Security First’
SecureParser®

Version 4.7.0

Security Policy

Revision 1.35

23 September 2010

© Security First Corp. 2010
All Rights Reserved.

Copyright Security First Corp. May be reproduced only in its original entirety (without revision).

Security First Corp.

Revision History

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Revision History

Corp.

Version Date Author Notes
0.01 01/11/2007 | Infogard, Documentation Workshop (Infogard template)
Security First
Corp.
0.02 02/26/2007 | Security First Accumulated changes to date after
Corp. Documentation Workshop.
0.03 03/20/2007 | Security First Added key sizes for DSA & RSA keys in
Corp. Section 3 Modes of Operation
0.04 03/22/2007 | Security First Added power-on self-test
Corp. RSA encrypt/decrypt
0.05 04/20/2007 | Security First Corrected Security Rule 25 to reflect PRNG is
Corp. based on AES Encrypt, not AES Decrypt
0.06 05/22/2007 | Security First Clarified that the same HMAC key is used for
Corp. Data & Share authentication/integrity
0.07 06/07/2007 | Security First Added Algorithm certificate numbers
Corp.
0.08 06/12/2007 | Security First Added entropy assessment details
Corp.
0.09 07/11/2007 | Security First Updates after Operational Testing.
Corp. ECDSA added. Overview updated.
1.00 08/07/2007 | Security First Final edit before submission
Corp.
1.01 11/8/2007 | Security First V4.5.1 revision for submission.
Corp.
Updated API section, removed references to
(ISE input) single-threaded requirement, added references
for libparser4.sys.
1.02 12/16/2007 | Security First Title page updated.

Page 2

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Corp.

(ISE input)
1.03 01/07/2008 | Security First Responses to CMVP Comments.
Corp.
Additional VV4.5.1 changes for clarity regarding
(ISE input) Multi-threading and Kernel mode.
1.04 01/18/2008 | Security First Responses to CMVP Comments round 2.
Corp.
All references to MS RSAENH.dIl removed.
(ISE input) Standard platform services are providing
entropy.
Security Rule 24:3 corrected.
1.05 01/31/2008 | Security First Responses to CMVP Comments round 3.
Corp. Clarification: Key entry/output is always
ISE inout encrypted.
(ISE input) PRNG_Seed Value rationale of strength
modified as per CMVP suggestion.
1.1 08/15/2008 | Security First V4.6 revision for submission.
Corp.
Updated API, added algorithms, added operating
(ISE Input) systems.
1.2 02/02/2009 | Security First V4.7.0 revision for submission.
Corp.
Updated API section, added description of RPU.
(ISE input) Removed all operating systems but Ubuntu and
the Windows kernel.
1.21 02-17-2009 | Security First Removed function get_errorlog, it is disabled in
Corp. FIPS mode.
(ISE input)
1.22 02-20-2009 | Security First Prior Track Changes accepted. Prior comments
Corp. removed.
) Table 1: Level of Physical Security NA - 1.
(ISE input) . .
Real picture for Figure 2 — Image of the
Accelium
1.23 02-20-2009 | Security First Added real picture of the RPU for Figure 2.

Page 3

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Corp.
(ISE input)

(ISE input)
1.24 02-23-2009 | Security First Updated photos in Figure 2. Adjusted verbiage
Corp. in the physical RPU section.
(ISE input)
1.25 02-26-2009 | Security First Clarified key wrapping description under
Corp. Security Rules.
(ISE input)
1.26 04-01-2009 | Security First Final edits before CMVP submission.
Corp.
(ISE input)
1.30 08-06-2009 | Security First Added Windows Server 2003 references in
Corp. anticipation of update submission.
(ISE input) Responses to CMVP Comments.
1.31 08-06-2009 | Security First Minor formatting changes.
Corp.
(ISE input)
1.32 09-02-2009 | Security First Updated for SW-only release.
Corp.
(ISE input)
1.33 11-18-2009 | Security First More updates for SW-only release.
Corp.
(ISE input)
1.34 7/13/2010 | Security First Updated for level 2 submission
Corp.
(ISE input)
1.35 9/23/2010 | Security First Updated wording in Module Overview and

Modes of Operation

Responses to CMVP Comments

Page 4

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

TABLE OF CONTENTS
REVISTON HISTORY ...ttt bttt h bbbt h e et b e bRt bt bt b e et bt e eh et e bt ene e e ennn 2
1. MODULE OVERVIEW. ...ttt e ettt s he e b ettt s e bt e bt e be e be e beeneesneesbeeabeebeenbe e 6
2. SECURITY LEVEL ...ttt sttt a bt bt s bt s e b b e s b e e be e n et e st e ehe e sbe e bt et e enbensbenteenteentees 9
3. MODES OF OPERATIONttt ettt sttt te st e be e sb e e s be e beenbeemeease e bt enbeenbensbesteenteenteas 9
4. IDENTIFICATION AND AUTHENTICATION POLICY ..ottt 11
5. ACCESS CONTROL POLICY ...ttt sttt sttt b et he s bt e bt et e s e b e s be e sbe e nbeenesnnennes 11
ROLES AND SERVICES........cutitieeititeieeteareseeiesseseeiesseseesesneseesesne e ssease e ase e s e n e e s e s ne s an e s e e nene e e n e nn e nenn e nenr e enes 11
DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPS)....c.viuiiiiieiiiiirieiiitirieisie sttt 16
DEFINITION OF CSPS MODES OF ACCESSoeuvitiiiitistesiieteeeere st st bt e se e as et ane sttt se e e nnean b aneene e enne e 18
6. SECURITY RULES ...ttt bbbttt bt bbbt bt b et e nb e an et ne e b e e e b nnea 24
7. PHYSICAL SECURITY ..ottt bbbt e bbbt b et e e et bt ab ek e bt et e e e esnennen 26
8. MITIGATION OF OTHER ATTACKS POLICY ..ottt 26
0. REFERENGCES ... oottt b e b bt e a bttt e ke bt e s bt et e e Rt e e he e e be e bt e m bt e nbees b e ebbesbeenbeenbeebeanneenes 26
10. DEFINITIONS AND ACRONYMSottt st st sbe e ste st et sbeesbe e beesbessbenreentees 27

Page 5

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

1. Module Overview

The SecureParser® (SW Version 4.7.0) is a FIPS software-only module (hereafter known as “the
module”) that operates on a multi-chip standalone general purpose computer. The module is a
security and data availability architecture delivered in the form of a toolkit that provides
cryptographic data splitting (data encryption, random or deterministic distribution to multiple
shares including additional fault tolerant bits, key splitting, authentication, integrity, share
reassembly, key restoration and decryption) of arbitrary data. The SecureParser accepts any type
of digital data and cryptographically splits it into shares so that no discernible plaintext is
transmitted across a network or is placed on a single storage device. During the parse process,
additional redundant data may be optionally written to each share enabling the capability of
restoring the original data when all shares are not available. The shares can be stored in
geographically disbursed nodes providing for continuous access to online information.

Each share contains a cryptographically strong integrity check that prevents tampering with the
stored data and is immediately recognized by the other shares. Any change to the data in a share
precludes that share from being used in the data rebuild process. The encryption, integrity and
Information Dispersal Algorithm (IDA) session keys are encrypted with long-term, external
workgroup keys, and a per-session key encrypting key that is shared and stored with the data.

Data availability through redundant shares allows for a return to operations in the face of lost or
corrupted shares due to environmental, malicious or accidental catastrophes.

The SecureParser module is designed to be integrated at any point where data is written,
retrieved, sent or received.

Boundaries

Figure 1 — Image of the Cryptographic Module

Physical Boundary (case of general purpose computer)
Logical Boundary

A 4

q Volatile Keystore

Persistent Keystore 7}
=== ==7777 [

‘Application i Module’s ! S —
that uses | exposed | SecureParser module toolkit dynamic link

Data Input ! i library:
the module '+ API i : .
toolkit | Data Output . t___,| libparserd.so, Linux
library Control Input |t ____! libparser4.sys, Windows

Status Output

All Secret and Private

Key Entry/Output is
encrypted.

Logical Boundary

Page 6

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

When operating on the Linux operating system Red Hat Enterprise Linux Version 5.1, the
SecureParser cryptographic logical boundary is defined as containing the SecureParser
libparser4.so. Seed values for the SecureParser’s random number generator are imported from
standard operating system services within the physical boundary of the general purpose
computer.

When operating on Microsoft Windows XP Professional SP2 and Microsoft Windows Server
2003 SP2, the SecureParser module cryptographic logical boundary is defined as containing the
SecureParser libparser4.sys. Seed values for the SecureParser’s random number generator are
imported from standard operating system services within the physical boundary of the general
purpose computer.

Physical Boundary

The SecureParser cryptographic physical boundary is the case of the General Purpose Computer
(GPC) on which the libparser4 executable is instantiated. Ports at the physical boundary of the
GPC are those typical of a GPC for connecting external devices such as keyboards, monitors,
mice, and printers. These devices are outside the physical boundary of the cryptographic module
and are excluded from the validation.

Operating Systems & Platforms

The SecureParser module has been tested on and found to be conformant with the requirements
of FIPS 140-2 overall Level 2 on the following GPC operating systems: Red Hat Enterprise
Linux Version 5.1, Microsoft Windows XP Professional SP2, and Microsoft Windows Server
2003 SP2.

Operating System Hardware Platform Module File Name CC Validation
Microsoft Windows XP Dell Optiplex GX620 libparser4.sys EAL4+ ALC FLR.3
Professional SP2 (Intel Pentium 4)

07-FEB-08

CAPP Compliant

Server 2003 SP2 (Intel Pentium 4)
07-FEB-08

CAPP Compliant

Microsoft Windows Dell Optiplex GX620 libparser4.sys EAL4+ ALC FLR.3

Version 5.1 (Intel Xeon)
21-APR-08

CAPP Compliant

Red Hat Enterprise Linux | SGI Altix XE240 libparser4.so EAL4+ ALC FLR.3

Page 7

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Operational testing was performed on all the above operating systems.

All operating systems used for module testing have been validated against the Controlled Access
Protection Profile (CAPP), version 1.d, Protection Profile NoPP0O06 dated October 8, 1999.

In accordance with FIPS 140-2 Implementation Guidance, the SecureParser will remain
compliant with the requirements of FIPS 140-2 when operating on the following operating
systems provided that the general purpose computer (GPC) uses the operating system
configuration and modes specified on the referenced CC Certification Report:

0S

Configurations Evaluated in the Referenced CC Validation

Microsoft Windows
Server 2003 SP2

Includes R2, Standard,
Enterprise, Datacenter,
x64, and Itanium
Editions; Windows XP
Professional SP2 and x64
SP2; Windows XP
Embedded SP2

Reference: Section 8 of CC Certification Report

http://www.commoncriteriaportal.org/files/epfiles/20080303 st vid101
84-vr.pdf#page=17

Dell Optiplex GX620; Dell PowerEdge SC1420; Dell PowerEdge
SC1420; Dell PowerEdge 1800; Dell PowerEdge 2850; HP Proliant
DL385; HP rx1620 Bundle Solution Server; HP xw9300 Workstation;
IBM eServer 326m; IBM eServer 326m; Unisys RASCAL ES7000

Red Hat Enterprise Linux
Version 5.1

Reference: Section 8 of the CC Validation Report

http://www.commoncriteriaportal.org/files/epfiles/st vid10286-
vr.pdf#page=14

SGI Altix XE servers (200 and 300 series, Xeon EM64T/x86_64 based);
SGI Altix 400 and 4000 series (Itanium2/ia64-based) consisting of a
customer selected combination of the following blade types:

o0 Compute/Memory blade
0 Memory-only blade

0 Base 1/0 Blade

0 PCI-X expansion blade

0 PCI-Express expansion blade

Compatible Platforms

Page 8

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

2. Security Level

The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS
140-2.

Table 1 — Module Security Level Specification

Security Requirements Section Level
Cryptographic Module Specification 3
Module Ports and Interfaces 2
Roles, Services and Authentication 3
Finite State Model 2
Physical Security N/A

Operational Environment

Cryptographic Key Management
EMI/EMC

Self-Tests

Design Assurance

Mitigation of Other Attacks N/A

WINIWINIDN

3. Modes of Operation
Approved Algorithms

In FIPS mode, the SecureParser module supports FIPS Approved algorithms as follows. The
certificate #’s sited below have all been obtained by SecureParser module algorithm testing with
the CAVP:

Software (CPU) Algorithms:
= AES-CBC/ECB - 128/192/256 bit key Cert. #1381
= AES-CTR - 128/192/256 bit key Cert. #1381
= AES-GCM 128/192/256 bit key Cert. #1382
= HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512 Cert. #813
= SHA-1, SHA-256, SHA-384, SHA-512 hashing Cert. #1249
= DSA sign/verify — 1024 bit key Cert. #448
= RSA sign/verify — 1024/2048/4096 bit key Cert. #668
= RNG Key Generation ANSI X9.31 with AES Cert. #754
= ECDSA sign/verify — 521 bit key Cert. #173

Page 9

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

Key Entry and Output

All Key Entry and Output in FIPS mode must be in encrypted form. Plaintext keys are never
entered or output from the module.

NIST Key Wrapping per FIPS 140-2 Annex D using 128/192/256 bit keys. AES (Cert. #1381
key wrapping; key establishment methodology provides 128, 192 or 256 bits of encryption
strength) for NIST Key Wrapping per FIPS 140-2 Annex D)

RSA Key Wrapping per FIPS 140-2 IG 7.1 Acceptable Key Establishment Protocols, Key
Transport using asymmetric keys [key wrapping] using k = 4096. RSA (key wrapping; key
establishment methodology provides 128 bits of encryption strength).

In FIPS mode the SecureParser module does not support any non-allowed FIPS algorithms.
Configuring the module for FIPS mode

The SecureParser module may be configured for FIPS mode by calling the module’s exposed
module_initialize() APl function with the calling parameter “fipsEnabled” set to true.
Subsequent SecureParser module API calls that are used to further configure the SecureParser
will have their calling parameters checked by the SecureParser based on the value of the
“fipsEnabled” calling parameter used in the original module_initialize() API function call.
These subsequent checks are used to insure that all FIPS mode configuration values are set

properly.

Operators can determine if the cryptographic module is running in FIPS versus non-FIPS mode
via execution of the module’s module_getStatus() API function call, which is used to meet the
FIPS area 1 requirements to achieve Level 3. The module_getStatus() API function call equates

to the FIPS “show status” service and will indicate if a FIPS mode of operation has been
selected. The module_getStatus() API call returns two items:

e Whether the module is in FIPS mode (value set = 1), or non-FIPS mode (value set = 0)
e The current FSM state of the module (MODULE_STATE enum)

Once a FIPS mode of operation has been selected the module cannot transition into a non-FIPS
mode of operation during the lifetime of the module instantiation in executable memory.
Similarly once a non-FIPS mode of operation has been selected the module cannot transition into
a FIPS mode of operation during the lifetime of the module instantiation in executable memory.

Non-FIPS mode of operation

The SecureParser module can be initialized into a non-FIPS Approved mode of operation by
setting the “fipsEnabled” flag to 0 during the first call to the API function module_initialize().

In non-FIPS mode, the module supports the option to not use encryption or message
authentication coding.

Applications cannot transition their use of the module toolkit library to/from FIPS mode and
non-FIPS mode while the module is instantiated. The module must be shut down by the calling
application and then restarted to transition to/from FIPS mode and non-FIPS mode. Note that the
module does not have any persistent CSPs. All CSPs are zeroed when the module is shut down
or transitions between modes.

Page 10

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

4. ldentification and Authentication Policy
Assumption of roles
The module utilizes identity based authentication, implementing User and Crypto-Officer roles.

The module does not provide the authentication mechanism, the operating systems hosting the
module have authentication implemented.

The User and Crypto-Officer roles are assumed by the operator accessing services provided by
the module.

Authentication

Authentication is provided by the host operating system. The passwords must be a minimum of
8 alphanumeric characters. The character set used for these passwords consists of those on a
standard keyboard, with 128 possible characters; therefore, an attack would have to include
128”8 possible combinations.

The resulting possibility of 1/128"8 chance of successful access is significantly less than
1/1,000,000. To exceed a one in 100,000 probability of a successful guess in 60 seconds, an
attacker would need to enter approximately 12 billion attempts per second. That far exceeds the
processing capabilities of the device.

5. Access Control Policy
Roles and Services

Services:
e module_initialize. Initializes the module, sets FIPS mode or non-FIPS mode, performs
self tests, and moves the module into an operational state.

e parser_create. Allocates the memory for a Parser structure. There can be multiple parser
instances within the module — they are all either in FIPS mode, or they are all in non-
FIPS mode (determined by the module_initialize service).

e parser_destroy. Deallocates the memory of a Parser structure.

e parser_generateHeaders. Configures parser context and generates headers.

e parser_restoreHeaders. Configures parser context based on headers with optional
modifications.

e parser_regenerateHeaders. Produces headers associated with an already-configured
parser context.

e parser_recoverHeaders. Recovers missing headers and places them in the output
buffers that are unused.

Page 11

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

e parser_setWorkgroupKeys. Changes the workgroup keys in an existing parser context.

e keystore_getlmportKey. Provides the RSA public key needed for asymmetric key
wrapping for all key entry into the specified keystore of the module (note that each
keystore will have its own ephemeral public/private keypair).

e Kkeystore_create. Allocates memory for a volatile KeyStore structure, and creates a non-
persistent RSA public/private encryption keypair to be used for key import (note that
each keystore will have its own public/private keypair).

e keystore_destroy. Deallocates the memory of a volatile KeyStore structure.

e Kkeystore_addKeyFromBuffer. Imports a key into the specified volatile keystore
structure. All imported keys will be RSA key wrapped and will need to be unwrapped by
the module. Note: x509 certificates can be in the buffer, their public keys will be
imported.

e keystore_removeKey. Removes a key from the volatile keystore.

e keystore getKeyType. Returns the key type for the requested key.

e Kkeystore_getkeylength. Returns the key length for the requested key.

o keystore_keyexists. True or False, the requested key exists or does not exist within the
specified volatile keystore.

e module_destroy: Zeroization, called by the application prior to (graceful) application
termination. Zeroes non-persistent CSPs including the RSA import public/private
keypair, and the volatile Keystores. ALL keystores and ALL parsers in memory are
zeroed.

e parser_parseData. Parses data from the input buffer into the output buffers.

e parser_restoreData. Restores data from the output buffers into the input buffer.

e parser_parseDataEx. Parses an array of input buffers into the output buffers.

e parser_recoverData. Rebuilds all N data shares given only M input shares.

e parser_getFieldOffsets. Returns an array of {share number, offset, length} tuples
necessary to create M of N shares for a given M value and a set of “N of N” parsed

shares.

e parser_setFaultTolerance. Sets a new fault tolerance value (M). Designed for use with
parser_getFieldOffsets().

Page 12

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

e parser_getHeaderInfo. Processes the header and returns information about specific
header fields.

e parser_getParsedLength. Returns the number of bytes needed for each output share
when parsing.

e parser_getRestoredLength. Returns the number of bytes needed for the original share
when restoring.

e module_getStatus: This service provides the current status of the cryptographic module

including whether or not a FIPS Approved mode of operation has been selected.

o Self-tests: Power cycle

Table 5 — Specification of Service Inputs & Outputs

Service Control Input Data Input Data Output Status
Output
module_initialize int fipsEnabled N/A N/A Success or
ERROR_TYPE
parser_create N/A N/A Parser **ret Success or
ERROR_TYPE
parser_destroy Parser *p N/A N/A Success or
ERROR_TYPE
parser_ Parser *p N/A uint8 **outputBuffers Success or
generateHeaders KeyStore *ks uint32 ERROR_TYPE
intL *outputBufferLengths
intM
int N

IDA_TYPE idaMode
ENC_TYPE encMode
HASH_TYPE hashMode
uint8 *encWgKeyld

uint32 encWgKeyldMem
uint32 encWgKeyldLength
uint8 *macWgKeyld

uint32 macWgKeyldMem
uint32 macWgKeyldLength
uint8 *idaWgKeyld

uint32 idawgKeyldMem
uint32 idaWgKeyldLength
AUTH_TYPE postAuthMode
HASH_TYPE postHashMode
uint8 *postAuthPubKeyld
uint32
postAuthPubKeyldMem
uint32
postAuthPubKeyldLength
uint8 *postAuthPrivKeyld
uint32
postAuthPrivKeyldMem

Page 13

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Service

Control Input

Data Input

Data Output

Status
Output

uint32
postAuthPrivKeyldLength
uint32 *outputBufferMems
int outputBuffersCount

parser_
restoreHeaders

Parser *p

KeyStore *ks

HASH_TYPE hashMode
uint8 *encWgKeyld

uint32 encWgKeyldMem
uint32 encWgKeyldLength
uint8 *macWgKeyld

uint32 macWgKeyldMem
uint32 macWgKeyldLength
uint8 *idawgKeyld

uint32 idawgKeyldMem
uint32 idaWwgKeyldLength
AUTH_TYPE postAuthMode
HASH_TYPE postHashMode
uint8 *postAuthPubKeyld
uint32
postAuthPubKeyldMem
uint32
postAuthPubKeyldLength
uint8 *postAuthPrivKeyld
uint32
postAuthPrivKeyldMem
uint32
postAuthPrivKeyldLength
uint32 * inputBufferMems
uint32 * inputBufferLengths
int inputBuffersCount

int trustedShareNumber

uint8
**inputBuffers

N/A

Success or
ERROR_TYPE

parser_
regenerateHeaders

Parser *p
uint32 *outputBufferMems
int outputBuffersCount

N/A

uint8 **outputBuffers

uint32

*outputBufferLengths

Success or
ERROR_TYPE

parser_
recoverHeaders

KeyStore *ks

HASH_TYPE hashMode
char *workgroupKeyld
uint32 workgroupKeyldMem
uint32 workgroupKeyldSize,
AUTH_TYPE postAuthMode
char *postAuthKeyld

uint32 postAuthKeyldMem
uint32 postAuthKeyldSize
uint32 *outputBufferMems
uint32 *outputBufferLengths

uint8
**outputBuffers

uint8 **outputBuffers

uint32

*outputBufferLengths

Success or
ERROR_TYPE

parser_
setWorkgroupKey
s

Parser * p

char * encWgKeyld

uint32 encWgKeyldMem
uint32 encWgKeyldLength
char * macWgKeyld
uint32 macWgKeyldMem

N/A

N/A

Success or
ERROR_TYPE

Page 14

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Service Control Input Data Input Data Output Status
Output
uint32 macWgKeyldLength
char * idawgKeyld
uint32 idawgKeyldMem
uint32 idaWgKeyldLength
keystore KeyStore *ks N/A uint8 *buffer Success or
getimportKey uint32 bufferMem uint32 *bufferLength ERROR _TYPE
keystore_create int minimumKeyCount N/A KeyStore **ret Success or
ERROR_TYPE
keystore_destroy KeyStore *ks N/A N/A Success or
ERROR_TYPE
keystore_ KeyStore *ks uint8* buffer N/A Success or
addKeyFromBuffe | uint32 bufferMem char *id ERROR_TYPE
r uint32 bufferLength
char *id
uint32 idMem
uint32 idLength
char *passphrase
uint32 passphraseMem
uint32 passphraseLength
IMPORT _TYPE importType
keystore KeyStore *ks N/A N/A Success or
removeKey char *id ERROR_TYPE
uint32 idMem
uint32 idLength
keystore KeyStore *ks N/A KEY_TYPE *keyType Success or
getKeyType char *id ERROR_TYPE
uint32 idMem
uint32 idLength
keystore KeyStore *ks N/A uint32 *keyLength Success or
getKeyLength char *id ERROR_TYPE
uint32 idMem
uint32 idLength
keystore_keyExist | KeyStore *ks N/A int *keyExists Success or
S char *id ERROR_TYPE
uint32 idMem
uint32 idLength
parser_parseData Parser *p uint8 *inputBuffer | uint8**outputBuffers Success or
uint32 inputBufferLength uint32 ERROR_TYPE
uint32 inputBufferMem *outputBufferLengths
uint32 *outputBufferMems
int outputBuffersCount
parser_parseDataE | Parser * p uint8 ** uint8**outputBuffers Success or
X uint32 * inputBufferMems inputBuffers uint32 ERROR_TYPE
uint32 * inputBufferLengths *outputBufferLengths
uint32 inputBuffersCount
uint32 * outputBufferMems
uint32 outputBuffersCount
parser_restoreData | Parser *p uint8 uint8 *outputBuffer Success or
uint32 outputBufferMem **inputBuffers uint32 ERROR_TYPE

uint32 *inputBufferLengths
uint32 *inputBufferMems

*outputBufferLength

Page 15

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Service Control Input Data Input Data Output Status
Output
int inputBuffersCount
int trustedShareNumber
parser_recoverDat | Parser *p uint8 uint8**outputBuffers Success or
a uint32 *outputBufferLengths | *outputBuffers uint32 ERROR_TYPE
uint32 *outputBufferMems *outputBufferLengths
int outputBuffersCount
int trustedShareNumber
parser_ uint32 headerMem DATAFIELD_TYP | void *ret Success or
getHeaderInfo uint32 headerLength Et uint32 *retLength ERROR_TYPE
uint32 retMem uint8 *header
parser_ Parser *p uint32 inputLength | uint32 *ret Success or
getParsedLength ERROR_TYPE
parser_ Parser *p uint32 inputLength | uint32 *ret Success or
getRestoredLength ERROR TYPE
parser_ Parser * p N/A FieldOffsets * o Success or
getFieldOffsets uint32 plaintextLength ERROR_TYPE
int intendedM
parser_ Parser *p N/A N/A Success or
setFaultTolerance | int newM ERROR_TYPE
module_getStatus | N/A N/A int *fipsEnabled Success or
MODULE_STATE *state | ERROR_TYPE
module_destroy N/A N/A N/A Success or
(Zeroization) ERROR_TYPE
Self-Tests (Power | N/A N/A N/A

cycle)

Definition of Critical Security Parameters (CSPs)

The following are CSPs contained within the module:

e Private_Import_Key RSA Unwrap: Used by the SecureParser module to unwrap
encrypted keys sent to it by applications. All keys sent to the SecureParser will be RSA
key wrapped by applications with CSP Public_Import_Key RSA Wrap. Note that
each SecureParser keystore will have its own associated RSA public/private import

keypair.

e Workgroup_Key Enc: Used to NIST key wrap internally generated encryption session
key (Session_Key Enc), also used to unwrap encryption session key when headers are
being restored.

e Workgroup_Key Mac: Used to NIST key wrap internally generated integrity session
key (Session_Key Mac), also used to unwrap integrity session key when headers are
being restored.

e Workgroup_Key lda: Used to NIST key wrap internally generated IDA session key
(Session_Key lda), also used to unwrap IDA session key when headers are being

restored.

e Session_Key Enc: Used to encrypt all plaintext data prior to data splitting. Encrypted by
Workgroup_Key_Enc using the NIST Key wrap and then placed into share headers.

Page 16

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

Session_Key Mac: HMAC-SHAL1, SHA256, SHA384, or SHA512 key used for
ciphertext data integrity once splitting is complete. Encrypted by Workgroup_Key Mac
using the NIST Key wrap and then placed into share headers.

Session_Key Ida: Random seed used as input to IDAs for adding randomness.
Encrypted by Workgroup_Key_Mac using the NIST Key wrap and then placed into share
headers.

Share_Integrity Key HMAC: Optional HMAC-SHA1, HMAC-SHA256, HMAC-
SHA384, or HMAC-SHA512 key used for additional ciphertext share data integrity after
data splitting. Never output.

Share_Integrity Key DSA_Sign: Optional DSA Private Key (PEM or ANSI) used to
sign ciphertext share data after the data splitting process. Never output.
Share_Integrity Key RSA_Sign: Optional RSA Private Key used to sign ciphertext
share data after the data splitting process. Never output.

Share_Integrity_Key ECDSA_Sign: Optional ECDSA Private Key (PEM or ANSI)
used to sign ciphertext share data after the data splitting process. Never output.
PRNG_Seed_Key: Imported from standard operating system services within the physical
boundary of the general purpose computer. Used to seed the module’s own FIPS ANSI
X9.31 pseudo random number generator. Rationale of strength follows
PRNG_Seed Value description.

PRNG_Seed_Value: Imported from standard operating system services within the
physical boundary of the general purpose computer. Used to seed the module’s own FIPS
ANSI X9.31 pseudo random number generator. Must not be identical to
PRNG_Seed Key. Since the PRNG seed comes from the operating system, which is
outside the logical boundary of the module, for the purposes of FIPS 140-2, the
entropy of this seed may be assumed to be equal to the length of the seed. The seed
length is 128 bits.

SecureParser PRNG_State: Internal state of the SecureParser’s PRNG (Cert. #584).

Definition of Public Keys

The following are the public keys contained in the module:

Public_Import_Key RSA Worap: Used by applications to wrap keys they are sending
to the SecureParser module. All keys sent to the SecureParser must be RSA wrapped.
Note that each SecureParser keystore will have its own public/private key pair.
SW_Integrity_Key DSA Verify: Used for verification of the signed module executable
during power-on self-tests. Hard coded in the module.
Share_Integrity Key DSA Verify: Optional DSA Public Key (PEM or ANSI) used to
verify ciphertext share data during the restoration process. Can be imported into the
module from an X509 certificate.

Share_Integrity Key RSA Verify: Optional RSA Public Key used to verify ciphertext
share data during the restoration process. Can be imported into the module from an X509
certificate.

Share_Integrity Key ECDSA Verify: Optional ECDSA Public Key (PEM or ANSI)
used to verify ciphertext share data during the restoration process. Can be imported into
the module from an X509 certificate.

Page 17

Security First Corp.

Definition of CSPs Modes of Access

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Table 6 defines the relationship between access to CSPs and the different module services. The

modes of access shown in the table are defined as follows:

G = Generate CSP
R = Read CSP

W = Write CSP

Z = Zero CSP

Table 6 — CSP Access Rights within Roles & Services
Ref. SecureParser Specification: 4.4 Critical Security Parameters

Role Service

C.0.

User

Cryptographic Keys and CSPs
Access Operation

X module_initialize

PRNG_Seed Key, G-Z
PRNG_Seed Value, G-Z
PRNG_State, W

x

parser_create

N/A

X parser_destroy

Session_Key Enc, Z
Session_Key Mac, Z
Session_Key Ida, Z

X parser_generateHeaders

Session_Key Enc, G-R-W
Session_Key Mac, G-R-W
Session_Key lda, G-R-W
Workgroup_Key Enc, R
Workgroup_Key Mac, R
Workgroup_Key Ida, R
Share_Integrity_Key HMAC, R
Share_Integrity Key DSA_Sign, R
Share_Integrity_Key RSA_Sign, R
Share_Integrity Key ECDSA Sign, R
PRNG_State, R-W

X parser_restoreHeaders

Session_Key Enc, R-W
Session_Key Mac, R-W
Session_Key Ida, R-W
Workgroup_Key_Enc, R
Workgroup_Key Mac, R
Workgroup_Key lIda, R
Share_Integrity Key HMAC, R

X parser_regenerateHeaders

Session_Key Enc, R
Session_Key Mac, R
Session_Key Ida, R
Workgroup_Key Enc, R
Workgroup Key Mac, R

Page 18

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Role

C.0.

User

Service

Cryptographic Keys and CSPs
Access Operation

Workgroup_Key lIda, R
Share_Integrity_Key HMAC, R
Share_Integrity_Key DSA_Sign, R
Share_Integrity_Key RSA_Sign, R
Share_Integrity Key ECDSA Sign, R

parser_recoverHeaders

Session_Key Enc, R

Session_Key Mac, R
Session_Key Ida, R
Workgroup_Key Enc, R
Workgroup_Key Mac, R
Workgroup_Key lIda, R
Share_Integrity_Key HMAC, R
Share_Integrity Key DSA_Sign, R
Share_Integrity_Key RSA_Sign, R
Share_Integrity Key ECDSA Sign, R

parser_setWorkgroupKeys

Session_Key Enc, R
Session_Key Mac, R
Session_Key Ida, R
Workgroup_Key Enc, W
Workgroup_Key Mac, W
Workgroup Key lda, W

keystore_create

Private_Import_Key RSA Unwrap, G
Public_Import Key RSA Wrap, G

keystore destroy

All CSPs in the keystore, Z

keystore_addKeyFromBuffer

All keys that are imported, R-W
Private_Import Key RSA Unwrap, R

keystore_removeKey

Specified key in volatile keystore
structure Z

keystore_getKeyType

Specified key in volatile keystore
structure R

keystore_getKeyLength

Specified key in volatile keystore
structure R

keystore _keyEXists

Specified key in volatile keystore
structure R

keystore getlmportKey

Public_Import Key RSA Wrap, R

parser_parseDataEx

Session_Key Enc, R

Session_Key Mac, R
Session_Key Ida, R
Share_Integrity_Key HMAC, R
Share_Integrity Key DSA_Sign, R
Share_Integrity_Key RSA_Sign, R
Share_Integrity Key ECDSA Sign, R

Page 19

Security First Corp.

SecureParser Security Policy Version 1.35 Revision 9/23/2010

Role Service

C.0.

User

Cryptographic Keys and CSPs
Access Operation

PRNG_State, R-W

X parser_parseData

Session_Key Enc, R

Session_Key Mac, R
Session_Key Ida, R
Share_Integrity_ Key HMAC, R
Share_Integrity_Key DSA_Sign, R
Share_Integrity_Key RSA Sign, R
Share_Integrity_Key ECDSA_Sign, R
PRNG_State, R-W

X parser_restoreData

Session_Key Enc, R
Session_Key Mac, R
Session_Key Ida, R
Share_Integrity Key HMAC, R

X parser_recoverData

Session_Key_Mac, R
Session_Key Ida, R
Share_Integrity_Key HMAC, R
Share_Integrity Key DSA_Sign, R
Share_Integrity_Key RSA_Sign, R
Share Integrity Key ECDSA Sign, R

parser getHeaderInfo

N/A

parser getFieldOffsets

N/A

parser_setFaultTolerance

N/A

parser getParsedLength

N/A

parser getRestoredLength

N/A

module getstatus

N/A

X| X[X[X| X| X[X

X[X[X[X| X| X| X

Zeroization:
module_destroy

All CSPs (includes imported public
keys and everything in the volatile
keystore), Z

X Self tests (power cycle)

SW Integrity: Digital signature using
Security First Corp. public DSA key
SW _Integrity Key DSA Verify, R

For each service listed in Table 6 above, the following identifies all CSPs that are entered into
and output from the module during execution of each service.

module_initialize:

o Entry: N/A.
o Output: N/A.

parser_create:

o Entry: N/A.
o Output: N/A.

parser_destroy:

Page 20

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

o Entry: N/A.
o Output: N/A.
e parser_generateHeaders:
o Entry: N/A.
o Output:
= Session_Key Enc (encrypted with Workgroup_Key_Enc).
= Session_Key Mac (encrypted with Workgroup_Key Mac).
= Session_Key_Ida (encrypted with Workgroup_Key_lda).
e parser_restoreHeaders:
o Entry:
= Session_Key Enc (encrypted with Workgroup_Key_Enc).
= Session_Key Mac (encrypted with Workgroup_Key Mac).
= Session_Key_Ida (encrypted with Workgroup_Key_lda).
o Output: N/A.
e parser_regenerateHeaders:
o Entry: N/A.
o Output:
= Session_Key Enc (encrypted with Workgroup_Key_Enc).
= Session_Key Mac (encrypted with Workgroup_Key Mac).
= Session_Key_Ida (encrypted with Workgroup_Key _lda).
e parser_recoverHeaders:
o Entry:
= Session_Key Enc (encrypted with Workgroup_Key_Enc).
= Session_Key Mac (encrypted with Workgroup_Key Mac).
= Session_Key_Ida (encrypted with Workgroup_Key _lda).
o Output:
= Session_Key Enc (encrypted with Workgroup_Key_Enc).
= Session_Key Mac (encrypted with Workgroup_Key Mac).
= Session_Key_Ida (encrypted with Workgroup_Key _Ida).
e parser_setWorkgroupKeys:
o Entry: N/A.
o Output: N/A.
e Kkeystore create:
o Entry: N/A.
o Output: N/A.
e keystore destroy:
o Entry: N/A.
o Output: N/A.
e keystore addKeyFromBuffer:
o Entry:
= Workgroup_Key Enc (encrypted with Public_Import_Key RSA_ Wrap).
= Workgroup_Key_ Mac (encrypted with Public_Import_Key RSA_ Wrap).
= Workgroup_Key _Ida (encrypted with Public_Import_Key RSA_Wrap).
= Share_Integrity_Key HMAC (encrypted with
Public_Import_Key RSA Wrap).
= Share_Integrity_Key DSA_Sign (encrypted with

Page 21

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

Public_Import_Key RSA_Wrap).
= Share_Integrity Key RSA_Sign (encrypted with
Public_Import_Key RSA_Wrap).
= Share_Integrity Key ECDSA_Sign (encrypted with
Public_Import_Key RSA_Wrap).
o Output: N/A.
e keystore_removeKey:
o Entry: N/A.
o Output: N/A.
e keystore getKeyType:
o Entry: N/A.
o Output: N/A.
e keystore getKeyLength:
o Entry: N/A.
o Output: N/A.
e keystore keyEXxists:
o Entry: N/A.
o Output: N/A.
e keystore_getlmportKey:
o Entry: N/A.
o Output: Public_Import_Key RSA_ Wrap (plaintext).
e parser_parseDataEx:
o Entry: N/A.
o Output: N/A.
e parser_parseData:
o Entry: N/A.
o Output: N/A.
e parser_restoreData:
o Entry: N/A.
o Output: N/A.
e parser_recoverData:
o Entry: N/A.
o Output: N/A.
e parser_getHeaderInfo:
o Entry: N/A.
o Output: N/A.
e parser_getFieldOffsets:
o Entry: N/A.
o Output: N/A.
e parser_setFaultTolerance:
o Entry: N/A.
o Output: N/A.
e parser_getParsedLength:
o Entry: N/A.
o Output: N/A.
e parser_getRestoredLength:

Page 22

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

0 No key Entry or Output.
e module_getstatus:
o Entry: N/A.
o Output: N/A.
e Zeroization: module_destroy:
o Entry: N/A.
o Output: N/A.
e Self tests (power cycle):
o Entry: N/A.
o Output: N/A.

Page 23

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

6. Security Rules

The SecureParser cryptographic module’s design corresponds to the module’s security rules.
This section documents the security rules enforced by the cryptographic module to implement
the security requirements of this FIPS 140-2 Level 2 software-only module.

1.

w

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22,

The SecureParser module interfaces shall be logically distinct from each other as
defined by the SecureParser API for the following interfaces: Data Input; Data
Output; Control Input; Status Output.

Status information shall not contain CSPs or sensitive data that if misused could lead
to a compromise of the module.

Data output shall be inhibited during self-tests, and while in error states.

Data output shall be disconnected from the module processes that perform key
generation, and plaintext CSP zeroing (the module will not support manual key
entry).

Two independent internal actions will be required to output data via the output
interface through which sensitive restored plaintext share data is output.

Plaintext secret/private key output is not supported. No SecureParser API calls will
permit secret/private key output.

The SecureParser module shall provide two distinct operator roles. These are the
User role, and the Cryptographic-Officer role.

The SecureParser module shall not support concurrent operators.

The SecureParser module shall not support a maintenance role.

The SecureParser module shall not support a bypass capability.

The SecureParser module provides identity based authentication.

Explicit service API calls into the SecureParser module shall allow the implicit
assumption of operator roles.

The SecureParser module includes the following operational and error states: Power
on/off state; Crypto officer state; User state; Self-test state; Error state; Key/CSP
Entry state.

Recovery from error states shall be possible by power cycling the module.

Secret keys, private keys, and CSPs shall be protected within the cryptographic
module from unauthorized disclosure, modification, and substitution.

Public keys shall be protected within the cryptographic module against unauthorized
modification and substitution.

An Approved RNG (ANSI X9.31 with AES) shall be used for the generation of AES
cryptographic keys within the module.

An Approved RNG (ANSI X9.31 with AES) shall be used for the generation of RSA
cryptographic key pairs within the module.

The PRNG seed and seed key shall not have the same value.

Compromising the security of the key generation method (e.g., guessing the seed
value to initialize the deterministic RNG) shall require as least as many operations as
determining the value of the generated key.

The SecureParser module shall associate all cryptographic keys (secret, private, or
public) stored within the module with the correct entity (KeyID) to which the key is
assigned.

The SecureParser module shall provide a method to zero all plaintext secret and

Page 24

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

23.

private cryptographic keys and CSPs within the module in a time that is not sufficient
to compromise the plaintext secret and private keys and CSPs (service:
module_destroy).

Power-on Self-tests will not require operator intervention, they will be performed
automatically when the module is initialized.

24. The cryptographic module shall perform the following self-tests:

25.

26.

217.

28.

29.

a. Power up Self-Tests:
i. Software cryptographic algorithm tests:
1. RNG KAT, covers AES Encrypt
2. AES Decrypt KAT (ECB mode with 256-bit key)
3. AES Encrypt and Decrypt KAT (GCM mode with 128,192,
and 256-bit keys)
4. HMAC KATS using SHA-256, SHA-384, SHA-512, covers
SHA-256, SHA-384, and SHA-512 hashing
DSA sign/verify using SHA-1, covers SHA-1 hashing
RSA-PSS sign/verify
RSA encrypt/decrypt
. ECDSA sign/verify
ii. Software/Firmware Integrity Test — DSA public key verification of a
private key signature. Covers all module executables listed in Figure 1
- Image of the Cryptographic Module.
b. Conditional Self-Tests:
i. Continuous Random Number Generator (RNG) test — performed on
each sample from the RNG (each sample will be 128 AES bits).
ii. Pairwise consistency test — performed each time an RSA “import” key
pair is generated inside the module.
If the SecureParser module fails a self-test, the module shall enter an error state and
output an error indicator via the status output interface.
The SecureParser module, shall not perform any cryptographic operations while in an
error state.
When the power-up tests are completed, the results (i.e. indications of success or
failure) shall be output via the *“status output” interface.
The operator shall be capable of commanding the module to perform the power-up
self-tests at any time by power cycling the cryptographic module.
None of the mentioned hardware, software, or firmware components will be excluded
from the module.

O No O

This section documents the security rules imposed by the vendor:

1.

oA~ w

An approved encryption mode and an approved integrity mechanism must be
requested by calling applications to run the SecureParser module in FIPS Approved
mode.

Workgroup keys shall be mandatory for the SecureParser module to run in a FIPS
Approved mode.

Workgroup keys shall not be placed in data shares.

The SecureParser module shall encrypt all share data using AES session keys.

The SecureParser module shall provide for the integrity of encrypted data shares

Page 25

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

using HMAC-SHAL1, HMAC-SHA256, HMAC-SHA384, HMAC-SHA512, or GCM.
In addition an optional configurable second layer of integrity will be provided using
either HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, HMAC-SHAS12, DSA,
ECDSA, or RSA.

6. All Secret and Private Keys entered via the module's keystore _addKeyFromBuffer()
service are encrypted using RSA key wrapping. All Secret and Private Keys
entered/output via the module's parser_parseData() and parser_restoreData()
services are encrypted using NIST Key Wrapping.

7. Physical Security

The requirements of Section 4.5 of FIPS 140-2 Physical Security are not applicable as the
SecureParser is a software-only module which operates on a general purpose computer.

8. Mitigation of Other Attacks Policy

The SecureParser module has not been designed to mitigate any specific attacks.

9. References

OpenSSL: This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org)

Page 26

Security First Corp. SecureParser Security Policy Version 1.35 Revision 9/23/2010

10. Definitions and Acronyms
Share

A partition of data created after the SecureParser is enacted to parse data.
Mandatory Share

A mandatory share is a share that must be present for the proper recovery of data. In other words,
all mandatory shares must be available. The number of mandatory shares is denoted by L.

Non-mandatory Share

The SecureParser allows for the reconstruction of data with a subset of non-mandatory shares.
The number of non-mandatory shares is denoted by N and the number of non-mandatory shares
that must be available to restore is denoted by M.

M of N

In this document, we refer to M of N shares which is intended to mean M of N non-mandatory
shares and L mandatory shares. For example, “without M of N shares...” means without at least
M non-mandatory shares and L mandatory shares.

Trusted

Something that is trusted is known to meet its security assumptions. For example, a trusted share
is known to be valid, untampered with, and otherwise uncompromised by any adversaries.

Workgroup key

This can be any encryption key that can be used to encrypt or decrypt data. Often it is a shared
key between users of the application working together.

Integrity Authentication key:
This can be any key used for generating or verifying a MAC or signature of data.
Information Dispersal Algorithm (IDA):

An algorithm, possibly keyed, that divides information into multiple components. An IDA may
add redundancy to allow the information to be recovered if some of the components are
unavailable. Each IDA has an inverse algorithm that, when given some or all of the
aforementioned components, produces the original information.

Page 27

