

Mercury Speciation in Coal-Fired Power Plant Flue Gas - Experimental Studies and Model Development

Xihua Chen, Radisav D. Vidic, University of Pittsburgh Dmitry Kazachkin, Eric Borguet, Temple University Huiying Zhu, Joseph R.V. Flora, University of South Carolina

UCR Conference, June 5-6, 2007

Outline

- Background
- Methods
 - Fly ash characterization
 - Hg uptake test
 - TPD studies
 - Modeling
- Results and Discussion
 - Effects of fly ash and its components
 - Interaction between flue gas and carbon surface
 - Theoretical calculations
- Conclusions

Background: Hg Speciation in CFPP

0

- Hg⁰, Hg²⁺, Hg_p
- Oxidation
 - Gas-phase
 - Fly ash mediated
 - Flue gas components
 - Fly ash characteristics
 - NO_x Control

Fig. 1. Potential mercury transformations during coal combustion and subsequently in the resulting flue gas.

Galbreath, K. C.; Zygarlicke, C. J. *Fuel Processing Technology* **2000**, 65, 289-310

Fly Ash Properties

- Constituents (SiO₂, Al₂O₃, Fe₂O₃...)
 - Crystalline minerals
 - Non-crystalline aluminosilicate glass
 - Unburned carbon
 - The lighter the color, the lower the carbon content
- Size 0.5μm-100μm

Samples Characterization

- Six ESP hopper fly ash samples:
 - Salem Harbor (SH), Brayton Point (BP), Gaston, Pleasant Prairie (PP), CE1 and CE2
- One carbon black sample:
 - Cabot Black Pearls 460
- Methods: SEM-EDAX, XPS, LOI, BET, Particle Size Distribution, TPD

Mercury Uptake Testing

Flue Gas Composition

Gases	CO ₂	O ₂	NO	NO ₂	HCI	SO ₂	N ₂
[Feed Tanks]	99.99%	99.99%	3027ppm	488ppm	1022.2ppm	1.01%	99.99%
[Desired]	13.5%	6%	300ppm	20ppm	50ppm	0.15%	Balance
Flow rate (ml/min)	135	60	99.1	41.0	48.9	148.5	467.5

Hg concentration: ~ 18µg/m³

Sample: 50mg sample mixed with 4 g glass beads

TPD Analysis

 $Liq.N_2$

- Residual gas analyzer (mass-spec)
- A custom Labview program to monitor
 - total pressure and temperature
 - mass spectra during TPD experiments

Results

- Part 1
 - Fly ash characteristics
- Part 2
 - Hg uptake tests with fly ash and its components in flue gas
 - Correlation between Hg uptake and fly ash characteristics
- Part 3
 - Hg uptake tests with carbon black and different flue gas combinations
 - Correlation between Hg uptake and TPD Analyses & XPS Analyses
 - Theoretical calculations

SEM Images of Fly Ash Samples

15.0 kV 4.0 200x BSE 9.8 Salem Harbor

Gaston

CE1

Fly Ash Characteristics

Sample	Surface Area (m ² /g)	LOI (%)	Moisture (%)	Particle size (µm)	
SH	17.9	37.2	0.1	92.7	
BP	5.8	18.1	0.1	77.6	
Gaston	2.1	11.9	0.2	30.3	
PP	3.0	1.0	0.2	48.0	
CE1	2.5	6.0	0.1	32.7	
CE2	1.1	3.1	0.1	23.4	
Carbon black	71.4	-	-	268	

SEM Images of Fly Ash Samples

15.0 kV 4.0 200x BSE 9.8 Salem Harbor

Gaston

CE1

XPS (Weight %)

Fly Ast	С	0	Mg	AI	Si	S	Ca	Ti	Fe
SH	41.4	31.9	0.3	4.5	10.9	4.9	1.5	0.3	2.9
BP	14.9	47.1	0.4	9.0	19.8	4.2	1.1	0.5	3.1
Gastor	9.7	48.4	0.6	6.3	11.2	14.6	1.7	0.5	3.2
PP	6.0	43.3	1.6	3.5	6.5	13.9	15.7	0.5	1.6
CE1	16.0	45.1	0.1	6.8	16.2	6.9	2.2	0.5	5.4
CE2	15.9	44.8	0.3	8.3	18.7	4.9	1.5	0.5	4.6

MgO, Al₂O₃, SiO₂, CaO, TiO₂, and Unburned Carbon

Mercury Uptake Test

Effects of Fly Ash Samples (CE1)

Hg uptake test with 50 mg CE1 fly ash at 140 °C

0

Effects of Fly Ash Samples (CE2)

Effects of Fly Ash Samples (PP)

Hg uptake test with 50 mg PP fly ash at 140 °C

Effects of Fly Ash Samples (Gaston)

Effects of Fly Ash Samples (Brayton)

Effects of Fly Ash Samples (SH)

Hg uptake test with 50 mg SH fly ash at 140 °C

Effects of Fly Ash Samples

Hg uptake and Oxidation after four-hour exposure

Sample	Mercury Load (µg/g)	Oxidized Hg %
SH	47.9	22.89%
BP	38.3	9.33%
Gaston	14.6	7.32%
PP	8.8	8.08%
CE1	13.1	1.60%
CE2	13.2	5.20%

Effects of Surface Area on Hg Uptake and Oxidation

Mercury Uptake by Fly Ash Components

Hg uptake test with 50 mg Al₂O₃ at 140 °C

Effects of Fly Ash Components

Hg uptake test with 50 mg SiO₂ (Pretreated with Aqua Regia) at 140 °C

Effects of Fly Ash Components

Hg uptake test with 50 mg Fe₂O₃ at 140 °C

Effects of Fly Ash Components

Effects of LOI on Hg uptake and Oxidation

Mercury uptake and oxidation are both proportional to LOI; carbonaceous component actively participates in both processes

Summary of Experiments with Fly Ash

- Both adsorption and oxidation increased with surface area and LOI.
- Carbon, and Fe₂O₃ promoted Hg adsorption and oxidation, SiO₂ had little effect, while Al₂O₃, MgO, CaO, or TiO₂ didn't promote Hg adsorption or oxidation.
- Carbon is present at 6 41 wt.% while Fe₂O₃ is present at 1.6 5.5 wt. %
- Focus on carbon component of fly ash

Interaction of Flue Gas Components with Carbon Black

- General procedure:
 - 1. Baseline of Hg⁰ with N₂ / N₂+CO₂+O₂
 - 2. Introduce 50mg carbon black
 - After the "breakthrough", SO₂, NO, H₂O, NO₂, HCI or a combination of different gases will be introduced into the gas flow (A flow rate 1L/min is kept)
 - 4. Monitor changes in Hg speciation in the effluent

Modeling

- Quantum Modeling
 - Gaussian 03W package for preliminary calculations
 - PC GAMESS package for production runs on 8-32 node computer cluster
 - DFT/B3LYP for geometry optimization and energy calculations
 - Basis Sets 6-31G(d) for elements other than Hg
 - Effective Core Potential for Hg SBKJC

Carbon Model Structures

Theoretical Calculations

Binding Energy = E(CS–Hg) – E(CS) – E(Hg)

Hg⁰ Binding Energy: -5.0 to -9.1 kcal/mole depending on position

Mercury Uptake Test with Carbon black in N₂

Mercury uptake by carbon black in N₂ at 140 °C

TPD analysis of Carbon Black

Species desorbing from C-black are mainly oxygen functionalities

Mercury Uptake Test with Carbon Black in SO₂

Effect of SO₂ on mercury uptake by Carbon black in N₂ at 140 °C

•

0

Mercury Uptake Test with Carbon Black in SO₂

Effect of SO₂ on mercury uptake by Carbon black in N₂+CO₂+O₂ at 140 °C

Similar results with NO, and H_2O in $N_2/N_2+CO_2+O_2$

Mercury Uptake Test with Carbon Black in NO₂

Effect of NO₂ on mercury uptake by carbon black in N₂ at 140 °C

.

Mercury Uptake Test with Carbon Black in NO₂

Effect of NO₂ on mercury uptake by carbon black in N₂+CO₂+O₂ at 140 °C

0

Mercury Uptake Test with Carbon black in HCI

Effect of HCl on mercury uptake by carbon black in N₂ at 140 °C

HCl promotes Hg oxidation on the surface of carbon black **Deacon Reaction:** $4HCl + O_2 \xrightarrow{M} 2Cl_2 + 2H_2O$

Mercury Uptake Test with Carbon black in HCI

Hg_{TOTAL}: Filled symbols Hg⁰: Open symbols

1: N_2 +HCl 2: N_2 +HCl (Sample exposed to O_2 for 4 hrs) 3: N_2 +HCl+CO₂+O₂

Mercury Uptake Test with Carbon black

Hg_{TOTAL}: Filled symbols Hg⁰: Open symbols

¢

TPD of Spent Sorbent

Species desorbing from C-black are mainly oxygen functionalities Traces of SO₂ can be detected (64, 48, and 32 a.m.u.) No CI-traces detected

Different NO₂ approaches

Broken NO₂ structure has lower energy (more stable)

Hg⁰ Binding Energy:
-2.6 to -8.2 kcal/mole for Y structure
-32.1 to -38.1 kcal/mole for broken structure
Runs ongoing for attached O, expected lower binding energy (favorable Hg⁰ binding)

Different HCI approaches

Hg⁰ Binding Energy: -1.9 to -7.7 kcal/mole with 1 H and 1 Cl attached -1.3 to -10.7 kcal/mole for various H attachments Possible bulk Hg⁰ reactions with detached Cl – preliminary calculations show HgCl binding energy of -66.7 kcal/mole

Conclusions

- Fe₂O₃ and carbon black promote Hg adsorption and oxidation
- Increase in LOI and surface area resulted in increase Hg adsorption and oxidation
- HCI and NO₂ promote Hg adsorption and oxidation on carbon black in N₂
- Oxygen plays an important role on Hg adsorption and oxidation when combined with HCI
- SO₂ inhibited Hg adsorption by inhibiting mercury oxidation and by competitive adsorption

Acknowledgements

- This work was funded in part by the NETL of the U.S. DOE under Contract No. DE-FG26-05NT42534.
- Thanks to Albert Stewart from the Department of Mechanical Engineering and Material Science, Götz Veser from the Department of Chemical and Petroleum Engineering at University of Pittsburgh and John Baltrus from the US DOE/NETL for SEM-EDAX, surface area and XPS analysis.