A Novel Low-Temperature Diffusion Aluminide Coating for Ultrasupercritical Coal-Fired Boiler Applications

Y. Zhang, Y. Q. Wang and B. Bates *Tennessee Technological University*

B. A. Pint Oak Ridge National Laboratory

2007 University Coal Research Historically Black Colleges and Universities & Other Minority Institutions Contractors Review Conference Pittsburgh, PA June 5-6, 2007

Why Iron Aluminide Coatings?

- Improvement of coal-fired power plant efficiency requires increase in steam temperature & pressure
- Advanced 9%Cr ferritic/martensitic alloys may be creep resistant up to 650°C but they will suffer extensive steam-side oxidation

 Aluminide coatings have been shown to drastically reduce the oxidation rate in exhaust/steam environment

Effect of Aluminide Coatings

- Unlike in dry air, many Fe-base alloys are rapidly oxidized in steam/humid air when not coated
- An environment of air + 10 vol.% H₂O can be used as a low cost method for determining coating performance

Aluminide Coatings Fabricated at 900-1050°C via Chemical Vapor Deposition or Pack Cementation

- Thick CVD or Pack Coatings: 250-300 μm (6h at 1050°C)
- Thin CVD Coatings: 50-100 μm (6h at 900°C)

High-temperature aluminide coatings showed good long-term oxidation protection in air + 10 vol.% H₂O

- At 700°C, thick & thin aluminide coatings have passed 18,000h
 & 10,000h, respectively (Pint et al., submitted to Surf. Coat. Technol., 2007)
- The critical AI in the coating to form AI_2O_3 was ~3.5 at.%

Disadvantages of High Aluminizing Temperatures

- Nearly all aluminizing processes were carried out at 900-1150°C for 4-16h
- Thermochemical treatment of ferritic/martensitic steels at these temperatures can severely degrade their mechanical properties (creep resistance) (Rohr et al., Mater. Corros. 2005)

Research Focus

- Synthesize pack aluminide coatings at low-temperatures (≤ 700°C) on ferritic/martensitic alloys with reduced brittleness
- Low aluminizing temperature will
 - ensure no $M \rightarrow F$ phase transformation
 - prevent increase of the grain size of the substrate alloy
 - reduce manufacturing cost if combining coating process with heat-treatment cycle
- Limitations of Low Aluminizing Temperature
 - Slow coating growth due to low Al vapor pressure & slow diffusion
 - Tendency to form brittle Al-rich phases

Three Key Research Components

Task 1: Fabrication of Low-Temp. Aluminide Coatings1.1 Selection of Substrate Alloys1.2 Aluminizing Process Optimization1.2.1 Thermodynamic Calculations1.2.2 Aluminizing Process Optimization1.3 Coating Characterization

Task 2: Performance of Low-Temp. Aluminide coatings

- 2.1 Oxidation Resistance in Water-Vapor Environments
- 2.2 Coating Compositional & Microstructural Evolution during Thermal Exposure

Task 3: Effect of Aluminide Coatings on Mechanical Properties of Substrate Alloys

- 3.1 Creep Test
- 3.2 Cyclic Thermo-Mechanical Loading Test

Pack cementation — Commercially Viable and Cost-Effective Method for Coating Fabrication

Reaction for AI Deposition: M (masteralloy) + $AIX_x = MX_x$ (g) + AI

 Binary masteralloys can be used to lower the Al activity & reduce tendency of forming brittle Al-rich phases (Fe₂Al₅, FeAl₃)

Thermodynamic Considerations

Nciri & Vandenbulcke, in Proc. 4th European Conference on Chemical Vapor Deposition, 1983

- For the AI-Cr binary alloy, the activities of both AI and Cr are a function of the AI content
- Vapor pressures of AI halides were calculated for packs containing AI-Cr masteralloys with various AI at 700°C

The AI activity in the pack process can be tailored by adjusting the AI content in the masteralloy

6NH₄CI-20(AI-Cr)-74AI₂O₃ (in wt.%), 700°C

- AICI and AICI₂ are the species directly responsible for AI deposition (Xiang and Datta, J. Mater. Sci., 2005)
- When AI > 40 at.% in the AI-Cr masteralloys, AI deposition becomes dominant

Experimental Approaches

•	Substrates: Commercial	Eleme
	Ferritic/Martensitic Alloy P91	Fe
	– Fe-9Cr-1Mo steel (wt.%)	Cr
•	Pack Cementation: 6-12 h at	Мо
	650°C and 700°C	Mn
•	Pack Powder Mixture	V
	1 2 wt % NH Clastivator	Si
	-1-2 WL 70 NH ₄ CI activator	Ni
	– 10-20% masteralloy	Cu
	 Balance Al₂O₃ filler 	Nb
•	Oxidation Testing:	С
	– 650°C	Ν
	– 100-h cycles	0
		•

Elements	wt.%	at.%
Fe	88.46	87.75
Cr	9.26	9.87
Мо	0.96	0.55
Mn	0.47	0.47
V	0.23	0.25
Si	0.19	0.37
Ni	0.16	0.15
Cu	0.07	0.06
Nb	0.05	0.03
С	516 ppm	0.238
Ν	480 ppm	0.190
0	26 ppm	0.009
S	8 ppm	0.001

Pure Al was used as the masteralloy to obtain the baseline coatings at 650°C

Pack Composition	Average Coating Thickness (μm)		
(wt.%)	Surface	Around Corner	
1NH ₄ CI-10AI-89AI ₂ O ₃	7-47	60	
2NH ₄ CI-20AI-78AI ₂ O ₃	32-79	190	

Brittle Fe₂Al₅ coating was formed when pure Al was used as masteralloy

2NH₄CI-20AI-78AI₂O₃ (wt.%) 650°C / 6h

Modifications in the Pack Aluminizing Process

Fe₂Al₅/FeAl two-layer coating was formed using Cr-25wt.%Al masteralloy at 700°C

2NH₄CI-15(Cr-25AI)-83Al₂O₃ 12h at 700°C

 A layer of 4 μm Fe₂Al₅ on top of 12 μm FeAl

FeAl coating (~10μm) was obtained with reduced Al activity using Cr-15wt.%Al masteralloy

2NH₄CI-20(Cr-15AI)-78AI₂O₃ 12h at 700°C

Hardness of Fe₂Al₅, Fe₂Al₅/FeAl and FeAl Coatings

Initial Oxidation Results of Low-Temperature Pack Coatings in Air + 10 vol.% H₂O at 650°C

Low-temperature pack coatings mimic the as-coated morphology after 1,000h air + 10% H₂O at 650°C

Thin coatings (50-100 μ m) are preferred for concerns of CTE mismatch and creep resistance

The main degradation of mechanical strength of the coated alloy was due to the decrease in the load-bearing section because of the weak creep properties of Fe-Al compared to the P92

Comparison of AI Reservoir in Aluminide Coatings

Coating	Thickness (μm)	Surface / Interface Al (at.%)	Al Reservoir
Thin CVD Coating	50	18	450
LT Fe ₂ Al ₅ / FeAl coating	4 + 12	65 + 50	560
LT FeAl coating	10	40	200

- The thin CVD coating passed 10,000h at 700°C before failure
- Minimal interdiffusion is expected at 650°C (Zhang et al., *Mater. Corros.*, 2007, in press)
- Low-temp. pack coatings with Fe₂Al₅/FeAl should have a lifetime comparable to CVD thin coatings
- Brittle Fe₂Al₅ could lead to cracking

Effect of the Amount of Masteralloy

• The AI reservoir increased with the amount of materalloy

 When > 50 wt.% of masteralloy was used, the change of the Al profiles became insignificant

Summary

- Non-uniform Fe₂Al₅ coating was formed when pure AI was used as the masteralloy at 650°C
- The AI activity in the pack cementation process was reduced by using AI-containing binary masteralloys
 - With Cr-25Al masteralloy, a coating of Fe₂Al₅/FeAl was formed at 700°C
 - Cr-15Al masteralloy led to formation of a thin (10-12 μ m) FeAl coating
 - The AI reservoir increased with the amount (< 50%) of Cr-15AI materalloy at 700°C
- The aluminide coatings synthesized at 700°C showed good initial oxidation behavior at 650°C in air + 10% H₂O

Future Work

- **1.** Fabrication of Low-Temp. Aluminide Coatings
- 2. Performance of Low-Temp. Aluminide coatings
- 3. Effect of Aluminide Coatings on Mechanical Properties of Substrate Alloys: Creep Test in Steam Environment

- Increase the pack aluminizing temperature to 750°C
- Combine the coating process with standard heat treatment
- Apply surface mechanical treatment (shot peening) prior to coating processing (Xiang and Datta, Scipta Mater., 2006)

Acknowledgments

- J. L. Moser, K. M. Cooley, S. Dryepondt, and L. R. Walker, ORNL
- DOE Advanced Coal Research at U.S. Colleges and Universities, under grant No. DE-FG26-06NT42674
- DOE Fossil Energy Advanced Research and Technology Development Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and subcontract 4000032193 with Tennessee Tech