

Security Policy for the

CoCo Crypto Module v1.0

Using CoCo’s DLL of

cryptographic functions

for compliance with

FIPS 140-2 Level 1

CoCo Communications Corporation

www.cococorp.com

999 3rd Ave, Suite 3700

Seattle, WA 98104

Phone: 206-284-9387

Fax: 206-770-6461

Toll free: 866-657-COCO

Copyright © 2002-2007 CoCo Communications Corporation. This

document may be freely reproduced and distributed whole and intact,

including this Copyright Notice.

CoCo is a trademark of CoCo Communications Corporation.

All Rights Reserved. Patents Pending.

The names of actual companies or products mentioned herein may be

the trademarks of their respective owners.

Usage Policy

Security Policy for the

CoCo Crypto Module v1.0

Using CoCo’s DLL of cryptographic

functions for compliance with FIPS

140-2 Level 1

Document Revision 122

28 January 2008

coco communications Security Policy for the CoCo Crypto Module v1.0

 i

Table of Contents

I. Summary ... 4

1. Document References..4

2. Documentation Conventions ..4

II. CoCo Crypto Module Overview.. 5

1. Supported Algorithms..6
a. Approved Algorithms...6
b. Non-Approved Algorithms ..6

2. Supported Platforms ..7

3. Product Components..7
a. Core Components ...8

i. Dynamically-Linked Library File (DLL) ...8
ii. Signature File..8

b. Software Development Kit (SDK) ...8
i. Import Library..8
ii. C/C++ Headers ...9

4. Build Configuration ..9

5. Module Architecture ...10

III. Roles and Authentication... 11

1. Role Definitions ...11
a. User..11
b. Crypto Officer ...11

2. Restrictions and Privileges...11

3. Authentication..12

4. Multiple user concurrent access ...12

IV. Secure Operation and Security Rules.. 12

1. Preparing a Secure Operating Environment...12
a. Availability of the DLL file...12
b. Availability of the signature file ..13
c. Running the host OS in single-user mode ...13

i. Windows XP ..13
ii. Debian Linux ..13

2. Activating the module..14

3. Self-Tests ...14
a. Power-On Self-Tests ..14

Security Policy for the CoCo Crypto Module v1.0 coco communications

ii

i. List of Power-On Self Tests ...14
ii. Inducing the Power-On Self Tests ...15

b. Conditional Continuous Self-Tests ..15
c. Checking for Self-Test Failure ..16

4. Physical Security ...17

5. Ports and Interfaces...18
a. Data Input Interface ..18
b. Data Output Interface...18
c. Control Input Interface ..18
d. Status Output Interface ...18

V. Using CoCo Crypto functions and objects...................................... 19

1. Usage Requirements..19

2. Usage restrictions by role and API section...19

3. Application Programming Interface...19

4. Cryptographic Key Management ..20
a. Sensitive values used internally by the module20
b. Key-Handling Functions ...21

i. Key Generation..21
ii. Key Serialization and De-serialization ..21

c. Zeroization ..22
i. Zeroizing Keys in Storage ..22
ii. Zeroizing Keys in Memory...23

5. Pseudorandom Number Generation ...24
a. Strength of Key Generation Methods ...24
b. Protection Against Weak Seeding...24

VI. Service Information... 25

Appendix A: Function Catalog .. 26

Primary Functions..26
Core Cryptographic Functions ...26

Key Generation...26
Key Zeroization and Destruction ..27
Cryptographic Algorithms...27

Storing and Loading Cryptographic Information28
Serialization ..28
Deserialization ...28

Basic Support Functions..28
Mathematics Data Structures...28
Basic Input and Output Operations ..29

coco communications Security Policy for the CoCo Crypto Module v1.0

 iii

Library Information Functions ..29

Advanced Functions ...30
Advanced Input and Output Operations ..30
Mathematical Operations...31
Memory and Data Structure Management Functions.........................31

Abstraction Functions..32
EVP Functions ...32

EVP Digest Functions..32
EVP Cipher Functions...32
EVP Subsystem Support ...34

X.509 Certificate Functions ..34
X.509 Data Structure Creation and Initialization...............................34
X.509 Data Structure Inspection ..35
X.509 Data Structure Destruction...35
X.509 Serialization ...36
X.509 Deserialization ..36
X.509 Cryptographic Operations...36

Security Policy for the CoCo Crypto Module v1.0

4

I. Summary
This document contains the security policy for the CoCo Crypto Module, a

dynamically-linked library (DLL) and corresponding C++ -oriented Software

Development Kit (SDK) intended for use in other CoCo Communications

products in order to facilitate compliance with FIPS 140-2 requirements. The

DLL contains cryptographic algorithms implemented in a manner compliant

with FIPS 140-2 Level 1.

1. Document References

This document is part of a set of documents that collectively comprise the

usage guidelines for the cocoCrypto module. The following list enumerates

the documents in this collection.

• Security Policy for the CoCo Crypto Module v1.0

• Finite State Model for the CoCo Crypto Module v1.0

• API Reference for the CoCo Crypto Module v1.0

• Configuration Management List for the CoCo Crypto Module v1.0

(proprietary document; distribution is limited exclusively to

individuals and agencies involved in the process of acquiring FIPS

140-2 certification for this module)

2. Documentation Conventions

Within the scope of documentation and reference for the CoCo Crypto

Module, the CoCo Crypto Module may be abbreviated as “CoCo Crypto”,

“cocoCrypto”, or simply as “the Module” or “the module”. As a general rule, the

camel-cased moniker “cocoCrypto” is used to refer to the module when

discussing its API, build configuration, or component files (particularly the

DLL binary file containing the module’s implemented algorithms), whereas

other abbreviations are typically used when discussing the module’s behavior

and functionality.

coco communications Security Policy for the CoCo Crypto Module v1.0

 5

II. CoCo Crypto Module Overview
CoCo Communications Corporation is a Seattle-based technology company

specializing in next-generation communications software. The company’s

operational focus is a patent-pending cryptographic mesh protocol that solves

many of the problems currently plaguing the communications industry. The

initial application of this breakthrough capability is helping to solve the

interoperability, availability, and security challenges facing our nation's first

responders.

When called to dangerous and potentially hostile environments, first

response teams need to know that they can communicate in a secure and

reliable manner – they depend on their equipment to keep them connected

with local, state, and federal agencies. However, they also must keep sensitive

tactical information from reaching potentially harmful recipients, whether

that be terrorists or combatant forces, or simply a panicked civilian populace.

CoCo Communications is dedicated to providing emergency response

personnel with equipment they can trust. To this end, all CoCo products rely

on a routing protocol that has cryptographic guarantees built into its

framework. CoCo software uses a dynamically-linked library containing

FIPS-approved implementations of cryptographic algorithms such as

encryption/decryption, signed hashing, and certificate validation.

CoCo’s products rely on this library for all cryptographic operations. The

library is referred to as the CoCo Crypto Module and is the topic of this

security policy document.

The CoCo Crypto Module is an integral component of CoCo Communications'

product offerings and its certification by the CMVP establishes its adherence

to FIPS 140-2 Level 1 guidelines. The Module is critical to providing CoCo’s

customers the secure, reliable, and trustworthy communication systems on

which they depend.

Security Policy for the CoCo Crypto Module v1.0

6

1. Supported Algorithms

a. Approved Algorithms

The Module implements the following cryptographic algorithms. The module’s

implementations of these algorithms have been tested and validated for FIPS

140-2 Level 1 compliance by Atlan Laboratories.

• AES

o Supported modes: ECB, CFB128

o Supported functions: Encrypt, Decrypt

o Supported key sizes (in bits): 128, 192, 256

• SHA-1 (byte-oriented)

• HMAC SHA-1

o MAC sizes (in bytes): 10, 12, 16, 20

• Pseudorandom number generator using 2-Key Triple-DES

o Adheres to ANSIX9.31 standard, Appendix A.2.4

o Usage

� General-purpose random number generator

� All FIPS Approved key generation

• DSA

o Implemented according to FIPS 186-2 standard

o Features Supported

� PQG Generation

� Key Pair Generation

� Signature Generation

� Signature Verification

o Modulus Sizes Supported (in bits): 1024, non-compliant less

than 1024 bits. The user should not use non-compliant moduli

less than 1024 bits in the Approved mode.

b. Non-Approved Algorithms

In addition to the validated algorithms listed above, the module also contains

implementations of algorithms without FIPS validation certificates. These

algorithms are listed as follows.

• Diffie-Hellman Primitives

coco communications Security Policy for the CoCo Crypto Module v1.0

 7

o Features Supported

� Key Pair Generation

� Shared Secret Computation

o Strength: The Diffie-Hellman key establishment primitives

calculate shared secrets providing between 80 and 256 bits of

encryption strength; non-compliant less than 80 bits of

encryption strength. Diffie-Hellman parameters less than 1024

bits in length, which can generate shared secrets with less than

80 bits of encryption strength, should not be using in the

Approved mode.

• SSLeay RNG

o Usage: Seeding the Approved PRNG

o Continuous RNG Test: Loop detection by comparison of each

generated value with previous

2. Supported Platforms

The module has received explicit testing and verification by Atlan

Laboratories for FIPS 140-2 Level 1 compliance on the following platforms.

• Microsoft Windows XP Pro Service Pack 2 on Intel x86 or compatible

chipsets.

• Debian GNU/Linux 4.0 (Etch) on Intel x86 or compatible chipsets.

CoCo Communications also affirms the CoCo Crypto Module on additional

platforms, listed below. When building the module for these additional

platforms, CoCo Communications uses the same toolset and source code as

used for the explicitly approved platforms listed above. As per FIPS 140-2 IG

G.5, the module maintains Level 1 compliance on these platforms.

• Microsoft Windows 2003 Server on Intel x86 or compatible chipsets.

• Microsoft Windows Mobile 5.0 Pocket PC Edition on an ARM chipset.

• Microsoft Windows Mobile 6.0 Pocket PC Edition on an ARM chipset.

• Debian GNU/Linux 4.0 (Etch) on a MIPS chipset.

• Debian GNU/Linux 4.0 (Etch) on an ARM chipset.

3. Product Components

The module, being a software product, consists of a set of files. This section

enumerates the files that comprise the CoCo Crypto Module.

Security Policy for the CoCo Crypto Module v1.0

8

a. Core Components

This section lists the necessary and sufficient components that need to be

installed on a host computer in order to make use of the cryptographic

capabilities of the module.

i. Dynamically-Linked Library File (DLL)

This binary file contains the compiled implementations of the methods and

objects exposed and supported by the module. It is the functional core of the

module, and was the primary focus of testing during the FIPS 140-2 Level 1

certification process.

On Windows platforms, this file is called ”cocoCrypto.dll” .

On Debian platforms, this file is called ”libcocoCrypto.so” .

ii. Signature File

When the CoCo Crypto Module enters FIPS mode, it performs a test to verify

the integrity of the DLL. This test takes the form of computing the signed

HMAC-SHA1 hash of the DLL and comparing it against a known value. This

known value resides in a small standalone file.

On all supported platforms, this file is called ”cocoCrypto.sig” .

b. Software Development Kit (SDK)

When CoCo Communications provides the CoCo Crypto Module to third-party

or internal customers, the module comes with files that software developers

might find useful for authoring applications that leverage the module’s

capabilities.

These files are not necessary for the operation of the CoCo Crypto Module by

the end user of the application, and are not included in application packages

that aren’t intended for software developers. The SDK performs no

cryptographic operations of its own and did not receive validation as part of

the CoCo Crypto Module. It exists solely to provide software developers with

a mechanism which to access the functions in the DLL.

i. Import Library

When building C++ applications for the supported Microsoft Windows

platforms, a software developer generally needs to link against an import

library, a small static library containing stubs for the methods in a DLL, in

order to resolve references at compile time.

 On all Windows-related platforms, this file is called ”cocoCrypto.lib” .

Import libraries are not necessary for Debian Linux and related platforms,

and are therefore not provided.

coco communications Security Policy for the CoCo Crypto Module v1.0

 9

ii. C/C++ Headers

The module’s SDK includes a header file which presents the C++ functional

entry points and object declarations, which together form the user interface to

the module.

On all supported platforms, this file is called ”cocoCrypto.h” .

4. Build Configuration

The CoCo Crypto Module was built by CoCo Communications Corporation on

a set of Intel x86 or compatible machines, using Microsoft Visual Studio 2003

Enterprise Edition on Microsoft Windows XP Professional SP2 and gcc 3.4.4

on Debian (Sarge) Linux. The source code comprising the CoCo Crypto

module was stored in a repository managed by Subversion (SVN) v1.4.2 (more

information about SVN available at http://subversion.tigris.org/).

A full listing of the files in the SVN repository, including revision numbers at

the time of FIPS submission of this module, is available in the accompanying

document, Configuration Management List for the CoCo Crypto Module v1.0

(proprietary distribution only).

Security Policy for the CoCo Crypto Module v1.0

10

5. Module Architecture

CoCo Crypto is a multi-chip standalone module. As a software module, CoCo

Crypto’s physical cryptographic boundary is the computer case of the

machine on which the cocoCrypto DLL is installed. Its logical boundary is the

two files that comprise the module – the cocoCrypto DLL and the signature

file, as described in this document section II.3.a, Core Components.

The following illustration is a logical diagram that describes the interaction

between each of the module’s components (DLL and signature file), the

operating system, and a calling application.

 Filesystem

Operating System

cocoCrypto
DLL

1. Calling Application calls
OS to load DLL

2. OS maps DLL to
Calling Application’s

process space

Calling Application

cocoCrypto DLL
(mapped inside

calling application’s
process space)

3. Upon loading, cocoCrypto
calls filesystem to open
signature file and its own
DLL file

cocoCrypto
signature file

4. Filesystem opens DLL
and signature files to
perform integrity self-test

Logical
cryptographic

boundary

coco communications Security Policy for the CoCo Crypto Module v1.0

 11

III. Roles and Authentication
This section defines and discusses the various roles of the intended users of

the CoCo Crypto Module.

1. Role Definitions

a. User

The module, as it is a software library, defines its “user” to be the application

process which invokes the loading and run-time linking of the cocoCrypto

DLL.

For purposes of classification, when referred to as a “User”, such an

application process runs with restricted permissions on the host computer.

For example, such a process would be launched by a generic account on a

Linux-based machine, or a guest or restricted account on a Windows-based

machine.

b. Crypto Officer

The module, as it is a software library, defines its “Crypto Officer” to be the

application process which invokes the loading and run-time linking of the

cocoCrypto DLL.

For purposes of classification, when referred to as a “Crypto Officer”, such an

application process runs with elevated permissions on the host computer. For

example, such a process would be launched by a root user account or

privileged daemon on a Linux-based machine, or an administrator account on

a Windows-based machine.

2. Restrictions and Privileges

As permitted by FIPS 140-2 Level 1 guidelines, the module enforces no

functional difference between a user and a crypto officer. The user and the

crypto officer both have full access to the complete set of functions in the

module.

The remainder of this document will employ the term “user” to refer to either

a User or a Crypto Officer, since both have the same capabilities with regard

to the module. The reader should bear in mind that the term refers

specifically to an application process running on a host computer, and not to a

human operator.

Security Policy for the CoCo Crypto Module v1.0

12

3. Authentication

As a software module with FIPS 140-2 Level 1 certification, CoCo Crypto does

not provide authentication mechanisms of its own. It depends on the

operating system of the host computer to enforce the access privileges of any

given process and to invoke the loading and run-time linking of the

cocoCrypto DLL.

4. Multiple user concurrent access

When a process links against a dynamically-linked library, the operating

system provides that process with its own copy of the library’s data segment.

This means that any such process has no way to alter the behavior of any

other process by way of the DLL.

Therefore, we place no procedural restrictions on the number of concurrent

users (i.e. processes) accessing the CoCo Crypto Module on a given host

computer at any one time. Any practical limits on such a number come from

the CPU, memory, and operating system constraints of the host computer.

IV. Secure Operation and Security Rules
In order to use CoCo Crypto securely in a manner compliant with FIPS 140-2

Level 1 requirements, a system administrator should adhere to the policies

and procedures described in this section.

1. Preparing a Secure Operating Environment

a. Availability of the DLL file

The CoCo Crypto Module requires the system administrator to place the

cocoCrypto DLL file in a specific location on the file system.

The module needs to perform an integrity check on the file image of the

cocoCrypto DLL when entering FIPS mode. Therefore, failure to place this file

in the proper location will result in termination of the calling process upon an

attempt to enter FIPS mode.

The system administrator must ensure that the user’s library load path

specifies this location, and that no other file exists in any library load path

with the same name as the cocoCrypto DLL. Failure to do so could result in a

client application linking to some different DLL, which may contain malicious

code.

On Windows systems, the DLL must be located in the file system under the

path C:\WINDOWS\system32\ .

On Linux systems, the DLL (shared object file) must be located in the file

system under the path /opt/coco/lib/ .

coco communications Security Policy for the CoCo Crypto Module v1.0

 13

b. Availability of the signature file

To make use of the CoCo Crypto Module, the user must have permission to

read the signature file, which must be in a specific location on the host

computer’s file system.

It is the system administrator’s responsibility to ensure that the signature

file exists and is accessible at the appropriate location. Failure to do so will

result in termination of the calling process upon an attempt to enter FIPS

mode.

On Windows systems, the signature file must be located in the files system

under the path C:\WINDOWS\System32\ .

On Linux systems, the signature file must be located in the file system under

the path /opt/coco/etc/ .

c. Running the host OS in single-user mode

Each operating system supported by the Module has a means by which to be

placed into single-user mode. This subsection contains instructions on how to

do so.

i. Windows XP

The user must configure the Windows XP machine to run in single user mode,

ensuring that remote login is disabled and that the workstation cannot be

accessed as a server.

1.

ii. Debian Linux

Debian uses a boot loader called GRUB to bootstrap the operating system.

Upon starting (or restarting) the machine, GRUB will present the user with a

menu of boot options (in order to see this menu, the user may need to hit the

Escape key during boot, much like hitting the F8 key during booting of

Windows XP). Most individual Debian systems will come configured with a

“single-user mode” entry in this menu. The user should use the arrow keys to

select this entry and press “Enter” to boot the system into single-user mode.

If the system does not have a “single-user mode” menu entry on the GRUB

menu, the user can follow these steps in order to make one of the existing

menu entries cause the system to boot into single-user mode.

1. Use the arrows to select the boot entry to modify.

2. Press e to edit the entry.

3. Use the arrows to go to the “kernel” line.

4. Press e to edit this entry.

5. At the end of the line add the word “single”.

6. Press ESC to go back to the parent menu.

Security Policy for the CoCo Crypto Module v1.0

14

7. Press b to boot this kernel.

The kernel will begin booting as usual (except without a graphical splash

screen if one is normal for that system), and the user will receive a command-

line interface from which the user can log in as root.

2. Activating the module

A process activates the CoCo Crypto Module by issuing a request to the host

computer’s operating system to load the DLL. If the process has sufficient

permission, the operating system responds to this request by loading the DLL

and granting the calling process access to its memory space.

Upon the loading of the DLL, the module will automatically run a series of

tests to confirm that it is functioning properly (described in further detail

below). If any of these tests fail, the CoCo Crypto Module will immediately

terminate the calling process. This eliminates any possibility of the user

intentionally or accidentally invoking a corrupted or altered version of the

module’s cryptographic services.

3. Self-Tests

In compliance with FIPS 140-2 Level 1 requirements, the CoCo Crypto

Module performs a series of tests on itself to assure the user of its own proper

functionality.

a. Power-On Self-Tests

Upon starting, the module performs a series of self-tests, listed below. If any

of these tests fail, the module will immediately terminate the calling process.

i. List of Power-On Self Tests

The list of tests that the module performs upon starting is as follows.

• Library Load Path Test. As described in “1. Preparing a Secure

Operating Environment”, the cocoCrypto DLL must be loaded from a

specific location on the computer’s file system in order to be compliant

with proper usage guidelines. It is the system administrator’s

responsibility to place the file in the proper location and to configure

the system’s library load paths to ensure that the library is loaded

properly. In order to enforce this policy from within the module itself,

the CoCo Crypto Module verifies, on start-up, that it has been loaded

from the proper location as per usage guidelines. This test only occurs

on Windows systems.

• Module Integrity Test. The module computes an HMAC SHA-1

signed hash of the DLL file containing the module’s executable binary

code, and compares the result against a known value.

coco communications Security Policy for the CoCo Crypto Module v1.0

 15

• Known Answer Tests. The module performs a series of Known-

Answer Tests (KATs) upon startup. The following table lists these

tests.

Algorithm Known Answer Test

AES • Encryption

• Decryption

HMAC HMAC-SHA-1

RNG Random number generation from known

initialization vector.

• Sign-Verify Test for DSA. The module performs a Sign-Verify Test to

confirm that DSA is functioning properly. This test consists of signing

and signature verification of a generated key.

ii. Inducing the Power-On Self Tests

The module automatically runs the power-on self-tests whenever the

cocoCrypto DLL loads. The user can run the power-on self-tests on demand by

unloading and then re-loading the DLL. The following table presents the

most commonly used API for performing these tasks.

Platform Function to

load DLL

Function to

unload DLL

Header file

Linux dlopen() dlclose() dlfcn.h

Windows LoadLibrary() FreeLibrary() windows.h

b. Conditional Continuous Self-Tests

The module performs conditional continuous self-tests to verify the

correctness of certain mathematical operations during the course of normal

operation. Failure of any self-test at any time will cause the module to

immediately terminate the calling process. The table below lists these tests.

Algorithm Operation

Conditional

Continuous

Self-Test

Exposed function(s) that

induce(s) self-test

DSA Key

Generation

Pairwise

consistency

(signing and

signature

verification)

DSA_generate_key()

Security Policy for the CoCo Crypto Module v1.0

16

RNG Pseudorandom

number

generation

Repetition

test (FIPS

140-2 §4.9.2)

DH_generate_key()

DSA_generate_key()

DSA_generate_parameters()

c. Checking for Self-Test Failure

The module causes the calling process to immediately terminate upon a self-

test failure. When it does so, the process’s exit code indicates the general

reason for the termination.

Reason for Process

Termination

Exit code Notes

Normal (Clean) Exit 0 The developer of the

calling application

should adhere to

software design best

practices and

consistently use an exit

code of 0 to indicate

clean exit.

Failure of Power-On

Self-Test

Decimal: -1 (255 in one-

byte two’s complement)

Hex: 0xFF

The developer of the

calling application must

refrain from using an

exit code of -1, so as to

ensure that this code

reliably and consistently

indicates failure of a

power-on self-tests.

Failure of

Conditional

Continuous Self-Test

Decimal: -3 (253 in one-

byte two’s complement)

Hex: 0xFD

The developer of the

calling application must

refrain from using an

exit code of -3, so as to

ensure that this code

reliably and consistently

indicates failure of a

conditional continuous

self-test.

coco communications Security Policy for the CoCo Crypto Module v1.0

 17

Because the module terminates the calling process upon error, checking for

self-test failure cannot be done from within the calling application, and must

be performed as an out-of-band operation. Typically, the user of a computer

can check an application’s return code by launching that application from a

command-line interface and subsequently echoing the return code. On Linux

systems, the user can echo the most recently run application’s return code

with the command:

echo $?

On Windows systems, the same effect can be achieved with the command:

echo %ERRORLEVEL%

Note that, depending on the configuration of the user’s system, the command-

line interface will print the resultant error code as either a signed decimal

integer with a negative value (i.e. -1 or -3), or as an unsigned integer in one-

byte two’s complement arithmetic (i.e. 255 or 253, respectively).

4. Physical Security

As a software module, CoCo Crypto relies on the host system for all forms of

physical security. The system administrator must ensure that the host system

is built with production grade components and incorporates safeguards

against physical tampering.

Security Policy for the CoCo Crypto Module v1.0

18

5. Ports and Interfaces

As a software module, CoCo Crypto’s interfaces are defined by the functions

exposed by the cocoCrypto DLL, as listed in Appendix A of this document and

described in the accompanying API Reference document. (Note that only those

functions listed under the Primary Functions subsection in Appendix A are

approved for secure operation.)

When mapping the module’s API to the defined FIPS interfaces, it is

important to recognize that any one function can have aspects of functionality

that logically map to two or more interface categories. For this reason, the

appropriate mapping occurs not only at the level of the functions themselves,

but also at the arguments and return values of those functions. This section

elaborates on the exact means by which the CoCo Crypto API maps to the

FIPS interfaces.

a. Data Input Interface

The Data Input Interface consists of all function arguments that pass data

into the function. This data can be passed in through a variety of

mechanisms, such as by value, by reference, by pointer to a memory buffer,

and so on.

b. Data Output Interface

The Data Output Interface consists of all variables and function arguments

that enable a function to pass out processed data. This data can be passed out

of a function through a variety of mechanisms, such as by return value, by

setting the value of a return argument, by populating a memory buffer, and

so on.

c. Control Input Interface

The Control Input Interface consists of all function calls (and corresponding

arguments) that change or affect the overall operational state of the module.

d. Status Output Interface

The Status Output Interface consists of all variables and function arguments

that enable a function to provide the user with information about the

operational status of the module. This data can be passed out through a

variety of mechanisms, such as by return value, by setting the value of a

return argument, by populating a memory buffer, and so on. This interface

would include, for example, the return values of functions that return status

codes indicating success or failure of an operation.

coco communications Security Policy for the CoCo Crypto Module v1.0

 19

V. Using CoCo Crypto functions and objects
This section describes usage policies for the functions and objects exposed by

the header files in the CoCo Crypto Module and implemented in the

cocoCrypto DLL.

1. Usage Requirements

To ensure secure operation, when accessing the module, the user must only

call those functions and instantiate those objects that have public definitions

in the cocoCrypto header files.

2. Usage restrictions by role and API section

Both the User and the Crypto Officer have equal access to all services offered

by the module. As a software module, CoCo Crypto’s services are defined as

the functions exposed by the cocoCrypto DLL. Please refer to Appendix A for

a full listing of every function offered by the module.

The user may wish to adhere to additional usage restrictions based on the

section of the API in which a function appears. The cocoCrypto API is divided

into three sections.

1. Primary Functions

2. Advanced Functions

3. Abstraction Functions

The first, “Primary Functions”, contains implementations of cryptographic

algorithms as well as support functions necessary to invoke those

implementations. This section is of predominant interest to a user of CoCo

Crypto who wishes to leverage the library’s cryptographic capabilities, and

therefore is the section that received focus during the FIPS validation

process. In order to ensure FIPS compliance, the user should only call

functions from the “Primary Functions” section, and should avoid calling

“Advanced Functions” and “Abstraction Functions” while in FIPS mode.

3. Application Programming Interface

The document API Reference for the CoCo Crypto Module contains calling

conventions and usage instructions for every function offered by the

cocoCrypto library. Please consult that document for detailed function-by-

function usage information.

Security Policy for the CoCo Crypto Module v1.0

20

4. Cryptographic Key Management

a. Sensitive values used internally by the module

This section lists all keys and other cryptographically sensitive data that

CoCo Crypto uses for its operation.

Name /

Summary

Integrity Check

HMAC Key

FIPS Rand Seed

Keys

FIPS Rand Seed

Usage Used to compute

HMAC signed hash of

the cocoCrypto DLL file

for power-on self-test.

When cocoCrypto DLL

loads, it performs an

integrity check by

computing a signed

hash of its DLL file and

comparing against a

known value.

Used in setting up

and running the

FIPS PRNG (a 2-

Key Triple DES

algorithm)

Used in seeding the

FIPS PRNG

Parameter

Type

HMAC-SHA1 key Two 2-Key Triple

DES keys

Plain in-memory

byte array

Size 104 bits 128 bits total (64

bits per key)

64 bits

Storage Plaintext, hard-coded

inside DLL binary file

Not placed in

persistent storage

(volatile RAM only)

Not placed in

persistent storage

(volatile RAM only)

Methods

permitted to

User

Zeroize Zeroize Write, Zeroize

Methods

permitted to

Crypto Officer

Zeroize Zeroize Write, Zeroize

Methods to

write value

None None RAND_seed()

Methods to

read value

None None None

Methods to

zeroize value

Erase the DLL file (see

section V.4.c of this

document)

Power down the

host machine to

clear RAM

Power down the

host machine to

clear RAM

coco communications Security Policy for the CoCo Crypto Module v1.0

 21

Name /

Summary

AES Key

Objects

DSA Key

Objects

DH Keys

Objects

Parameter Type AES keys DSA keypairs DH keypairs

Size 128-, 192-, or

256-bits

1024-bit in FIPS

mode; less than

1024 bits in

non-FIPS mode

1024- to 15360-

bits in FIPS

mode; less than

1024 bits in

non-FIPS mode

Storage Ephemerally in

volatile RAM

Ephemerally in

volatile RAM

Ephemerally in

volatile RAM

Methods

permitted to

User

Zeroize Zeroize Zeroize

Methods

permitted to

Crypto Officer

Zeroize Zeroize Zeroize

Methods to

write value

None None None

Methods to read

value

None None None

Methods to

zeroize value

Power down the

host machine to

clear RAM

Power down the

host machine to

clear RAM

Power down the

host machine to

clear RAM

b. Key-Handling Functions

This subsection lists the functions that the module provides for generating,

computing, and re-formatting cryptographic keys. For details on the proper usage of

each function listed in this subsection, the reader should consult the Application

Programming Interface documentation.

i. Key Generation

Except for the HMAC key used in the self-test, the module does not perform

persistent storage of any cryptographic keys. When a user generates or accesses a

key using cocoCrypto functions, that key initially exists only in volatile memory. It is

up to the user to use the key and then discard it or to store it securely as appropriate

to the user’s needs.

All cryptographic key generation methods offered by the cocoCrypto library are listed

in Appendix A, “Key Generation” section.

ii. Key Serialization and De-serialization

In addition to computing or generating new keys, the module also provides means by

which to serialize and de-serialize existing data structures containing key

information.

Security Policy for the CoCo Crypto Module v1.0

22

The core functions that perform serialization and de-serialization of potentially

sensitive cryptographic information are listed in Appendix A, “Serialization” section,

and Appendix A, “Deserialization” section, respectively.

In addition to these core serialization and de-serialization functions, the user can

also induce the serialization or the de-serialization of cryptographic keys indirectly

by using the X.509 API. Functions that operate on X.509 certificates do not contain

their own implementations of serialization and de-serialization, but rather rely on

the functions already mentioned in the above sections of Appendix A; the exact

underlying function that any given X.509-handling function invokes depends on the

contents of the X.509 certificate and the kinds of keys used therein. The X.509

serialization and de-serialization functions are listed in Appendix A, “X.509

Serialization” section, and Appendix A., “X.509 Deserialization” section, respectively.

c. Zeroization

This section describes the mechanisms available to a user for discarding

cryptographic keys once a user is finished with them.

i. Zeroizing Keys in Storage

The only key that the cocoCrypto module stores on disk is the HMAC key used in its

integrity test.

A system administrator (or a User or Crypto Officer with write permissions on the

host machine’s file system granted by the host’s system administrator) can zero out

this HMAC key by overwriting and deleting the DLL file in which the key is

embedded.

A very effective way to do this on a Linux system is to use the GNU “shred”

utility. This utility is part of the GNU coreutils package, and is available on

all supported versions of Linux. From a command prompt, the user can

zeroize the key using the following command:

shred -f –z -u /opt/coco/lib/libcocoCrypto.so

On Windows, Microsoft offers a utility called SDelete to perform a comparable

level of data elimination. The following table lists information about SDelete

and how to use it for the specific task of zeroing out cocoCrypto’s keys.

Platform Windows XP

Tool Name SDelete

Current Version 1.51

Provider Microsoft Corporation, through Windows SysInternals

URL http://www.microsoft.com/technet/sysinternals/Security/SDelete.

mspx

Notes This utility explicitly implements the Department of Defense

clearing and sanitizing standard DOD 5220.22-M.

Usage 1. Install the SDelete executable file into a directory.

2. Open a command prompt window.

3. Change your current working directory to the one in

which you installed SDelete.

coco communications Security Policy for the CoCo Crypto Module v1.0

 23

4. Execute the command:
 sdelete c:\WINDOWS\system32\cocoCrypto.dll

ii. Zeroizing Keys in Memory

The CoCo Crypto Module passes keys that it has generated or computed back

to the user in the form of in-memory data structures. The user can explicitly

zero out these keys with a call to the memset() function from the standard C

library. Because in-memory data exists in volatile RAM, any such keys will

also be zeroed out if a system administrator powers down the host machine.

The module also provides functions to explicitly zero out keys in memory.

These functions are listed in Appendix A, “Key Zeroization and Destruction”

section.

Security Policy for the CoCo Crypto Module v1.0

24

5. Pseudorandom Number Generation

Pseudorandom number generation is an important part of secure operation.

Because almost every key generation algorithm relies on the system’s

pseudorandom number generator (PRNG), this component warrants some

additional discussion within this section.

a. Strength of Key Generation Methods

The CoCo Crypto Module implements a FIPS-approved 2-key Triple DES

algorithm as a PRNG for use in cryptographic key generation. The module’s

various key generation functions in turn call the function RAND_bytes() to

invoke the PRNG to produce random values from which to construct keys.

The module bootstraps this PRNG using an SSLeay RNG algorithm. The

SSLeay RNG generates the PRNG’s two Triple DES keys and a seeding

vector. By FIPS calculations, the two Triple DES keys together account for 80

bits of entropy, while the seed is 64 bits long. This means that the SSLeay

RNG initializes the PRNG with a total of 144 bits of entropy. The Triple DES

algorithm that drives the PRNG only produces 64 bits of output at a time

before changing the seed value. Because this is less than the 144 bits of

entropy with which the PRNG is initialized, CoCo Crypto’s initialization

mechanism for the FIPS-approved PRNG provides the PRNG with adequate

strength to produce secure keys.

The SSLeay RNG, in turn, uses a continuous self-test to verify that it is

producing adequately unpredictable values. This self-test consists of

comparing each value output by the SSLeay RNG with the previous one; if

the two prove equal, the SSLeay RNG reports an error. If such an error occurs

while the CoCo Crypto Module is loading, during the process of bootstrapping

the FIPS-approved PRNG, then it is treated as a fatal error; the module will

fail to load, and will immediately terminate the calling application. In this

manner, the user always has assurance that, upon successful entry into FIPS

mode, the PRNG has adequate entropy to perform key generation.

b. Protection Against Weak Seeding

When the module enters FIPS mode (i.e. when the DLL is loaded), the

SSLeay RNG algorithm bootstraps the PRNG by generating two 64-bit Triple

DES keys and a 64-bit initial seeding vector. CoCo Crypto ensures that all

three of these 64-bit values are unique. It compares the two keys against one

another, and then compares the seed against each of the keys. If any two of

these three values match, CoCo Crypto treats it as a fatal error; the module

will fail to load, and will immediately terminate the calling application. In

this manner, the user always has assurance that, upon successful entry into

FIPS mode, the PRNG has been initialized with strong seeding parameters.

coco communications Security Policy for the CoCo Crypto Module v1.0

 25

In addition, as noted in section V.4.a, the user has the ability to call the

function RAND_seed() to write seed values to the FIPS-approved PRNG.

Because the module uses a 2-key Triple DES algorithm for a PRNG, it is

possible that the user may try to input a value that is equal to one of the two

keys used for the Triple DES algorithm, which would weaken the PRNG’s

effectiveness. The module’s function RAND_seed() performs a comparison

check to safeguard against this eventuality. When the user tries to set the

PRNG’s seed to some value, the module performs a comparison of the

requested seed value to each of the two keys. If the requested seed value

matches either of the two keys, the module will not set the PRNG’s seed to

that value. Instead, it will zero out the memory buffer with which the user

passed the requested seed value into the function, signaling to the user that

an error has occurred and to try a different seed value.

VI. Service Information
If you have questions that this document does not answer to your

satisfaction, please feel free to contact CoCo Communications Corporation at

1-206-284-9387, or toll-free at 1-866-657-COCO.

Security Policy for the CoCo Crypto Module v1.0

26

Appendix A: Function Catalog
This section lists all of the functions available through the CoCo Crypto

Module. Each of the listed functions has a corresponding entry point in the

cocoCrypto library and a declaration in the header files distributed with the

module. Please refer to the document API Reference for the CoCo Crypto

Module for more information.

Each function listed in this section (i.e. all functions in the module) can be

accessed by the User, the Crypto Officer, or both. The tables in this section list

each function’s availability to the User (under the “Usr” column) and Crypto

Officer (under the “Crp Ofc” column) roles.

For the Primary Functions in the API, this function catalog also lists the

following information about a function, as appropriate. (This function catalog

does not list this information for the Advanced Functions since they do not

contain cryptographic implementations, nor for the Abstraction Functions

since, by design, those functions can perform a number of different

cryptographic operations or use a variety of encoding formats based on their

arguments.)

• For functions that contain implementations of specific algorithms, the

relevant algorithm is specified. This applies also to functions that

generate, destroy, save, and load keys for specific algorithms. The

possible values for the “Algorithm” (or “Algo”) column are “AES” for

AES, “DH” for Diffie-Hellman, “SHA1” for SHA-1, “HMAC” for HMAC,

and “PRNG” for the 2-key Triple-DES pseudorandom number

generator.

• Functions that perform serialization or de-serialization of

cryptographic keys (or of data structures that can contain

cryptographic keys) are specified as such, using the terms “SAVE” and

“LOAD”, respectively, in the “Save/Load” column.

• Functions that perform serialization or de-serialization (as mentioned

in the bullet point above) are labeled with the format in which they

read or write data. This will be either “PEM” for PEM encoding, “DER”

for DER encoding, or “TEXT” for human-readable hexadecimal text, in

the “Format” or “Fmt” column.

Primary Functions

Core Cryptographic Functions

Key Generation

Function Name Algo Usr Crp

Ofc
AES_set_decrypt_key AES Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 27

AES_set_encrypt_key AES Yes Yes
DH_check DH Yes Yes
DH_compute_key DH Yes Yes
DH_generate_key DH Yes Yes
DH_generate_parameters DH Yes Yes
DH_new DH Yes Yes
DH_size DH Yes Yes
DH_up_ref DH Yes Yes
DSA_generate_key DSA Yes Yes
DSA_generate_parameters DSA Yes Yes
DSA_new DSA Yes Yes
DSA_size DSA Yes Yes
DSA_up_ref DSA Yes Yes
HMAC_CTX_init HMA

C

Yes Yes

Key Zeroization and Destruction

Function Name Algo Usr Crp

Ofc
DH_free DH Yes Yes
DSA_free DSA Yes Yes
HMAC_CTX_cleanup HMA

C

Yes Yes

Cryptographic Algorithms

Function Name Algo Usr Crp

Ofc
AES_cfb128_encrypt AES Yes Yes
AES_decrypt AES Yes Yes
AES_encrypt AES Yes Yes
DSA_sign DSA Yes Yes
DSA_verify DSA Yes Yes
HMAC_Final HMA

C

Yes Yes

HMAC_Init_ex HMA

C

Yes Yes

HMAC_Update HMA

C

Yes Yes

RAND_bytes PRNG Yes Yes
RAND_seed PRNG Yes Yes
SHA1_Final SHA1 Yes Yes
SHA1_Init SHA1 Yes Yes
SHA1_Update SHA1 Yes Yes

Security Policy for the CoCo Crypto Module v1.0

28

Storing and Loading Cryptographic Information

Serialization

Function Name Alg

o

Fmt Save/

Load

Us

r

Cr

p

Ofc
DHparams_print DH TEX

T

SAVE Yes Yes

DSA_print DSA TEX

T

SAVE Yes Yes

DSAparams_print DSA TEX

T

SAVE Yes Yes

PEM_write_bio_DHparams DH PEM SAVE Yes Yes
PEM_write_bio_DSAPrivateKey DSA PEM SAVE Yes Yes
PEM_write_bio_DSA_PUBKEY DSA PEM SAVE Yes Yes
PEM_write_bio_DSAparams DSA PEM SAVE Yes Yes
i2d_DSAPrivateKey_bio DSA DER SAVE Yes Yes
i2d_DSA_PUBKEY_bio DSA DER SAVE Yes Yes

Deserialization

Function Name Alg

o

Fmt Save/

Load

Us

r

Cr

p

Ofc
PEM_read_bio_DHparams DH PE

M

LOAD Yes Yes

PEM_read_bio_DSAPrivateKey DSA PE

M

LOAD Yes Yes

PEM_read_bio_DSA_PUBKEY DSA PE

M

LOAD Yes Yes

PEM_read_bio_DSAparams DSA PE

M

LOAD Yes Yes

d2i_DSAPrivateKey_bio DSA DER LOAD Yes Yes
d2i_DSA_PUBKEY_bio DSA DER LOAD Yes Yes

Basic Support Functions

Mathematics Data Structures

Function Name Us

r

Crp

Ofc
ASN1_INTEGER_free Yes Yes
ASN1_INTEGER_get Yes Yes
ASN1_INTEGER_new Yes Yes
ASN1_INTEGER_set Yes Yes
ASN1_INTEGER_to_BN Yes Yes
ASN1_TIME_free Yes Yes
ASN1_TIME_new Yes Yes
ASN1_TIME_set Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 29

ASN1_UTCTIME_print Yes Yes
BN_bin2bn Yes Yes
BN_bn2bin Yes Yes
BN_bn2dec Yes Yes
BN_bn2hex Yes Yes
BN_clear Yes Yes
BN_clear_free Yes Yes
BN_cmp Yes Yes
BN_copy Yes Yes
BN_dec2bn Yes Yes
BN_dup Yes Yes
BN_free Yes Yes
BN_hex2bn Yes Yes
BN_init Yes Yes
BN_new Yes Yes
BN_num_bits Yes Yes
BN_print Yes Yes
BN_swap Yes Yes
BN_to_ASN1_INTEGER Yes Yes
BN_value_one Yes Yes
X509_gmtime_adj Yes Yes
X509_time_adj Yes Yes

Basic Input and Output Operations

Function Name Us

r

Crp

Ofc
BIO_free Yes Yes
BIO_gets Yes Yes
BIO_new_fd Yes Yes
BIO_new_file Yes Yes
BIO_new_fp Yes Yes
BIO_new_mem_buf Yes Yes
BIO_puts Yes Yes
BIO_read Yes Yes
BIO_write Yes Yes

Library Information Functions

Function Name Us

r

Crp

Ofc
ERR_error_string Yes Yes
ERR_error_string_n Yes Yes
ERR_free_strings Yes Yes
ERR_func_error_string Yes Yes
ERR_get_error Yes Yes
ERR_lib_error_string Yes Yes
ERR_load_crypto_strings Yes Yes

Security Policy for the CoCo Crypto Module v1.0

30

ERR_print_errors Yes Yes
ERR_reason_error_string Yes Yes
getCocoCryptoVersion Yes Yes

Advanced Functions

The functions listed under this heading may not be used in FIPS mode.

Advanced Input and Output Operations

Function Name Us

r

Crp

Ofc
BIO_callback_ctrl Yes Yes
BIO_copy_next_retry Yes Yes
BIO_ctrl Yes Yes
BIO_ctrl_get_read_request Yes Yes
BIO_ctrl_get_write_guarantee Yes Yes
BIO_ctrl_pending Yes Yes
BIO_ctrl_reset_read_request Yes Yes
BIO_ctrl_wpending Yes Yes
BIO_debug_callback Yes Yes
BIO_dump Yes Yes
BIO_dump_indent Yes Yes
BIO_dup_chain Yes Yes
BIO_f_base64 Yes Yes
BIO_f_buffer Yes Yes
BIO_f_cipher Yes Yes
BIO_f_md Yes Yes
BIO_f_null Yes Yes
BIO_find_type Yes Yes
BIO_free_all Yes Yes
BIO_get_retry_BIO Yes Yes
BIO_get_retry_reason Yes Yes
BIO_int_ctrl Yes Yes
BIO_new Yes Yes
BIO_next Yes Yes
BIO_pop Yes Yes
BIO_ptr_ctrl Yes Yes
BIO_push Yes Yes
BIO_s_bio Yes Yes
BIO_s_fd Yes Yes
BIO_s_file Yes Yes
BIO_s_mem Yes Yes
BIO_s_null Yes Yes
BIO_set Yes Yes
BIO_set_cipher Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 31

Mathematical Operations

Function Name Us

r

Crp

Ofc
BN_CTX_free Yes Yes
BN_CTX_init Yes Yes
BN_CTX_new Yes Yes
BN_add Yes Yes
BN_add_word Yes Yes
BN_clear_bit Yes Yes
BN_div Yes Yes
BN_div_word Yes Yes
BN_generate_prime Yes Yes
BN_get_word Yes Yes
BN_is_bit_set Yes Yes
BN_is_prime Yes Yes
BN_lshift Yes Yes
BN_mask_bits Yes Yes
BN_mod_word Yes Yes
BN_mul Yes Yes
BN_mul_word Yes Yes
BN_rshift Yes Yes
BN_set_bit Yes Yes
BN_set_word Yes Yes
BN_sqr Yes Yes
BN_sub Yes Yes
BN_sub_word Yes Yes

Memory and Data Structure Management Functions

Function Name Us

r

Crp

Ofc
CRYPTO_free Yes Yes
CRYPTO_malloc Yes Yes
sk_delete Yes Yes
sk_delete_ptr Yes Yes
sk_dup Yes Yes
sk_find Yes Yes
sk_free Yes Yes
sk_insert Yes Yes
sk_is_sorted Yes Yes
sk_new Yes Yes
sk_new_null Yes Yes
sk_num Yes Yes
sk_pop Yes Yes
sk_pop_free Yes Yes
sk_push Yes Yes

Security Policy for the CoCo Crypto Module v1.0

32

sk_set Yes Yes
sk_set_cmp_func Yes Yes
sk_shift Yes Yes
sk_sort Yes Yes
sk_unshift Yes Yes
sk_value Yes Yes
sk_zero Yes Yes

Abstraction Functions

The functions listed under this heading may not be used in FIPS mode.

EVP Functions

EVP Digest Functions

EVP Digest Algorithm Specifiers

Function Name Us

r

Crp

Ofc
EVP_dss1 Yes Yes
EVP_get_digestbyname Yes Yes
EVP_sha1 Yes Yes

EVP Digest Context Management

Function Name Us

r

Crp

Ofc
EVP_MD_CTX_cleanup Yes Yes
EVP_MD_CTX_create Yes Yes
EVP_MD_CTX_destroy Yes Yes
EVP_MD_CTX_init Yes Yes

EVP Digest Operations

Function Name Us

r

Crp

Ofc
EVP_Digest Yes Yes
EVP_DigestFinal_ex Yes Yes
EVP_DigestInit_ex Yes Yes
EVP_DigestUpdate Yes Yes
EVP_SignFinal Yes Yes
EVP_VerifyFinal Yes Yes

EVP Cipher Functions

EVP Key Handling Functions

Function Name Us

r

Crp

Ofc
EVP_PKEY_assign Yes Yes
EVP_PKEY_bits Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 33

EVP_PKEY_cmp_parameters Yes Yes
EVP_PKEY_copy_parameters Yes Yes
EVP_PKEY_free Yes Yes
EVP_PKEY_get1_DH Yes Yes
EVP_PKEY_get1_DSA Yes Yes
EVP_PKEY_missing_parameters Yes Yes
EVP_PKEY_new Yes Yes
EVP_PKEY_save_parameters Yes Yes
EVP_PKEY_set1_DH Yes Yes
EVP_PKEY_set1_DSA Yes Yes
EVP_PKEY_size Yes Yes
EVP_PKEY_type Yes Yes
PEM_read_bio_PUBKEY Yes Yes
PEM_read_bio_PrivateKey Yes Yes
PEM_write_bio_PUBKEY Yes Yes
PEM_write_bio_PrivateKey Yes Yes

EVP Cipher Algorithm Specifiers

Function Name Us

r

Crp

Ofc
EVP_CIPHER_type Yes Yes
EVP_aes_256_cfb128 Yes Yes
EVP_get_cipherbyname Yes Yes

EVP Cipher Context Management

Function Name Us

r

Crp

Ofc
EVP_CIPHER_CTX_cleanup Yes Yes
EVP_CIPHER_CTX_init Yes Yes
EVP_CIPHER_CTX_set_key_length Yes Yes
EVP_CIPHER_CTX_set_padding Yes Yes

EVP Cipher Context Operations

Function Name Us

r

Crp

Ofc
EVP_CipherFinal_ex Yes Yes
EVP_CipherInit_ex Yes Yes
EVP_CipherUpdate Yes Yes
EVP_DecryptFinal_ex Yes Yes
EVP_DecryptInit_ex Yes Yes
EVP_DecryptUpdate Yes Yes
EVP_EncryptFinal_ex Yes Yes
EVP_EncryptInit_ex Yes Yes
EVP_EncryptUpdate Yes Yes
EVP_OpenFinal Yes Yes
EVP_OpenInit Yes Yes
EVP_OpenUpdate Yes Yes

Security Policy for the CoCo Crypto Module v1.0

34

EVP_SealFinal Yes Yes
EVP_SealInit Yes Yes
EVP_SealUpdate Yes Yes

EVP Subsystem Support

Function Name Us

r

Crp

Ofc
ENGINE_by_id Yes Yes
ENGINE_cleanup Yes Yes
ENGINE_finish Yes Yes
ENGINE_free Yes Yes
ENGINE_init Yes Yes
ENGINE_load_builtin_engines Yes Yes
ENGINE_register_all_ciphers Yes Yes
ENGINE_register_all_digests Yes Yes
OPENSSL_add_all_algorithms_conf Yes Yes
OPENSSL_add_all_algorithms_noconf Yes Yes

X.509 Certificate Functions

X.509 Data Structure Creation and Initialization

Function Name Us

r

Crp

Ofc
NCONF_WIN32 Yes Yes
NCONF_default Yes Yes
NCONF_new Yes Yes
X509V3_EXT_add_nconf Yes Yes
X509V3_set_ctx Yes Yes
X509V3_set_nconf Yes Yes
X509_EXTENSION_dup Yes Yes
X509_EXTENSION_new Yes Yes
X509_NAME_add_entry_by_NID Yes Yes
X509_NAME_add_entry_by_txt Yes Yes
X509_NAME_delete_entry Yes Yes
X509_NAME_dup Yes Yes
X509_NAME_new Yes Yes
X509_REQ_new Yes Yes
X509_REQ_set_pubkey Yes Yes
X509_REQ_set_subject_name Yes Yes
X509_REQ_set_version Yes Yes
X509_STORE_CTX_init Yes Yes
X509_STORE_CTX_new Yes Yes
X509_STORE_CTX_set_time Yes Yes
X509_STORE_add_cert Yes Yes
X509_STORE_new Yes Yes
X509_add1_ext_i2d Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 35

X509_add_ext Yes Yes
X509_dup Yes Yes
X509_new Yes Yes
X509_set_issuer_name Yes Yes
X509_set_notAfter Yes Yes
X509_set_notBefore Yes Yes
X509_set_pubkey Yes Yes
X509_set_serialNumber Yes Yes
X509_set_subject_name Yes Yes
X509_set_version Yes Yes

X.509 Data Structure Inspection

Function Name Us

r

Crp

Ofc
NCONF_get_number_e Yes Yes
NCONF_get_section Yes Yes
NCONF_get_string Yes Yes
OBJ_ln2nid Yes Yes
OBJ_nid2ln Yes Yes
OBJ_nid2obj Yes Yes
OBJ_nid2sn Yes Yes
OBJ_obj2nid Yes Yes
OBJ_sn2nid Yes Yes
OBJ_txt2nid Yes Yes
OBJ_txt2obj Yes Yes
X509V3_EXT_get_nid Yes Yes
X509_NAME_cmp Yes Yes
X509_NAME_entry_count Yes Yes
X509_NAME_get_entry Yes Yes
X509_NAME_get_index_by_NID Yes Yes
X509_NAME_get_text_by_NID Yes Yes
X509_REQ_get_pubkey Yes Yes
X509_cmp Yes Yes
X509_find_by_issuer_and_serial Yes Yes
X509_find_by_subject Yes Yes
X509_get_issuer_name Yes Yes
X509_get_pubkey Yes Yes
X509_get_serialNumber Yes Yes
X509_get_subject_name Yes Yes
X509_verify_cert_error_string Yes Yes

X.509 Data Structure Destruction

Function Name Us

r

Crp

Ofc
NCONF_free Yes Yes
NCONF_free_data Yes Yes
X509_EXTENSION_free Yes Yes

Security Policy for the CoCo Crypto Module v1.0

36

X509_INFO_free Yes Yes
X509_NAME_free Yes Yes
X509_REQ_free Yes Yes
X509_STORE_CTX_free Yes Yes
X509_STORE_free Yes Yes
X509_free Yes Yes

X.509 Serialization

Function Name Us

r

Crp

Ofc
NCONF_dump_bio Yes Yes
PEM_X509_INFO_write_bio Yes Yes
PEM_write_bio_X509 Yes Yes
PEM_write_bio_X509_AUX Yes Yes
PEM_write_bio_X509_CRL Yes Yes
PEM_write_bio_X509_REQ Yes Yes
PEM_write_bio_X509_REQ_NEW Yes Yes
X509V3_EXT_print Yes Yes
X509_NAME_oneline Yes Yes
X509_NAME_print Yes Yes
X509_NAME_print_ex Yes Yes
X509_REQ_print Yes Yes
X509_REQ_print_ex Yes Yes
X509_print Yes Yes
X509_print_ex Yes Yes
i2d_X509_REQ_bio Yes Yes
i2d_X509_bio Yes Yes

X.509 Deserialization

Function Name Us

r

Crp

Ofc
NCONF_load Yes Yes
NCONF_load_bio Yes Yes
PEM_X509_INFO_read_bio Yes Yes
PEM_read_bio_X509 Yes Yes
PEM_read_bio_X509_AUX Yes Yes
PEM_read_bio_X509_CRL Yes Yes
PEM_read_bio_X509_REQ Yes Yes
d2i_X509_REQ_bio Yes Yes
d2i_X509_bio Yes Yes

X.509 Cryptographic Operations

Function Name Us

r

Crp

Ofc
X509_NAME_digest Yes Yes
X509_REQ_digest Yes Yes
X509_REQ_sign Yes Yes

coco communications Security Policy for the CoCo Crypto Module v1.0

 37

X509_REQ_to_X509 Yes Yes
X509_REQ_verify Yes Yes
X509_check_private_key Yes Yes
X509_check_trust Yes Yes
X509_digest Yes Yes
X509_pubkey_digest Yes Yes
X509_sign Yes Yes
X509_to_X509_REQ Yes Yes
X509_verify Yes Yes
X509_verify_cert Yes Yes

