Secure Network
Communications

FIPS 140-2 Non-Proprietary Security Policy

21 June 2010

Table of Contents

Introduction
Module Specification
Ports and Interfaces

Approved Cryptographic Algorithms
Test Environment
Roles and Services
Authentication
Authorized Services
Finite State Model

Operational Environment
Rules of Operation
Software Security

Critical Security Parameters
Self Tests

Power up Tests

Conditional Tests
Pair wise Consistency Test
Software/Firmware Load Test
Manual Key Entry Test
Bypass Test
Critical Function Tests

Design Assurance

Application Management of Critical Security Parameters
Identifying CSPs
Storage of CSPs
Destruction of CSPs

Appendix A - Finite State Model

State Descriptions

Introduction

The AccessData Secure Network Communications FIPS 140-2 Module is a cryptographic
module that operates as a multi-chip component library positioned between the OpenSSL API
and a host application as illustrated in Figure 1. The Module provides to any AccessData
application that utilizes it, electronic encryption designed to prevent unauthorized access to
data transferred across a physical or wireless TCP/IP network. Instances of the Module
operating concurrently on two general purpose computers encrypt data placed on, and decrypt
data read from, the network; protecting the user of the application on the hardware platform.

h|
1
\ 1
Host Host
Application OpenSSL =—=—=—== 0OpenSSL Application
1
|

M ——— I_ P .l. _________
General Computing Platform 1 [[General Computing Platform 2

Physical Cryptographic Boundary Logical Cryptographic Boundary

— = — — TCP/IP Network Connection . Module API

Figure 1 - Conceptual diagram of the AccessData Secure Network Communications Module

This document is the non proprietary FIPS 140-2 security policy for the AccessData Secure
Network Communications software module to meet FIPS 140-2 level 1 requirements. This
Security Policy details the secure operation of the AccessData Secure Network Communications
FIPS 140-2 Module as required in Federal Information Processing Standards Publication 140 2
(FIPS 140-2) as published by the National Institute of Standards and Technology (NIST) of the
United States Department of Commerce.

Module Specification

For the purposes of FIPS 140-2 validation the AccessData Secure Network Communications
FIPS 140-2 Module v1.0 is defined as a dynamically-linked library (DLL). The term “Module”
elsewhere in this document refers to this AccessData Secure Network Communications FIPS
140-2 Module.

The Module provides an API for invocation of FIPS approved cryptographic functions from
calling applications. The Module is designed for use in AccessData applications that will be
transmitting information over a general purpose network securely.

The Module was tested by the FIPS 140-2 Cryptographic and Security Testing (CST) laboratory
for the specific platform identified in Table 1.

The Module provides confidentiality, integrity, and message digest services. It natively

supports the following algorithms: AES, RSA (for digital signatures and key wrapping), SHA 1,
SHA 224, SHA 256, SHA 384, SHA 512, and HMAC SHA 1, HMAC SHA 224, HMAC SHA 256,
HMAC 384, HMAC SHA 512, ANSI X9.31 compliant deterministic random number generation.

Platform Module File Name

Microsoft Windows XP SP3 FipsComm.dll

Table 1- FIPS Module by Platform

Ports and Interfaces

For the purposes of this FIPS 140-2 validation, the Module is considered a multi-chip standalone
module. Although the Module is software the physical embodiment is a general purpose
computer that consists of multiple components, considered to be a multi-chip standalone
module by FIPS 140-2.

The logical cryptographic boundary for the Module is the dynamically-linked library,
FipsComm.dll. The physical cryptographic boundary contains the general purpose computing
hardware of the system executing the application. This system hardware includes the central
processing unit(s), cache and main memory (RAM), system bus, and peripherals including disk
drives and other permanent mass storage devices, network interface cards, and other internal
system components.

The Module provides a logical interface via an Application Programming Interface (API). This
logical interface exposes services that applications may utilize directly or extend to add support
for new data sources or protocols. The API provides functions that may be called by the
referencing application.

The API interface provided by the Module is mapped onto the FIPS 140-2 logical interfaces: data
input, data output, control input, and status output. Each of the FIPS 140-2 logical interfaces
relate to the Module's callable interface, as follows:

Data Input: Input parameters to all functions that accept input from Crypto Officer or
User entities

Data Output: Output parameters from all functions that return data as arguments or return
values from Crypto Officer or User entities

Control Input: All API function input into the module by the Crypto Officer and User entities

Status Output: information returned via exceptions (return/exit codes) to Crypto Officer or
User entities

Approved Cryptographic Algorithms
The Module supports the following FIPS approved cryptographic algorithms:

Rivest Shamir Adleman (RSA) PKCS #1 digital signature
Advanced Encryption Standard (AES — FIPS 197)

Secure Hashing Algorithm (SHA 1, SHA 2 - FIPS 180-3)

Keyed Hash Message Authentication Code (HMAC — FIPS 198-1)

The module also supports the following non-approved algorithms that may be used in FIPS
mode as part of the TLS protocol:

HMAC MD5

MD5

Rivest Shamir Adleman (RSA) - key wrapping; key establishment mechanism provides
between 80 and 256 bits of encryption strength

The Module performs ANSI X9.31 random number generation.

Approved Algorithms
Algorithm | Algorithm Standard FIPS Usage
Type Validation
Certification
Number
Asymmetric | RSA ALG[ANSIX9.31]; | 626 Sign and Verify
Keys SIG(gen); Operations
SIG(ver);
ALG[RSASSA-
PKCS1_V1_5];
SIG(gen);
SIG(ver)
ALG[RSASSA-
PSS]J; SIG(gen);
SIG(ver);
Symmetric | AES - CBC, FIPS 197 1307 encrypt/decrypt
Key CFBS, CFB128, operations
ECB, OFB each
with 128, 192, or

256 bit keys

HMAC HMAC-SHA-1 FIPS 198 759 module integrity
HMAC-SHA-224 code integrity
HMAC-SHA-256 Message integrity

HMAC-SHA-384
HMAC-SHA-512

Hashing SHA-1 FIPS 180-2 1195 hashing
SHA-224
SHA-256
SHA-384
SHA-512
RNG ANSI X9.31 ANSI X9.31 729 Random number
generation

Table 2 — Approved Cryptographic Algorithms

Approved Mode of Operation

The module only has an approved mode of operation. In order to initialize the module and
make use of the APIs, it is first necessary to perform the initialization call FIPSVerify(). The
module’s APIs will return an error and perform no operations until this call is made and
successfully returns. Calling the FIPSVerify() function invokes the module’s power-up
self-tests and returns the status indicator of the test results. Calling the function after the
initialization returns the state of the internal flag, acting as a FIPS mode indicator.

The DLL initialization is performed when the application invokes the FIPSVerify() call.
Prior to using any Module functions FIPSVer i fy() must be called successfully. Execution of
any function without having called FIPSVerify() first will fail as the DLL has not yet been
initialized.

The FIPSVerify() function relies upon a composite integrity test (composed of both its own
HMAC SHA-1 test and the HMAC SHA-1 integrity test used by the embedded OpenSSL FIPS
Object module) to prevent code corruption and also performs algorithm power up self tests
(Pairwise Consistency and Known Answer tests) to prevent cryptographic algorithm
corruption. If any power up self test fails, the internal global error flag FIPS_FAILED is set to
prevent subsequent invocation of any cryptographic function calls. If all components of the
power up self test are successful then FIPSVerify()sets the internal flag to TRUE.

Test Environment
The Module was tested by the FIPS 140-2 CST laboratory on Windows XP SP3.

Roles, Services and Authentication

Roles and Services

The User and Crypto Officer roles are implicitly assumed by any entity that can access services
implemented in the Module. In addition the Crypto Officer role can install and initialize the
Module; this role is implicitly entered when installing the Module or performing system
administration functions on the host operating system:

User Role All services except installation
Crypto Officer Role All services including installation

The Module meets the FIPS 140-2 level 1 requirements for Roles and Services for User and
Crypto Officer Roles. As a library and as allowed by FIPS 140-2 the Module does not support
user identification or authentication for those roles.

Authentication

The Module does not provide identification or authentication mechanisms that would
distinguish between the two supported roles. These roles are implicitly assumed by the services
that are accessed, and can be differentiated by assigning module installation and configuration
services to the Crypto Officer. Only a single user in a specific role may access Module services at
the same time.

Authorized Services

The services provided by the Module are listed in the following table. All services may be
performed in both User and Crypto Officer Roles except for the Module installation service
which may only be performed by in the Crypto Officer role:

Roles Services Ephemeral Algorithm CSP Access
Critical Security
Parameters

User, Symmetric Symmetric Key AES, Triple- Execute
Cryptographic Encryption / DES
Officer Decryption
Cryptographic Digital Asymmetric RSA Execute
Officer Signature Private Key

Generation /

Verification

Cryptographic Installation - - -
Officer

User, Module - - -
Cryptographic Initialization

Officer

User, Power-up Self - - -
Cryptographic Test

Officer

User, Random RNG Seed and X9.31 RNG Execute
Cryptographic ~ Number RNG Seed Key

Officer Generation

User, Key Asymmetric RSA Read, Write,
Cryptographic Establishment public and private Execute
Officer keys

User, Show Status - - -
Cryptographic

Officer

Table 3 — Authorized Services

Finite State Model

The Module implements the finite state machine detailed in Appendix A.

Operational Environment
Applications referencing the Module run as processes under the control of the host system
operating system.

Modern operating systems segregate running processes into virtual memory areas that are
logically separated from all other processes by the operating system and CPU. The Module
functions completely within the process space of the process which loads it. It does not
communicate with any processes other than the one that loads it, and satisfies the FIPS 140-2
requirement for a single user mode of operation.

Rules of Operation

1. The Module API is accessible only after the DLL initialization using the FIPSVerify()
function call. All APIs will return errors and perform no operations until this call is
made.

2. The replacement or modification of the Module by unauthorized intruders is prohibited.

3. The Operating System enforces authentication method(s) to prevent unauthorized access
to Module services.

4. The referencing application accessing the Module runs in a separate virtual address
space with a separate copy of the executable code.

5. The unauthorized reading, writing, or modification of the address space of the Module
is prohibited.

6. The writable memory areas of the Module (data and stack segments) are accessible only
by a single application so that the Module is in "single user" mode, i.e. only the one
application has access to that instance of the Module.

7. The operating system is responsible for multitasking operations so that other processes
cannot access the address space of the process containing the Module.

8. Secret or private keys that are input to or output from an application must be input or
output in encrypted form using a FIPS Approved algorithm. Note that keys exchanged
between the application and the Module may not be encrypted.

Software Security

The module relies upon a composite integrity test using both its own HMAC SHA-1 test and the
HMAC SHA-1 integrity test used by the embedded OpenSSL FIPS Object module. Both tests
combine to ensure that the module’s integrity has been maintained. This test is performed each
time the module is initiated.

Critical Security Parameters

A Critical Security Parameter (CSP) is information, such as passwords, symmetric keys,
asymmetric private keys, etc., that must be protected from unauthorized access. Since the
Module is accessed via an API from a referencing application, the Module does not manage
CSPs, except for the internal RNG seed and seed key used during random number generation.
In fact, for most applications CSPs will be found in multiple locations external to the Module,
such as in application buffers, primary (RAM) memory, secondary disk storage, CPU registers,
and on the system bus. In the case of networked client server applications some CSPs will be
found on both the client and server system and on the network infrastructure in between
(Ethernet and WAN communication lines, routers, switches).

The application designer and the end user share a responsibility to ensure that CSPs are always
protected from unauthorized access. This protection will generally make use of the security
features of the host hardware and software which is outside of the cryptographic boundary
defined for this Module. All of these ephemeral keys, including the module managed RNG
Seed and RNG Seed Key, can be procedurally zeroized by cycling the power of the general
purpose computer system thereby erasing all keys from memory, since they are only stored in
RAM.

While not considered CSPs, the module does store the plaintext HMAC Integrity Keys within its
cryptographic boundary. These keys are only used to perform the software integrity tests of the
module, cannot be accessed by the operator, and are neither input nor output.

Self Tests

The Module performs a number of power up and conditional self tests to ensure proper
operation of the Module. Power up tests include cryptographic algorithm known answer tests
and integrity tests. The integrity tests are performed using HMAC SHA 1 digests calculated
over the module’s executable code. Power-up tests are run automatically when the Module is
initialized. Additionally, software integrity tests may be executed at any time by calling the
FIPSVerify()function and verifying it returns true. All self-tests can be executed by
unloading the module and re-performing the initialization using the FIPSVerify() function.
No cryptographic functionality will be available until after successful execution of all power up
tests. No authentication is required to perform self tests either automatically or upon demand.

The failure of any power up self test or continuous test causes the Module to enter the Self Test
Failure state (see Appendix A), and all cryptographic operations are disabled until the Module
is reinitialized with a successful FIPSVerify()call. Note the most likely cause of a self test
failure is memory or hardware errors. In practice a self test failure means the application must
exit and be restarted.

Power up Tests

Known Answer Tests (KATs) are tests where a cryptographic value is calculated and compared
with a stored previously determined answer. The power up self tests for the following
algorithms use a KAT:

Algorithm Known Answer

AES encryption and decryption with 128 bit key

RSA known answer test with 1024 bit key public encryption and private
decryption with 1024 bit key; sign and verify test with 1024 bit key

HMAC HMAC SHA-1

HMAC SHA-224
HMAC SHA-256
HMAC SHA-384
HMAC SHA-512
RNG Generation of a known value using the ANSI X9.31 RNG

Table 4 - Power-Up Test Algorithms

Conditional Tests

In addition to the power up tests, the Module performs several conditional tests including pair
wise consistency tests on newly generated public and private key pairs. Conditional tests are
performed automatically as necessary and cannot be turned off. Currently, all conditional tests
relate to services available only to users. Thus, conditional and critical function tests are not
performed at any time in response to Crypto Officer actions.

Algorithm Conditional Test

RSA pairwise consistency test (public encryption and private decryption with
the newly generated keypair)

RNG Continuous Random Number Generation Test implemented for the
approved RNG

Table 5 — Conditional Test Algorithms

Pair wise Consistency Test
A pairwise consistency test is performed when RSA key pairs are generated by applying a
private key to the ciphertext and verifying that the result equals the original plaintext.

Software/Firmware Load Test
Not applicable; the Module does not utilize externally loaded cryptographic modules.

Manual Key Entry Test
Not applicable; keys are not manually entered into the Module.

Bypass Test
Not applicable; the Module does not implement a bypass capability.

Critical Function Tests
The Module does not mitigate against any specific attacks.

Design Assurance

The Module is managed in accordance with the established configuration management and
source version control procedures of the AccessData Secure Network Communications project.

Application Management of Critical Security Parameters

Identifying CSPs

All CSPs must be created, stored, and destroyed in an approved manner as described by FIPS
140-2. CSPs are those items of information which must be protected from disclosure, such as
symmetric keys, asymmetric private keys, etc. Note that the application designer and end
user/system administrator/Crypto Officer share a responsibility for protection of CSPs; the
former to include appropriate technical protections and the latter to install and configure the
application correctly. Technical protections include checks to require that files storing CSPs
have appropriate permissions (not group writable or world readable, for example).
Administrative protections include installation of the runtime software (executables and
configuration files) in protected locations. End users have a responsibility to refrain from
comprising CSPs (as by sending a password in clear text or copying an encryption key to an
unprotected location).

Storage of CSPs

The Module does not store any critical security parameters (CSPs) in persistent media; while the
Module is initialized any CSPs reside temporarily in RAM and are destroyed at the end of the
session. Any keys or other CSPs otherwise stored in persistent media must be protected in
accordance with FIPS requirements in Reference 1, FIPS 140-2.

Destruction of CSPs

All keys and CSPs within the cryptographic module are stored within the RAM of the general
purpose computer system. The values are procedurally zeroized when the general purpose
computer system is powered down causing the RAM to be erased.

Appendix A - Finite State Model

This Appendix describes the Finite State Machine (FSM) model for an application utilizing the
AccessData Secure Network Communications FIPS Module. Figure A.1 is a finite state diagram
showing the states and transitions between states. At any point in time the Module is in one and
only one state. Various software or operating system driven events can cause a transition to
another state.

1
POWER-ON
/ STATE \
2 3
SELF TEST ERROR e
STATE STATE
\ ;
Operational
State
5 [
Crypto-Officer User
State State
7
Show Status
State
8
Key
Management
State
9
Power-Off
State

Diagram A.1 Finite State Machine Diagram

State Descriptions

1. Power-On State

The application making use of the Module has not been loaded into memory by the host
operating system. The Module transitions to the Power On State when the application is
invoked as a process by the host operating system and thereby loads the module into memory.

2. Self Test State

The application has been loaded into memory for a process created by the host operating
system, but the power up self tests and DLL initialization (FIPSVerify() call) have not yet
been performed. The FIPSVerify() call will transition to either the Error or Operational
state. Any of the following errors can occur during the power up self test, all cause a transition
to the Error state:

SUCCESS Returned when a function successfully completes

RESEND Returned when the data must be resent to the peer

CLOSED Returned when a connection has been properly closed

FAILED Indicates a general failure to properly execute
BUFFEROVERFLOW Returned when the data returned is larger than the target buffer
FAILED_FIPS Returned on self-test failure or incomplete DLL initialization
MEMORY_ERROR Indicates a general memory allocation failure

CERT_ERROR Returned when certificate file is not found or fails to load

3. Error State

The initial power up self test or subsequent optional self test has failed. The application and
Module will typically terminate on detection of the power up self test error. While not likely in
practice, a successful re invocation of the power up self test could transition to the Operational
state.

4. Operational State

The power up self test has executed successfully. The cryptographic algorithms in the Module
can now be accessed by the application. The Module will remain in the Operational state until
the application is terminated and enters the Power Off state.

5. Crypto-Officer State
The application is in crypto officer state.

6. User State
The application is in user state.

7. Show Status State
The application is performing a show status operation.

8. Key Management State
The application is performing a key management operation.

9. Power-Off State
The host operating system has terminated the application process and released all memory.

