL;
initArgs.UnlockMutex = NULL;
initArgs.flags = CKF_OS_LOCKING_OK;
initArgs.LibraryParameters = (CK_CHAR_PTR *)

"configdir='.' certPrefix='' keyPrefix='' "
"secmod='secmod.db' flags= ";
initArgs.pReserved = NULL;
rv = pFunctionList->C_Initialize(&initArgs);
assert(rv == CKR_OK);

ulSlotCount = sizeof(slotList)/sizeof(slotList[0]);
rv = pFunctionList->C_GetSlotList(CK_TRUE, slotList,
&ulSlotCount);
assert(rv == CKR_OK);
slotID = slotList[0];

rv = pFunctionList->C_OpenSession(slotID,CKF_RW_SESSION |
CKF_SERIAL_SESSION, NULL, NULL, &hSession);

Cisco Secure ACS Module Security Policy

23

assert(rv == CKR_OK);

 /* set the operator's initial password, if necessary */

rv = pFunctionList->C_GetTokenInfo(slotID, &tokenInfo);
assert(rv == CKR_OK);

if (!(tokenInfo.flags & CKF_USER_PIN_INITIALIZED)) {

/*

* As a formality required by the PKCS #11 standard, the

* operator must log in as the PKCS #11 Security Officer (SO),

* with the predefined empty string password, to set the

* operator's initial password.

*/

rv = pFunctionList->C_Login(hSession, CKU_SO, NULL, 0);
assert(rv == CKR_OK);

rv = pFunctionList->C_InitPIN(hSession,
password, strlen(password));

assert(rv == CKR_OK);

 /* log out as the PKCS #11 SO */
rv = pFunctionList->C_Logout(hSession);
assert(rv == CKR_OK);

}

 /* the module is now ready for use */

 /* authenticate the operator using a password */

rv = pFunctionList->C_Login(hSession, CKU_USER,
password, strlen(password));

assert(rv == CKR_OK);

 /* use the module's services ... */

rv = pFunctionList->C_CloseSession(hSession);
assert(rv == CKR_OK);

 24
OL-22835-01

rv = pFunctionList->C_Finalize(NULL);
assert(rv == CKR_OK);

status = PR_UnloadLibrary(lib);
assert(status == PR_SUCCESS);return 0;

}

The mode of operation of the NSS cryptographic module is determined by the second argument
passed to the PR_FindFunctionSymbol function.

• For the non-FIPS Approved mode of operation, look up the standard PKCS #11 function
C_GetFunctionList.

• For the FIPS Approved mode of operation, look up the alternative function
FC_GetFunctionList.

Obtaining Documentation, Support, and
Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation
feedback, security guidelines, and also recommended aliases and general Cisco documents, see the
monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco
technical documentation at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

CCDE, CCENT, CCSI, Cisco Eos, Cisco Explorer, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase,
Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco TrustSec, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good,
Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the
Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green
are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP,
CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the

Cisco Secure ACS Module Security Policy

25

Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker,
iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking
Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert,
StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1002R)

